Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DECISION DIAGRAMS FOR CLASSIFICATION: NEW CONSTRUCTIVE APPROACHES
Autor: PEDRO SARMENTO BARBOSA MARTINS
Colaborador(es): THIBAUT VICTOR GASTON VIDAL - Orientador
Catalogação: 16/OUT/2023 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64308&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64308&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.64308
Resumo:
Decision diagrams are a generalization of decision trees. They have been repeatedly proposed as a supervised classification model for machine learning but have not been widely adopted. The reason appears to be the difficulty of training the model, as the requirement of deciding splits and merging nodes can lead to difficult combinatorial optimization problems. A decision diagram has marked advantages over decision trees because it better models disjoint binary concepts, avoiding the replication of subtrees and thus has less sample fragmentation in internal nodes. Because of this, devising an effective construction algorithm is important. In this context, the Optimal Decision Diagram (ODD) algorithm was recently proposed, which formulates the problem of building a diagram as a mixed-integer linear program (MILP), with a warm start provided by a greedy constructive heuristic. Initial experiments have shown that this heuristic can be improved upon, in order to find close-to-optimal solutions more effectively and in turn provide the MILP with a better warm start. In this study, we report improvements to this constructive heuristic, by randomizing the split decisions, pruning pure flows (i.e. flows with samples from a single class), and applying bottom-up pruning, which considers the complexity of the model in addition to its accuracy. All proposed improvements have positive effects on accuracy and generalization, as well as the objective value of the ODD algorithm. The bottom-up pruning strategy, in particular, has a substantial impact on the objective value, and thus on the ability of the MILP solver to find optimal solutions. In addition, we provide experiments on the expressiveness of decision diagrams when compared to trees in the context of small boolean functions in Disjoint Normal Form (DNF), as well as a web application for the visual exploration of the proposed constructive approaches.
Descrição: Arquivo:   
COMPLETE PDF