Título: | STATISTICAL BEHAVIOR OF SKEW PRODUCTS: SCHWARZIAN DERIVATIVE AND ARC-SINE LAWS | ||||||||||||
Autor: |
RAUL STEVEN RODRIGUEZ CHAVEZ |
||||||||||||
Colaborador(es): |
LORENZO JUSTINIANO DIAZ CASADO - Orientador PABLO GUTIERREZ BARRIENTOS - Coorientador |
||||||||||||
Catalogação: | 11/JUN/2024 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66996&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66996&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.66996 | ||||||||||||
Resumo: | |||||||||||||
We consider skew products over Bernoulli shifts, whose fibred dynamics is
given by diffeomorphisms of the interval. We study the predictable and/or
historical behavior, referring to convergence and/or non-convergence, of the
Birkhoff average, respectively. We employ the Schwarzian derivative of the
fiber maps and the arc-sine law to identify conditions under which these
skew products exhibit these types of behavior. We identify distinct types
of behavior according to the Schwarzian derivative. When the Schwarzian
derivative is negative, the skew product has intermingled basins. Conversely,
when the Schwarzian derivative is positive, the skew product has a physical
measure. Finally, when the Schwarzian derivative is zero, the skew product
has historical behavior. In the latter scenario, we establish a connection
between historical behavior and the arc-sine law that allows us to obtain
results in other settings independent of the sign of the Schwarzian derivative.
|
|||||||||||||
|