Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: STATISTICAL BEHAVIOR OF SKEW PRODUCTS: SCHWARZIAN DERIVATIVE AND ARC-SINE LAWS
Autor: RAUL STEVEN RODRIGUEZ CHAVEZ
Colaborador(es): LORENZO JUSTINIANO DIAZ CASADO - Orientador
PABLO GUTIERREZ BARRIENTOS - Coorientador
Catalogação: 11/JUN/2024 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66996&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66996&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.66996
Resumo:
We consider skew products over Bernoulli shifts, whose fibred dynamics is given by diffeomorphisms of the interval. We study the predictable and/or historical behavior, referring to convergence and/or non-convergence, of the Birkhoff average, respectively. We employ the Schwarzian derivative of the fiber maps and the arc-sine law to identify conditions under which these skew products exhibit these types of behavior. We identify distinct types of behavior according to the Schwarzian derivative. When the Schwarzian derivative is negative, the skew product has intermingled basins. Conversely, when the Schwarzian derivative is positive, the skew product has a physical measure. Finally, when the Schwarzian derivative is zero, the skew product has historical behavior. In the latter scenario, we establish a connection between historical behavior and the arc-sine law that allows us to obtain results in other settings independent of the sign of the Schwarzian derivative.
Descrição: Arquivo:   
COMPLETE PDF