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Abstract

Sarmento Barbosa Martins, Pedro; Vidal, Thibaut (Advisor). Decision
Diagrams for Classification: New Constructive Approaches. Rio
de Janeiro, 2023. 64p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Decision diagrams are a generalization of decision trees. They have
been repeatedly proposed as a supervised classification model for machine
learning but have not been widely adopted. The reason appears to be the
difficulty of training the model, as the requirement of deciding splits and
merging nodes can lead to difficult combinatorial optimization problems.
A decision diagram has marked advantages over decision trees because it
better models disjoint binary concepts, avoiding the replication of subtrees
and thus has less sample fragmentation in internal nodes. Because of this,
devising an effective construction algorithm is important. In this context, the
Optimal Decision Diagram (ODD) algorithm was recently proposed, which
formulates the problem of building a diagram as a mixed-integer linear program
(MILP), with a warm start provided by a greedy constructive heuristic. Initial
experiments have shown that this heuristic can be improved upon, in order
to find close-to-optimal solutions more effectively and in turn provide the
MILP with a better warm start. In this study, we report improvements to this
constructive heuristic, by randomizing the split decisions, pruning pure flows
(i.e. flows with samples from a single class), and applying bottom-up pruning,
which considers the complexity of the model in addition to its accuracy. All
proposed improvements have positive effects on accuracy and generalization,
as well as the objective value of the ODD algorithm. The bottom-up pruning
strategy, in particular, has a substantial impact on the objective value, and
thus on the ability of the MILP solver to find optimal solutions. In addition, we
provide experiments on the expressiveness of decision diagrams when compared
to trees in the context of small boolean functions in Disjoint Normal Form
(DNF), as well as a web application for the visual exploration of the proposed
constructive approaches.

Keywords
Decision Tree; Decision Diagram; Machine Learning; Classification.



Resumo

Sarmento Barbosa Martins, Pedro; Vidal, Thibaut. Diagramas de
Decisão para Classificação: Novas Abordagens Construtivas.
Rio de Janeiro, 2023. 64p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Diagramas de decisão são uma generalização de árvores de decisão, já
propostos como um modelo de aprendizado de máquina para classificação su-
pervisionada mas não largamente adotados. A razão é a dificuldade em treinar
o modelo, já que o requerimento de decidir splits (partições) e merges (uniões
de nós) em conjunto pode levar a problemas difíceis de otimização combi-
natória. Um diagrama de decisão tem importantes vantagens sobre árvores de
decisão, pois melhor expressa conceitos binários disjuntos, evitando o problema
de duplicação de subárvores e, portanto, apresentando menos fragmentação em
nós internos. Por esse motivo, desenvolver algoritmos efetivos de construção é
um esforço importante. Nesse contexto, o algoritmo Optimal Decision Diagram
(ODD) foi recentemente proposto, formulando a construção do diagrama com
programação inteira mista (MILP na sigla em inglês), com um warm start pro-
veniente de uma heurística construtiva gulosa. Experimentos mostraram que
essa heurística poderia ser aperfeiçoada, a fim de encontrar soluções próximas
do ótimo de maneira mais efetiva, e por sua vez prover um warm start melhor.
Nesse estudo, reportamos aperfeiçoamentos para essa heurística construtiva,
sendo eles a randomização das decisões de split, a poda de fluxos puros (ou
seja, fluxos de exemplos pertencentes a uma única classe), e aplicando uma
poda bottom-up (de baixo para cima), que considera a complexidade do mo-
delo além da sua acurácia. Todos os aperfeiçoamentos propostos têm efeitos
positivos na acurácia e generalização, assim como no valor objetivo do algo-
ritmo ODD. A poda bottom-up, em especial, tem impacto significativo no valor
objetivo, e portanto na capacidade da formulação MILP de encontrar soluções
ótimas. Ademais, provemos experimentos sobre a expressividade de diagramas
de decisão em comparação a árvores no contexto de pequenas funções boolea-
nas em Forma Normal Disjuntiva (DNF na sigla em inglês), assim como uma
aplicação web para a exploração visual dos métodos construtivos propostos.
Palavras-chave

Árvore de Decisão; Diagrama de Decisão; Aprendizado de Máquina;
Classificação.
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1
Introduction

Classical machine learning models have been used for several decades
now. Their relevance has arguably increased in recent years, even while much
attention has been given to advances in the deep learning landscape. Still,
for tabular data, frequently used in fields as diverse as medicine, finance, and
manufacturing, deep learning has not surpassed the performance of classical
tree-based models such as Random Forests (SHWARTZ-ZIV; ARMON, 2022;
GORISHNIY et al., 2021; GRINSZTAJN; OYALLON; VAROQUAUX, 2022).
The growing application of algorithmic decision-making based on machine
learning models in high-stake settings, including healthcare, credit-lending, and
criminal justice, has also evidenced the need for simple, human-interpretable
models (RUDIN, 2019; RUDIN et al., 2022).

Decision trees and related models are considered a cornerstone of classical
machine learning for classification tasks. A decision tree can be interpreted as a
sequence of recursive partitions of the training data feature space, where each
partition — also called a split — can be visualized as the internal node of a
tree. The tree leaves represent classes, and thus a path from the root of the tree
to a leaf can be interpreted as a classification rule. Its ease of implementation,
good performance on tabular data, and simplicity have made decision trees a
popular choice for many applications (MOONEY, 2022).

High variance, a distinct shortcoming of decision trees (HASTIE; TIB-
SHIRANI; FRIEDMAN, 2001), has been commonly handled by the use of
ensemble methods, which combine the output of many individual trees into a
single model. The overfitting tendency of fully-grown trees has been eased by
the use of pruning methods and stopping criteria. Nevertheless, a few prob-
lems inherent to the structure of a decision tree remain. In particular, trees
are unable to express certain disjoint concepts, such as XOR, without growing
entirely identical subtrees – and thus increasing the overall size of the tree. As
a result, samples that statistically support split decisions are scattered across
multiple nodes, weakening these supports. These are known as the replication
and fragmentation problems, respectively (OLIVER, 1993).

Replication can be avoided if the tree structure is generalized to that of
a directed acyclic graph (DAG). In DAGs, nodes are allowed to have merges
besides splits, so that two different nodes may share a common child. In doing
so, DAGs can also limit the number of nodes in the graph, as it does not grow
exponentially with depth. A decision diagram is a classification model that
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generalizes decision trees by using a DAG topology. The model has thus some
advantages over classic trees, as it avoids the subtree replication problem, does
not grow exponentially with depth, and is less prone to fragmentation of data
in internal nodes (OLIVER, 1993).

Several algorithms have been proposed for building decision dia-
grams (OLIVER, 1993; KOHAVI, 1994; KOHAVI; LI, 1995; OLIVEIRA;
SANGIOVANNI-VINCENTELLI, 1996; PLATT; CRISTIANINI; SHAWE-
TAYLOR, 2000; IGNATOV; IGNATOV, 2018). These algorithms are usually
based on heuristics. Because of merges, decision diagrams are more difficult
to implement and solve efficiently than decision trees. Early proposals would
first generate a decision tree and then detect candidate nodes to merge, possi-
bly leading to difficult combinatorial optimization problems, or resort to fixing
the diagram topology a priori, restricting the learning procedure. As a result,
decision diagrams have not been widely adopted over decision trees.

Recently, renewed attention has been given to algorithms for learning
decision diagrams, especially using optimal methods instead of heuristics.
Cabodi et al. (2021) and Hu, Huguet and Siala (2022), for instance, use
satisfiability solvers (SAT) to build optimal binary decision diagrams. In a
recent work co-authored by the present study author, the Optimal Decision
Diagram (ODD) algorithm is proposed for learning decision diagrams with
a mixed-integer programming (MILP) approach (FLORIO et al., 2022). The
ODD training consists of two steps: a heuristic construction, which greedily
builds an initial diagram using a top-down approach, and an optimization step
which solves the complete MILP program using the previous step solution as
a warm start.

The ODD algorithm constructs decision diagrams that are generally
sparser than their decision tree counterparts and achieve better accuracy.
However, experiments with data sets of practical importance were shown to
take several minutes to complete before finding an optimal solution. Much
of this computing time was spent in the second step of the algorithm. This
indicates that the heuristic approach could be improved upon, in order to
find close-to-optimal solutions more effectively, and in turn provide the MILP
program with a better warm start. In addition to enhancing the optimal
construction algorithm, an improved heuristic approach could also be used
for larger problem instances (i.e., with thousands of features), which MILP
struggles to solve efficiently.

In the present study, we analyze new constructive heuristics for decision
diagrams, with special attention to the context of the ODD algorithm and
the improvement of its heuristic step. The implemented improvements include
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randomization, pre-pruning, and post-pruning methods1.
In addition to studying the proposed improvements, we also perform

an experimental analysis of the expressiveness of decision diagrams when
compared to decision trees. We train both models on uniformly sampled
examples of random boolean functions expressed in disjunctive normal form
(DNFs). The fact that any boolean function can be expressed as a DNF and
that many concepts can be naturally represented by DNFs, such as medical
diagnoses or tax rules, make them a suitable subject for expressiveness analysis.

Finally, we present a web application developed to visually debug the
constructive approaches analyzed in this study. Besides visualizing the learned
diagram with split and merge decisions for a particular data set, skeleton, and α

hyperparameter, the tool allows constructive improvements to be individually
activated or deactivated, log messages to be shown in a debug panel, and all
constructive steps to be replayed.

The study is organized as follows. Chapter 2 discusses related works in
the context of interpretability, decision trees, and decision diagrams. Chapter 3
defines the original constructive algorithm, its pitfalls, and the proposed
improvements. It also discusses the expressiveness of decision diagrams in the
context of DNFs. Chapter 4 provides the experimental results obtained for the
proposed constructive approaches and the expressiveness comparison between
decision diagrams and trees. Chapter 5 presents the visual explorer tool. Lastly,
Chapter 6 concludes the study.

1Note that these improvements were not present in the first versions of the paper, but
were incorporated by the time it was published in AAAI 2023.



2
Related Works

2.1
Interpretability: An Overarching Concern in Machine Learning

Machine learning research on classification has been traditionally focused
on accuracy and other classifier performance metrics. Recently, the application
of ML models in high-stakes decisions, such as healthcare, credit lending, and
criminal justice, has brought questions of interpretability and explainability
into the field (CARVALHO; PEREIRA; CARDOSO, 2019). There has been
renewed interest in simple, logical models in the literature, such as decision
trees and lists (RUDIN, 2019; RUDIN et al., 2022; CARRIZOSA; MOLERO-
RÍO; MORALES, 2021).

The appeal of these models lies in the interpretability of their features.
Humans can readily visualize and comprehend simple decision trees, while
linear model weights may have a precise and easy-to-grasp interpretation.
This inherent interpretability can be advantageous compared to black box
models that demand separate models as explanations, as this type of black
box explanation can be unreliable and misleading (RUDIN, 2019).

However, even defining interpretability and explainability in the context
of machine learning has proven difficult, as these notions can be subjective
and domain-specific, while the quality assessment of explanations is restricted
by a lack of standard metrics and comparison frameworks in the machine
learning literature (CARVALHO; PEREIRA; CARDOSO, 2019). In a given
domain, interpretability and explainability needs may also differ across agents,
including scientists, developers, stakeholders, and the final users of a model
(TOMSETT et al., 2018). Finally, even models expected to be inherently
interpretable can suffer from a lack of transparency. Large, complex decision
trees can be less comprehensible than simple trees, while linear models with
correlated features will have weights that are not easily interpretable.

Decision diagrams carry the same advantages for interpretability as deci-
sion trees — as well as their caveats. Their improved expressibility and gener-
ally sparser structure have potentially positive impacts on the model intelligi-
bility when compared to trees. In this study, however, we will not investigate
the interpretability of decision diagrams, computationally or empirically, but
it is an important topic for future research.
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Figure 2.1: Example of a decision tree for a fictitious task of heart attack risk
classification.

2.2
Decision Trees for Classification

Decision trees are a supervised learning model frequently used for classi-
fication and regression tasks. To define a decision tree, consider a set of classes
C = [1, 2, . . . , k] and a data set X of learning examples (x, y), where each x is a
vector (x1, . . . , xj) of feature values and y ∈ C is the corresponding classifica-
tion label. The root and each internal node in a learned decision tree represent
a split in the feature space of X, and edges correspond to each resulting half-
space. Leaf nodes represent classes in C. In that way, a new example x′ can be
classified by traversing the tree from its root and following the path dictated
by the feature value of x′ in each split, until reaching a leaf node. The class
represented by this node is the learned class for x′.

An example of a decision tree for a fictitious data set can be seen in
Figure 2.1. The task is to classify patients into high and low risk of heart
attack, given their age, sex, and smoker status. If presented with a new example
x′ = (75, Male, Yes), it is trivial to follow the splits at each node, and reach
the conclusion that x′ should be classified as high risk.

Note that the decision tree can be interpreted as a set of rules for
classification. In the example of Figure 2.1, such a rule for classifying a patient
as high risk would be

(Age ≥ 60 ∧ Sex = Male) ∨ (Age < 60 ∧ Smoker = Yes). (2-1)

Decision trees have been widely adopted as a standalone classifica-
tion model or as the base for ensemble models, such as Random Forests
(BREIMAN, 2001) and Gradient Boosted Trees (FRIEDMAN, 2001). Since
they can be easily visualized and also represented as classification rules, deci-
sion trees can offer a higher degree of transparency and interpretability when
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compared to more complex models, such as neural networks. Classical tree al-
gorithms are easy to implement and have shown good performance on a variety
of data sets, especially for tabular data.

2.2.1
Learning Decision Trees

Learning an optimal decision tree is known to be NP-hard (HYAFIL;
RIVEST, 1976), but practical heuristic algorithms have proven effective in
learning trees with good classification performance. These algorithms are
usually top-down greedy procedures that make locally optimal split decisions
at each node. The feature and threshold value for a split are selected based on
an impurity measure, such as information gain or Gini impurity. The objective
is to find the split that best separates the samples reaching a node, where a
perfect split would separate the samples into subgroups consisting of a single
class each. Stopping criteria and pruning methods are usually employed to
limit the size and complexity of the learned tree.

Given the training data set X, the basic algorithm for learning decision
trees will recursively partition its feature space, trying to keep samples belong-
ing to the same class grouped together. At a node v, let Xv be the data that
reaches it and nv = |Xv|. Then, for each feature j in X, the samples are or-
dered in relation to j, and for each possible threshold value, tv a candidate split
θ = (j, tv) is defined. The Xv data is partitioned into X left

v (θ) and Xright
v (θ)

subsets

X left
v (θ) = {(x, y) | xj ≤ tv} (2-2)

Xright
v (θ) = Xv \X left

v (θ). (2-3)

The quality of all candidate splits at node v are then computed using a
choice of impurity function H (such as entropy or Gini impurity)

G(Xv, θ) = nleft
v

nv

H(X left
v (θ)) + nright

v

nv

H(Xright
v (θ)). (2-4)

Next, the split that minimizes impurity is selected

θ∗ ∈ argminθ G(Xv, θ). (2-5)

Finally, the algorithm recurses for subsets X left
v (θ) and Xright

v (θ). Stop-
ping criteria, such as a maximum allowed depth or a minimum number of
samples per node, are used to limit the recursion and the size of the tree.
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Decision tree algorithms have a long history (see, for instance, LOH
2014). The ID3 (Iterative Dichotomiser 3) algorithm was developed in 1986
(QUINLAN, 1986), works solely for categorical features, and uses information
gain as the impurity metric. The C4.5 algorithm (QUINLAN, 1993) is the
successor of ID3. It extends support to continuous features by partitioning
them into a discrete set of intervals and uses gain ratio as the measure of
impurity. The C4.5 algorithm also applies post-pruning of the learned tree and
deals with missing values.

The CART (Classification and Regression Trees) algorithm (BREIMAN
et al., 1984) was developed in 1984 as an improvement to earlier decision tree
induction methods such as AID (MORGAN; SONQUIST, 1963) and THAID
(MESSENGER; MANDELL, 1972) and is still widely adopted. Instead of
using stopping rules, it applies cost-complexity post-pruning (discussed in more
depth in Section 3.3.1).

More recently, some attention has been given to the construction of
optimal decision trees, pushed by advances in hardware and in combinato-
rial optimization software (BIXBY, 2012). The work of Bertsimas and Dunn
(BERTSIMAS; DUNN, 2017) has been the root for continuous improvement
of mathematical programming techniques for learning decision trees (CARRI-
ZOSA; MOLERO-RÍO; MORALES, 2021), and other research paths include
SAT (NARODYTSKA et al., 2018), dynamic programming (DEMIROVIĆ et
al., 2020), and branch-and-bound search (AGLIN; NIJSSEN; SCHAUS, 2020).
These techniques are usually limited to small and medium-sized problems,
but the substantial improvements in combinatorial optimization software have
yielded compelling results in data sets of practical importance.

2.2.2
Shortcomings

Without any technique for restraining size and complexity, decision trees
tend to be large and overfit the training data, as the number of internal
nodes in a tree grows exponentially with depth. Pruning methods and stopping
criteria are thus usually employed to simplify decision trees, avoid overfitting,
and improve generalization. Decision trees are also unstable, meaning that
small variations in the data set X can lead to vastly different trees. This
problem is usually mitigated by the use of ensemble methods, which combine
the prediction of multiple decision trees.

Another disadvantage of decision trees is their inefficiency in expressing
concepts such as XOR and thus solving higher-dimension boolean problems,
such as parity, majority-on, and multiplexer. This can lead to replication and
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Figure 2.2: Example of a decision tree with subtree replication.

fragmentation issues in the learned tree (OLIVER, 1993; PAGALLO, 1989;
VILALTA; BLIX; RENDELL, 1997).

To express such concepts as XOR, the learned tree is forced to replicate
subtrees, which leads to a higher number of internal nodes. An example is given
in Figure 2.2. This learned tree is a variation of the one found in Figure 2.1,
with an added Blood pressure feature. The rule for classifying a sample as high
risk has changed to

(Age ≥ 60 ∧ Sex = Male) ∨ (Smoker = Yes ∧ Blood p. = High). (2-6)

Notice how the subtree that represents the second term in the proposition
above has been duplicated. This happens because of the disjunctive form of
the decision rule and the addition of a new feature.

Apart from creating more complex trees, another consequence of the
replication problem is the partition of samples that support the replicated
subtrees between different internal nodes, leading to weaker statistical support
for each split decision. This is also known as the fragmentation problem.

Some proposals have been made to address the replication and frag-
mentation problems. These usually consist of learning an initial tree and then
searching for possible feature combinations to create new features (PAGALLO,
1989; VILALTA; BLIX; RENDELL, 1997). A new tree learned on those fea-
tures can then better express disjoint boolean concepts such as XOR. The
approach has the disadvantage of needing to first build an initial tree and the
possible loss of interpretability caused by using combined features.
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Figure 2.3: Example of a decision diagram.

2.3
Decision Diagrams

Decision diagrams are a generalization of decision trees. In addition to
splits, diagrams also allow merges, meaning that two nodes can share a common
child. This allows for multiple paths from the root to a leaf and has the
advantage of not growing the number of nodes exponentially with depth. An
example of a decision diagram is given in Figure 2.3. It represents the same
classification rule of the tree in Figure 2.2.

The resulting diagram has fewer internal nodes than the corresponding
tree in this case. Even though the set of decision functions representable
by diagrams is the same as the set representable by trees (OLIVER, 1993),
decision diagrams have a higher expressive power. This in turn avoids the
replication and fragmentation problems found in decision trees.

Decision diagrams are also known as decision graphs or decision streams
and have a history preceding and independent of their use as a classifica-
tion model. They have been explored as a compact data structure for logi-
cal statements, being widely applied in symbolic logic and circuit validation
(LEE, 1959; Bryant, 1986; BRYANT, 1992). Decision diagrams have also been
applied in optimization (BEHLE, 2007; BERGMAN et al., 2016; LANGE;
SWOBODA, 2021) and artificial intelligence in the context of planning (SAN-
NER; UTHER; DELGADO, 2010; CASTRO et al., 2019), knowledge compi-
lation (NIEUWENHUIS et al., 2012; LAI; LIU; WANG, 2013; SERRA, 2020),
and constraint propagation (ANDERSEN et al., 2007; PEREZ; RÉGIN, 2015;
VERHAEGHE; LECOUTRE; SCHAUS, 2018).
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Decision diagrams have also been used in machine learning for tasks
other than classification. The model has been applied to extend support vec-
tor machines for multiclass classification (PLATT; CRISTIANINI; SHAWE-
TAYLOR, 2000) and as a surrogate model for neural networks (CHOROWSKI;
ZURADA, 2011).

2.3.1
Decision Diagrams for Classification

Decision diagrams have not been widely adopted as a classification model,
but several constructive approaches have been proposed. The inherent difficulty
in learning diagrams arises from having to decide both splits and merges,
and also from determining the best diagram topology. Therefore, most early
algorithm proposals consisted of building a decision tree and then finding
merges in a post-processing step (MAHONEY; MOONEY, 1991), or of fixing
the diagram structure a priori (BAHL et al., 1989).

Mahoney and Mooney (1991) proposed to identify and merge related
subtrees in a decision tree constructed using a standard tree learning algorithm.
Their results showed limited generalization performance, and the task of
finding related subtrees was found to be too computationally expensive. The
work of Bahl et al. (1989) approached the problem by fixing the gross structure
of the decision diagram a priori. As the topology of a decision diagram may
be dependent on the specific domain and classification problem being solved,
this a priori definition can be a considerable disadvantage.

Oliver (1993) tried to overcome both the related subtree and the fixed
structure problems using a greedy bottom-up construction algorithm and the
Minimum Message Length Principle (MMLP). At each iteration, each leaf in
the graph defines a candidate split on a feature value, each leaf pair defines a
candidate merge, and the MMLP is used to choose the best alteration (split
or merge). If that alteration improves the diagram’s message length, then
the algorithm performs that alteration to the diagram. He reported better
classification performance over decision trees on relatively simple problems,
but further tests found the methodology to fail on more complex cases,
where the algorithm would tend to perform premature joins (OLIVEIRA;
SANGIOVANNI-VINCENTELLI, 1996).

Oliveira and Sangiovanni-Vincentelli (1996) also used the MMLP. Their
approach builds reduced ordered decision diagrams, which are diagrams that
have no redundant nodes and where the tests performed on the variables
follow a fixed order for all paths in the graph. This allows the use of
efficient algorithms known from logical synthesis for manipulating this kind of
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graph. From an initial reduced-order decision diagram, the algorithm derives
a compact diagram by performing incremental changes until a local optimum
is obtained.

Other approaches using reduced ordered decision diagrams have been
proposed. In Kohavi (1994) the diagram is built in a bottom-up fashion,
starting at the level closest to the terminal nodes. Kohavi and Li (1995)
proposed an alternative algorithm that builds reduced ordered decision trees
and then identifies and merges related subtrees.

Shotton et al. (2013) proposes ensembles of decision diagrams, called
decision jungles. Split and merging decisions are optimized jointly by minimiz-
ing the weighted entropy sum at the leaves, and the algorithm is implemented
using local search heuristics. The authors reported improved generalization
compared to random forests while using substantially less memory.

A recent trend in the literature has been the proposal of optimal methods
for the construction of decision diagrams for classification, in step with the
rise of optimal methods for decision trees as reviewed in Section 2.2.1. Cabodi
et al. (2021) present a SAT-based model for computing a decision tree as the
smallest reduced ordered binary decision diagram. Hu, Huguet and Siala (2022)
proposed a similar approach, with the key differences of using a MaxSAT solver
and limiting the resulting diagram depth.

Simultaneously, another research stream in the optimal methods space
is the Optimal Decision Diagram (ODD) algorithm (FLORIO et al., 2022),
proposed by the current study author and others. As this study is closely
connected to the ODD algorithm context, it will be described in more depth
in the next section.

2.3.2
The Optimal Decision Diagram Algorithm

The ODD algorithm is the first MILP approach to train decision diagrams
for classification (FLORIO et al., 2022). The model jointly optimizes merge and
split decisions, while using a limited number of binary variables for increased
efficiency. Because of the mathematical programming formulation of the model
and its objective function, the approach can be easily extended for fairness,
parsimony, and stability notions.

An important first step of the ODD algorithm is the construction of
an initial decision diagram by a greedy top-down heuristic. This is needed
primarily as a warm-start, that is, to provide the MILP solver with a feasible
decision diagram candidate, preferably close to the optimal solution, in order
to decrease its search space and improve its computing time. Aside from its
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use as a warm-start, the heuristic approach can be applied to large problems
where finding an optimal solution would be too computationally expensive.

In the initial implementation of the ODD algorithm, experiments with
data sets of practical importance were shown to take several minutes to
complete before finding an optimal solution. Much of this computing time
was spent in the second step of the algorithm, indicating that the heuristic
approach could be improved upon. The original constructive heuristic, its flaws,
and proposed improvements are discussed in more depth in Chapter 3.

2.3.2.1
Formulation

The MILP formulation must account for the flow variables that represent
the trajectory of samples, the design variables that define the topology of the
diagram, including merges, and the split decisions. The decision diagram is
represented by an acyclic graph G = (V, E). The set of nodes V is the union
of the set of internal nodes V I and the set of leaves V C . Nodes are represented
by indices V = {0, . . . , |V I | + |V C | − 1}, so that node 0 ∈ V I is the diagram
root, and the remaining nodes are listed by increasing depth, from left to
right. Let V I

l be the set of nodes at depth l, and let δ−(v) and δ+(v) be the
sets of predecessors and successors of each node v ∈ V . The decision diagram
produced by ODD will be a subgraph of G.

Figure 2.4 displays a visualization of this formulation scheme, with three
layers of internal nodes and two terminal nodes. The thick edges indicate a
possible decision diagram and the black connectors illustrate flow conservation
within the graph. The ODD algorithm also permits long arcs between the black
connectors of layers V I

0 and V I
1 and the terminal nodes of V C , but they are

not displayed in Figure 2.4 for clarity.
The following description of the MILP formulation omits certain con-

straints for the sake of brevity. These are indicated in the text and we refer to
Florio et al. (2022) for the complete formulation.

Sample flow. Each sample i and internal node u ∈ V I is associated to a pair
of flow variables w−

iu ∈ [0, 1] and w+
iu ∈ [0, 1]. Variables z−

iuv ∈ [0, 1] (respectively
z+

iuv ∈ [0, 1]) characterize the flow going from the negative and positive sides of
u to other nodes v. The following constraints express flow conservation within
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0

u

v

Class 1 Class 2

w+
iuw−

iu

z−
iuv

0

1

2

Thick edges represent a possible
decision-graph topology (selected

by the training algorithm)

Flow variables w−
iu, w+

iu and z−
iuv

indicate the trajectory of sample i.
The following conditions always hold:

(w−
iu = 1) ⇒ (aT

uxi < bu)
(w+

iu = 1) ⇒ (aT
uxi ≥ bu)

The blue path corresponds to
the possible trajectory of a
sample classified as Class 1

Figure 2.4: Visual example of the MILP formulation for the Optimal Decision
Diagram algorithm.

the graph G, for each u ∈ V I and i ∈ {1, . . . , n}:

w+
iv + w−

iv =

1 if v = 0∑
u∈δ−(v)(z+

iuv + z−
iuv) otherwise

(2-7)

w−
iu =

∑
v∈δ+(u)

z−
iuv (2-8)

w+
iu =

∑
v∈δ+(u)

z+
iuv. (2-9)

Additional constraints are needed to ensure integer sample flows (as it
would not make sense to have half a sample going in or out of a node), but
they are omitted here for the sake of brevity. Importantly, this formulation
allows for fewer binary variables than a direct definition of the w−

iu and w+
iu as

binary, improving the MILP efficiency.

Topology. Connecting the flow variables to the topology of the diagram, one
binary variable du ∈ {0, 1} is defined for each u ∈ V that takes value 1 if
this node is used in the classification (i.e., samples can pass through it). For
the negative and positive sides of each node u ∈ V I , binary design variables
y−

uv ∈ {0, 1} and y+
uv ∈ {0, 1} take value 1 if and only if u links towards v on
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the negative and positive sides, respectively.

du =
∑

v∈δ+(u)
y+

uv =
∑

v∈δ+(u)
y−

uv u ∈ V I (2-10)

dv ≤
∑

u∈δ−(v)
(y+

uv + y−
uv) v ∈ V I − {0} (2-11)

y+
uv + y−

uv ≤ dv u ∈ V I , v ∈ δ+(u) (2-12)

z+
iuv ≤ y+

uv, u ∈ V I , v ∈ δ+(u), i ∈ {1, . . . , n} (2-13)

z−
iuv ≤ y−

uv u ∈ V I , v ∈ δ+(u), i ∈ {1, . . . , n} (2-14)

As it stands, the formulation allows for entirely symmetrical and equiva-
lent topologies, a redundancy that significantly enlarges the MILP solver search
space. Additional constraints for breaking symmetry are included in the ODD
algorithm to improve efficiency but are omitted here for brevity.

Splits. Each internal node v ∈ V I is associated to a vector of variables
av ∈ [−1, 1]d and a variable bv ∈ [−1, 1] to characterize the splitting hy-
perplane. Samples i ∈ {1, . . . , n} following the negative-side path should sat-
isfy aT

v xi < bv, whereas samples taking the positive-side path should satisfy
aT

v xi ≥ bv. This is done by including indicator constraints that express the
following implication logic for each i ∈ {1, . . . , n} and v ∈ V I :

(w−
iv = 1)⇒ (aT

v xi + ε ≤ bv) (2-15)

(w+
iv = 1)⇒ (aT

v xi ≥ bv), (2-16)

where ε in Constraint (2-15) should be a small constant greater than the
numerical precision of the solver.

Constraints (2-15–2-16) represent general multivariate splits. To produce
univariate splits, a binary variable evj ∈ {0, 1} is added for each feature
j ∈ {1, . . . , d} and internal node v ∈ V I . These constraints ensure the selection
of a single feature:

d∑
j=1

evj = 1 v ∈ V I (2-17)

− evj ≤ ajv ≤ evj j ∈ {1, . . . , d}, v ∈ V I (2-18)
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2.3.2.2
Objective Function

The ODD algorithm optimizes accuracy and an additional regularization
term that penalizes complex decision diagrams with a large number of internal
nodes. To compute the model accuracy, binary variables wiv ∈ [0, 1] are defined
for each sample i ∈ {1, . . . , n} and leaf v ∈ V C expressing the amount of flow
of i reaching terminal node v with class cv. These variables must satisfy the
following constraints for v ∈ V C and i ∈ {1, . . . , n}:

wiv =
∑

u∈δ−(v)
(z+

iuv + z−
iuv) (2-19)

With these variables in place, the ODD algorithm objective can be
defined as

min 1
n

n∑
i=1

∑
v∈V C

ϕivwiv + α

|V I | − 1
∑

v∈V I−{0}
dv, (2-20)

where ϕiv represents the mismatch penalty when assigning sample i to terminal
node v (for a typical classification task, it may be defined as 0 if ci = cv

and 1 otherwise), while α is a regularization parameter. The first term of the
objective penalizes misclassified samples, whereas the second term penalizes
complex models.



3
Constructive Approaches

In this chapter, we define the basic heuristic construction algorithm, as
well as its pitfalls, and the proposed improvements. The improved implemen-
tations are used in the computational experiments of Section 4.1.

We also discuss the expressiveness of boolean functions in decision
diagrams, represented in disjunctive normal form (DNFs). A comparison
between diagrams and trees in this context is done in Section 4.2.

3.1
Original Construction

The decision diagram is built with a top-down approach similar to
CART (BREIMAN et al., 1984). Borrowing from the notation introduced in
Section 2.3.2 for the ODD algorithm, the diagram is here represented by a
directed acyclic graph G = (V, E), with nodes V = V I ∪V C being the union of
internal nodes V I and leaves V C . Nodes are represented by increasing indices
{0, . . . , |V I |+ |V C | − 1}, from top to bottom and left to right, starting at the
root node 0 ∈ V I .

A fixed skeleton of the diagram must be provided as input, which defines
the maximum number of internal layers and nodes per layer. Departing from
CART and other tree induction methods, the connections between these layers
are not fixed and must be defined during training. The first layer always has
a single node, the root, while a terminal layer is automatically assigned to the
diagram, with one leaf node for each class in the data set. The input data set is
expected to be numerical1, with samples X ∈ Rn×d and targets y ∈ Cn, where
C is a set of classes {1, . . . , K}.

Skeletons can be represented in text as a sequence, where each value
represents the number of nodes in the respective diagram layer. The skeleton
1-2-4-4-4, for instance, represents a diagram structure with five internal layers
and 15 internal nodes (including the root), while the number of nodes in the
terminal layer depends on the number of classes K in the intended data set. In
this way, a skeleton defines a set of internal layer indices L = {0, . . . , m}, as
well as a maximum number of nodes per layer wl, ∀l ∈ L. The set V I

l contains
all nodes belonging to layer l.

The constructive method is described in Algorithm 1. For each internal
layer l ∈ L and node v ∈ V I

l from top to bottom, we greedily select the

1It requires prior transformation for categorical data, such as one-hot encoding.
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Algorithm 1: Initial decision diagram constructive heuristic
Input: Data set: X ∈ Rn×d, y ∈ Cn, K, Skeleton: G, L, wl and V I

l ∀l ∈ L
Output: Decision diagram: SplitFeature(v), SplitThreshold(v),

Edge(v,side) for each node v ∈ V I and side (positive/negative)
1 X(0)← {1, . . . , n} /* all samples arrive at root node */
2 foreach layer l ∈ L do
3 Arcs(l) ← ∅
4 foreach node v ∈ V I

l do
5 find i∗, j∗ that minimizes:

Hw(X(v), i, j), ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , d}
6 SplitFeature(v) ← j∗

7 SplitThreshold(v) ← Xi∗j∗(v)
8 a+(v)← positive branch, sample indices {k | Xkj∗(v) ≥ Xi∗j∗(v)}
9 a−(v)← negative branch, sample indices {k | Xkj∗(v) < Xi∗j∗(v)}

10 insert a+(v) and a−(v) into Arcs(l)
11 while |Arcs(l)| > wl+1 do
12 Hm(a1, a2)← H(Xa1 ∪Xa2)− [H(Xa1) + H(Xa2)]
13 find (a∗

1, a∗
2) that minimizes Hm(a1, a2), ∀(a1, a2) ∈ Arcs(l)

14 Remove a∗
1 and a∗

2 from Arcs(l)
15 a∗ ← arc with branches and samples from the union of a∗

1 and a∗
2

16 Insert a∗ into Arcs(l)
17 i← 0
18 foreach arc ∈ Arcs(l) do
19 if layer l + 1 is the terminal layer then
20 u← leaf representing the majority class of samples from arc
21 else
22 u← ith node in layer l + 1
23 i← i + 1
24 X(u)← samples from arc
25 foreach branch ∈ arc branches do
26 Edge(v,branch side) ← branch node

univariate split that minimizes the weighted entropy,

Hw(Xs(v), i, j) = H(Xs
k<i,j(v)) + H(Xs

k≥i,j(v)), (3-1)

where i is the sample that defines the splitting threshold, j is the splitting
feature, and Xs(v) is the set of samples that arrive at v, sorted by the value
of feature j. The entropy H is defined as

H(X) = −|X|
∑
c∈C

p(c) log p(c), (3-2)

where X is a set of samples, c ∈ C is a target class, and p(c) is the probability
of class c, here defined as the frequency of occurrence of c in X.
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From the optimal splitting sample i∗ and splitting feature j∗ of a node
v, we can also define a pair of arcs departing v. An arc represents a flow of
samples, where each sample may follow a single branch that departs from a
node. A node has exactly two branches, termed positive and negative, as defined
by the splitting hyperplane: samples k where Xs

kj∗(v) ≥ Xs
i∗j∗(v) follow the

positive branch, while samples k where Xs
kj∗(v) < Xs

i∗j∗(v) follow the negative
branch. Arcs(l) is the set of all arcs departing layer l, and each arc can be
represented by a tuple of two lists, one of node branches and another of samples.

After defining the splits and arcs for all nodes in a layer, we must decide
how each arc connects to the subsequent layer. This is achieved with a greedy
merging policy: as long as the number of arcs departing layer l is greater than
the number of nodes in layer l+1, we merge the pair of arcs that least increases
entropy, as defined by Equation 3-2. Merging a pair of arcs a1 and a2 consists
of replacing them with a new arc a∗, whose node branches are the union of the
node branches of a1 and a2, and whose samples are the union of the samples
from both arcs.

We must then define the edges departing from each node of layer l.
Because of the merging policy just described, the number of arcs departing
layer l equals the number of nodes in layer l + 1, so each arc a ∈ Arcs(l)
is assigned to a corresponding node u ∈ Vl+1 in order from left to right. An
edge (v, u) is created for each node v in arc a, and node u receives all samples
connected to this arc. In particular, if l+1 is the terminal layer of the diagram,
each arc is directed to the node representing the majority class of its samples.

In this way, the algorithm is designed to minimize information impurity
measured by entropy on each split and merge decision, while redirecting sample
flows in the last layer to its respective predominant class, in order to find a
solution with low misclassification.

Figure 3.1 displays examples of diagrams built using this constructive
approach, as well as improved versions using the pruning methods described
in Section 3.3. The diagrams displayed have a 1-2-4-4-4 skeleton and were
constructed for the tic-tac-toe, credit-approval, and parkinsons data sets (see
Section 4.1 for a description of the data sets), using the original algorithm, and
modified by the pure flow pruning strategy and the bottom-up pruning strategy
with α = 0.1. The labels for the internal nodes are their respective indices2.
The color saturation represents the proportion of samples that passes through
that node, and the root is by definition reached by 100% of the samples. The
metrics displayed for each diagram are respectively the training accuracy, the

2The rendering was automated using GraphViz (<https://graphviz.org/>), which de-
fines the rendering order of the nodes.

https://graphviz.org/
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test accuracy, and the objective value.

3.2
Pitfalls

The main issue with the original construction algorithm is the complexity
of the resulting models. Given a skeleton, the heuristic always constructs a full
diagram – i.e., one using all available nodes in the given skeleton –, regardless
of whether it is advantageous to do so or not. Besides this, in the context of
the ODD algorithm, the top-down constructive approach lacks a fundamental
connection to the optimization problem solved in the MILP phase, since it
does not consider the regularization parameter α. In consequence, one way
to improve the heuristic is to simplify the diagram by pruning nodes that
do not contribute to the ODD objective value or to the overall classification
performance. In this context, we propose two pruning methods in Section 3.3.

The greedy aspect of the algorithm also undermines its performance. It
always chooses the best local decision without look-ahead or hindsight, which
may lead to suboptimal global solutions. Randomization methods are common
strategies for this problem, and our proposed approach in Section 3.3 attempts
to increase solution variability by randomizing the algorithm decisions.

Another issue, particular to decision diagrams and the original construc-
tive heuristic, is the occurrence of double arcs. As is noticeable in Figure 3.1
(b-2), some internal nodes connect both their left and right arcs to the same
child node. This does not constitute a proper split decision, since the feature
space is not partitioned in that step of the model. Moreover, this type of flow
is prohibited by the MILP formulation of the ODD algorithm. The issue can
occur when greedy merging decisions during top-down construction select such
a merge of both arcs of a node as being the best one. The pruning methods pro-
posed in this study, particularly bottom-up pruning, effectively remove most
double arcs in our experiments. As a future research path, dedicated strategies
could be added to guarantee their removal.

3.3
Improvements to the Initial Heuristic

3.3.1
Pruning

Pruning is a classical method for simplifying decision trees. It does so by
getting rid of subtrees that are superfluous for the model performance. Pruning
methods have been analyzed extensively in the literature and have been shown
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Initial Pure flow pruning Bottom-up pruning

(a-1) 68.5%, 65.0%, 0.415 (a-2) 73.3%, 71.2%, 0.353 (a-3) 80.6%, 76.2%, 0.237

(b-1) 64.7%, 66.3%, 0.453 (b-2) 78.2%, 71.2%, 0.296 (b-3) 91.7%, 85.9%, 0.126

(c-1) 77.6%, 59.2%, 0.324 (c-2) 100.0%, 79.6%, 0.043 (c-3) 100.0%, 83.7%, 0.064

Figure 3.1: Decision diagrams with a 1-2-4-4-4 skeleton constructed for the (a)
tic-tac-toe, (b) credit-approval, and (c) parkinsons data sets by the heuristic
algorithm and each pruning strategy. The metrics displayed for each diagram
are respectively the training accuracy, the test accuracy, and the objective
value.
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to improve accuracy, especially in domains with noise (MINGERS, 1989;
BRESLOW; AHA, 1997; COSTA; PEDREIRA, 2022). More importantly,
pruning can improve the generalization of decision trees. A full-grown tree
tends to overfit the training data (i.e., model its noise), and thus might perform
poorly on out-of-sample data. Pruning fixes overfitting by limiting the model
variance. Additionally, by simplifying a decision tree, pruning may improve its
interpretability.

Pruning methods can be generally classified as pre-pruning or post-
pruning. Pre-pruning is the application of early stopping procedures during
the construction phase, such as a maximum depth or a minimum number of
samples per node. Another classic procedure is to impose a minimum threshold
on the test selection measure (QUINLAN, 1986; BRESLOW; AHA, 1997). For
instance, Quinlan (1986) uses the Chi-squared test for stochastic independence
as a stopping criterion in the ID3 algorithm. Pre-pruning is known to suffer
from the horizon effect (BREIMAN et al., 1984), that is, the stopping criterion
might terminate the constructive phase in a step, even if the same criterion
would not prohibit subsequent steps. For this reason, post-pruning methods
have been more readily adopted (BRESLOW; AHA, 1997).

Post-pruning, sometimes simply called pruning, involves growing a deci-
sion tree to its full extent and then eliminating superfluous subtrees according
to some criteria. Reduced Error Pruning (REP), introduced by Quinlan (1987)
is one of the simplest post-pruning methods. For each non-leaf subtree, the sub-
tree is replaced by the best possible leaf and a new misclassification error is
calculated over a separate validation set. If the resulting tree has a lower or
equal error, the replacement is made to the original tree. This process contin-
ues until any further pruning increases the misclassification error. Despite its
simplicity, REP is rarely used in practice because of the need for a separate
validation set and its tendency to overprune trees (ELOMAA; KAARIAINEN,
2011).

Another classic strategy is known as minimal cost-complexity pruning,
applied originally in the CART algorithm (BREIMAN et al., 1984). Given a
fully constructed tree T0 and a subtree T of T0, we define the misclassification
cost of the subtree as R(T ) and the set of leaf nodes of T as T̃ . Then its
cost-complexity measure Rα(T ) is given by

Rα(T ) = R(T ) + α|T̃ |, (3-3)

where α ∈ R is a cost penalty for complexity (here characterized as the number
of leaf nodes in T ). The minimal cost-complexity algorithm first defines a
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subtree T1 by trivially removing leaves of T0 whose misclassification is the
same as that of their parent node. Then, it continues by recursively finding
a sequence of subtrees T1 > T2 > T3 > · · · > Tk that decreases in size, with
respectively increasing parameters 0 = α1 < α2 < α3 < · · · < αk

3. Finally, the
algorithm selects one of these subtrees as the optimum-sized tree, as given by
an estimate of the true misclassification cost.

In this study, we apply two pruning strategies to improve the original
heuristic. The first is a pre-pruning method that takes advantage of the fixed
leaves in the decision diagram structure. The second is a cost-complexity post-
pruning that uses a bottom-up strategy. These strategies are discussed in more
depth in the next sections.

3.3.1.1
Pure Flow Pruning

Consider a split that exclusively groups samples of the same class on one
of its branches. In a topology with fixed leaf nodes corresponding to a class,
all these samples can be simply directed to the leaf representing the respective
class. This is a form of pre-pruning we have termed pure flow pruning. Notice
it is not a stopping criterion as the constructive procedure continues normally
for the other split branch and the other splits on the layer.

Besides perfectly pure sample flows, this method can be calibrated to
permit softer thresholds. A branch with 90% or 95% of samples corresponding
to a single class could be pruned in the same way, allowing for a simpler
diagram at the cost of some accuracy. In this study, we focus solely on strictly
pure flow pruning.

In Algorithm 1, implementing this pre-pruning method consists of ex-
tending the condition at Line 19. Even if layer l + 1 is not the terminal layer,
we check if at least a certain ratio γ of the samples in the given arc is from a
single class c, and, if so, define the receiving node u as the leaf representing c.
In this study, as mentioned, we only use γ = 1.0 when evaluating this pruning
strategy.

The second column of Figure 3.1 displays examples of decision diagrams
constructed with this improvement strategy. In the topmost example, for
instance, internal node 5 had a flow directed to node 7 that consisted solely
of samples from a single class. In the improved solution, this flow is directly
routed to the leaf node for this class, simplifying the diagram. In addition,
both training and test accuracy improved, as well as the objective value.

3We refer to the original work of Breiman et al. (1984) for the details of how these trees
and α parameters are constructed.
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3.3.1.2
Bottom-up Pruning

Notice that the Optimal Decision Diagram (ODD) algorithm (described
in Section 2.3.2) optimizes the diagram for both accuracy and complexity. The
former is modeled in terms of the misclassification at the leaves and the latter
is represented by the number of internal nodes used, being controlled by a
hyperparameter α. When α is 0, only accuracy is considered. As α increases,
solutions with a large number of nodes are penalized and simpler diagrams are
encouraged.

We propose a bottom-up pruning method that closely follows the ODD
objective and is outlined in Algorithm 2. This strategy removes nodes that
connect to leaves when the gain in the regularization term of the objective
value is higher than the loss of accuracy, given a choice of α. It is tailored-
made for improving the warm-start solution for the optimization step of the
ODD algorithm, since optimizing the objective value directly decreases its
upper bound, restricting the search space of the mixed-integer programming
solver.

The approach is close to the cost-complexity pruning method described
in Section 3.3.1, by considering both accuracy and node count, even though
the implementation details differ significantly.

Algorithm 2: Bottom-up pruning
Input: Hyperparameter α, initial solution G, number of layers m,

V I
l ∀l ∈ L

Output: Updated decision diagram with pruned nodes
1 PruningGain ← α

|V I |
2 foreach layer l ∈ {m− 1, . . . , 1} do
3 foreach node v ∈ V I

l that connects to a leaf node do
4 Accuracy ← current solution accuracy
5 AccuracyIfPruned(v) ← accuracy if node v is pruned
6 AccuracyCost ← Accuracy − AccuracyIfPruned
7 if PruningGain ≥ AccuracyCost then
8 remove node v from G
9 foreach parent node w of v do

10 u← leaf node for the majority class of the samples from
w

11 remove edge (w, v) from G
12 add edge (w, u) to G

The last column of Figure 3.1 provides examples of this improvement
strategy. All double arc issues are solved with this method, and the decision
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diagram is generally sparser. Training accuracy, test accuracy, and objective
value are also improved in these solutions, compared to the initial implementa-
tion. Additionally, the fragmentation of samples through the diagram is lower
than in the other solutions.

3.3.2
Randomization

Purely greedy constructive heuristics always make the best decision on
each iteration. Besides being straightforward to implement and test, these
deterministic algorithms are expected to reach reasonably good solutions once
the construction is finished. Locally optimal decisions, however, disregard the
global structure of the problem and are likely to reach only locally optimal
solutions.

Randomization techniques can be used to improve a constructive heuris-
tic by exploring promising but suboptimal decisions on each iteration, accord-
ing to some randomized strategy. For problems of a reasonable size, randomized
heuristics can be run several times in order to select the best overall solution.
This procedure allows a larger portion of the search space to be explored, while
still avoiding the exponential cost of an exhaustive search.

Randomization has been frequently used in decision tree construction
methods, particularly in the context of tree ensemble models. These models fit
many individual trees and combine them by weighted or unweighted voting,
frequently resulting in better classification performance than individual trees.
The main objective of tree ensemble methods is to decrease the variance of
individual decision tree. This reduction in variance is only possible if the
ensembled trees are diverse, which is achieved by randomization.

Common candidates for randomization in decision trees are the set of
training samples and the split decisions. A frequently applied method for
sample randomization is bagging (BREIMAN, 1996; DIETTERICH, 2000b),
short for bootstrap aggregating. Bootstrap is the generation of multiple training
sets by uniformly sampling from the original set with replacement. By sampling
with replacement, each generated set is independent of the others, reducing
variance. In bagging, the bootstrapped sets are used to fit individual models,
which are then aggregated by voting to achieve a final classification.

Several methods have been proposed to randomize split decisions. Ali
and Pazzani (1996) proposed a stochastic hill-climbing procedure that selects
one split among a set of splits close to the optimal up to a margin β, with
probability proportional to its information gain. Tin Kam Ho (1998) selects
a random subspace of the feature space by keeping a small number of its



Chapter 3. Constructive Approaches 37

dimensions, while fixing all feature values to a constant in the unselected
dimensions, and proceeds to fully train a decision tree using the training
samples projected to this subspace. The decisions of several individual trees
are then combined by averaging the conditional probability of each class at the
leaves. Dietterich (2000a) proposes a modified the C4.5 algorithm by choosing
uniformly randomly among the 20 best splits with a non-negative information
gain ratio. Cutler and Zhao (2001) and Geurts, Ernst and Wehenkel (2006)
go one step further and propose methods where the split decision is made
entirely at random, without optimizing over the splitting feature or its value.
This ensures that the individual trees are largely independent, reducing the
variance of the final, aggregated model significantly.

One of the most successful tree-based ensemble models are Random
Forests (BREIMAN, 2001). The algorithm uses traditional bagging as well as
feature bagging, where split decisions are made on random samples of features
instead of the entire feature space. These steps greatly reduce the correlation
between estimators in the final ensemble.

For decision diagrams, much like decision trees, the split decision of each
internal node is a good candidate for randomization. In this study, we achieve
this by feature bagging, as in Random Forests, restricting the number of
features to be considered for each split decision. For this purpose, we repeatedly
select a uniformly sampled ratio r ∈ [0.5, 1.0] and solve the heuristic by
considering a random subset of r · d features for each split decision, where
d is the total number of features. This procedure is repeated for 10 seconds
and the solution with the best objective value is selected. Notice that, contrary
to Random Forests, our goal is to keep only a single decision diagram.

3.4
Expressiveness of Decision Diagrams

Decision trees are known to poorly model boolean disjoint concepts,
such as XOR, causing the replication and fragmentation problems described in
Chapter 2. Decision diagrams can better express these concepts, so an improved
classification performance is expected for data sets where they occur.

Any n-bit boolean function f : {0, 1}n → {0, 1} can be expressed in dis-
junctive normal form (DNF). In a space of d boolean variables {x1, · · · , xd},
a DNF is a disjunction T1 ∨ T2 ∨ · · · ∨ Ts of conjunctions of boolean literals
T1 . . . Ts, which are made up of one or more of the d variables and their nega-
tions. An s-term DNF is one which has at most s conjunctions (also known as
terms). A k-DNF is one in which each term is of size at most k, where k ≤ d.
The following is an example of an s-terms k-DNF function in a space of 10
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variables (d), with 3 terms (r) and 4 variables (k) per term:

(x3 ∧ x6 ∧ ¬x7 ∧ x10) ∨ (¬x1 ∧ x5 ∧ x7 ∧ ¬x9) ∨ (x2 ∧ ¬x4 ∧ ¬x8 ∧ x10) (3-4)

As illustrated in Section 2.2.1, decision trees can be interpreted as clas-
sification rules, by describing the set of decisions from the root to each leaf. In
binary classification tasks, this representation is commonly referred to as de-
cision rule sets, which are essentially DNFs (FÜRNKRANZ; GAMBERGER;
LAVRA, 2012). Each conjunction of the DNF can be considered as an individ-
ual rule, the rules are unordered, and the positive class is predicted if at least
one of the rules is satisfied.

Rule sets have been found to be more interpretable to humans in general
when compared to alternative representations, such as decision lists (rules
ordered in an IF-ELSE sequence) or decision trees (LAKKARAJU; BACH;
LESKOVEC, 2016), which aligns with the informal notion that DNFs are
a natural representation of human knowledge (QUINLAN, 1993; VIKTOR;
CLOETE, 1995).

In addition, DNF-type concepts – i.e., those that can be represented by
small DNFs – have been shown to cause the replication problem in decision
trees. Pagallo (1989) and Vilalta, Blix and Rendell (1997), for instance, have
studied DNF learning in the context of decision trees and the replication
problem, respectively proposing feature construction and global data analysis
as solutions. Decision diagrams can be considered an alternative approach for
this problem space.

Because of its expressiveness, DNF learning has been extensively studied
in the context of complexity and learning theory. In his seminal work on PAC-
learning, Valiant discusses the learnability of restricted and unrestricted DNFs
(VALIANT, 1984). In a subsequent work, Pitt and Valiant (1988) proved that
properly learning an s-term DNF is NP-hard for s ≥ 2.

Nonetheless, some positive results exist for restricted variations of DNFs.
In terms of the distributional setting, quasi-polynomial time algorithms are
known for learning DNFs under the uniform distribution (VERBEURGT, 1990;
BLUM et al., 1994; JACKSON, 1997). For monotone DNFs (i.e., DNFs with no
negated literals), random poly(n)-size formulas can be learned in probabilistic
polynomial time (SELLIE, 2008; JACKSON et al., 2008). Furthermore, Sellie
(2009) extended exact learning for general poly(n)-size DNFs in probabilistic
polynomial time.

Figures 3.2a and 3.2b respectively show a decision tree and a decision
diagram constructed using the algorithm in Section 3.1 and pure flow pruning.
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The tree has skeleton 1-2-4 and the diagram 1-2-2-2. Both models were trained
on uniformly random samples generated for the following random 6-term 2-
DNF over 7 variables:

(x4 ∧ x6) ∨ (x4 ∧ x5) ∨ (x3 ∧ x4) ∨ (¬x2 ∧ x4) ∨ (x2 ∧ x3) ∨ (x0 ∧ ¬x4) (3-5)

(a) Decision tree
Training accuracy: 75%
Test accuracy: 75%

(b) Decision diagram
Training accuracy: 90%
Test accuracy: 90%

Figure 3.2: Models built with pure flow pre-pruning, trained on uniformly
random samples for a random 6-term 2-DNF over 7 variables. The left branch
of a split indicates a logical 1, the right branch indicates a logical 0.

The decision tree does not replicate subtrees in this example, mainly
because of the pre-pruning of nodes with flows from a single class. Both models
have the same number of internal nodes, but the decision diagram achieves
significantly better classification performance. This appears to be generally
true for small DNFs, as demonstrated by the experiments on Section 4.2.

Figure 3.3 compares the internal node fragmentation of the same learned
models presented in Figure 3.2. The displayed values simply indicate the
percentage of samples that flow through that internal node. Notice how the
sample flow for a path through the decision tree necessarily decreases in each
layer. Because of merges, this is not true for the sample flow through a decision
diagram. In the fragmentation analysis of Section 4.2, we call this percentage
of samples the support of a node. As indicated by the analysis results, decision
diagrams produce models with significantly less overall fragmentation (higher
average support per node) than decision trees.



Chapter 3. Constructive Approaches 40

(a) Decision tree (b) Decision diagram

Figure 3.3: Internal node fragmentation in models built with pure flow pre-
pruning, trained on uniformly random samples for a 6-term 2-DNF over 7
variables. The value displayed in an internal node is the percentage of training
samples that flow through that node.



4
Experimental Analyses

In this chapter, we present our experimental analyses. The first analysis is
related to the heuristic improvements discussed in Section 4.1. The second is a
study on the classification performance and fragmentation of decision diagrams
on small s-terms k-DNFs, in comparison to decision trees.

4.1
Constructive Heuristic Improvements

In this section, we provide the experimental setup and the results for the
heuristic improvement experiments.

4.1.1
Experimental Setup

The computational experiments were conducted on 54 data sets from
the UCI Machine Learning Repository (DUA; GRAFF, 2017), which are
described in Table 4.1. These data sets were also used in the ODD algorithm
study (FLORIO et al., 2022) and have an interesting diversity in the number
of samples (n), features (d), and classes (c). A set of four random seeds
{1, 2, 3, 4} was selected, which controls the splitting of the data sets into
training, validation, and test sets in the respective proportion of 50%, 25%,
and 25%. The random seed also controls the split randomization logic for
runs where this improvement is activated. Two base skeletons were chosen,
a tree-like (1-2-4-8) and a diagram-like (1-2-4-4-4), both with 15 internal
nodes. We consider five heuristic versions: one for the initial heuristic, one
for each improvement discussed in Section 3.3 (bottom-up pruning, pure flow
pruning, and randomized splits), and one for the complete heuristic with all
improvements.

We also chose a set of α hyperparameters, {0.0, 0.1, 0.5, 0.9, 1.0}. For
comparisons of objective value, we simply run each possible combination of the
described configurations, and average the resulting objective values over them.
For comparisons of accuracy, the computational experiments have two stages.
First, we calibrate the regularization parameter α for each combination of data
set, heuristic version, skeleton, and seed, using the validation set. Lastly, we
use the best-found α hyperparameter to calculate training and test accuracies.
In total, there were 10,800 different experiment runs.
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Table 4.1: The 54 datasets used in the computational experiments for the
heuristic improvements.

Dataset n d c Dataset n d c

acute-inflam-nephritis 120 6 2 iris 150 4 3
acute-inflam-urinary 120 6 2 mammographic-mass 830 10 2
balance-scale 625 4 3 monks1 556 11 2
banknote-auth 1372 4 2 monks2 601 11 2
blood-transfusion 748 4 2 monks3 554 11 2
breast-cancer-diag 569 30 2 optical-recognition 5620 64 10
breast-cancer-prog 194 33 2 ozone-eighthr 1847 72 2
breast-cancer-wisconsin 699 9 2 ozone-onehr 1848 72 2
car-evaluation 1728 15 4 parkinsons 195 22 2
chess-kr-vs-kp 3196 37 2 pima-indians-diab 768 8 2
climate-simul-crashes 540 18 2 planning-relax 182 12 2
congressional-voting 435 16 2 qsar-biodegradation 1055 41 2
connect-mines-rocks 208 60 2 seeds 210 7 3
connect-vowel 990 10 11 seismic-bumps 2584 20 2
contraceptive-method 1473 11 3 soybean-small 47 35 4
credit-approval 653 37 2 spambase 4601 57 2
cylinder-bands 277 484 2 spect-heart 267 22 2
dermatology 366 34 6 spectf-heart 267 44 2
echocardiogram 61 9 2 statlog-german-credit 1000 48 2
fertility-diagnosis 100 12 2 statlog-landsat-sat 6435 36 6
habermans-survival 306 3 2 teaching-assist-eval 151 52 3
hayes-roth 160 4 3 thoracic-surgery 470 24 2
heart-disease-cleveland 297 18 5 thyroid-ann 3772 21 3
hepatitis 80 19 2 thyroid-new 215 5 3
image-segmentation 2310 18 7 tic-tac-toe 958 18 2
indian-liver-patient 579 10 2 wall-following-robot-2 5456 2 4
ionosphere 351 33 2 wine 178 13 3

4.1.2
Bottom-Up Pruning

The post-pruning improvement to the heuristic directly optimizes the
decision diagram for accuracy (low misclassification) and model complexity
(proportional to the number of internal nodes and dependent on the α

hyperparameter). It is expected to have a substantial impact on the objective
value as calculated for the ODD algorithm in Section 2.3.2.2.

Figure 4.1 presents the results of applying bottom-up pruning for the
objective value metric. The graphs in Figure 4.1a are overlaid violin and box
plots. The box plot represents summary statistics for the underlying data,
where the bottom of the box is the 25th percentile, the top is the 75th
percentile, the line inside the box is the median, and the lines drawn from
the bottom and the top of the box respectively reach the minimum and the
maximum data points. The violin plots depict the probability density of the
data at different values and help visualize its distribution.
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(b) Grouped by alpha parameter level.

Figure 4.1: Impact of bottom-up pruning on objective value.

In Figure 4.1a, the overall effect of the post-pruning approach for
all experiment configurations clearly demonstrates the improvement in the
objective value. The effect is statistically significant under a paired Wilcoxon
signed-rank test (p-value < 0.001). Figure 4.1b further confirms the effect by
comparing the results of the initial and improved implementation for each α

parameter value. When optimizing for simpler diagrams (α close to 1), bottom-
up pruning finds significantly closer-to-optimal solutions.

The effects of bottom-up pruning on accuracy and generalization are
less noticeable but still present. As Figure 4.2a indicates, many experiment
configurations have yielded higher accuracy when post-pruning is applied.
Pruning is also known to counter overfitting, so generalization is expected
to improve. Figure 4.2b shows that this is true for most of the experiment
configurations. A pairwise Wilcoxon signed-rank test indicates that these
effects are also statistically significant (p-values < 0.001 for both metrics).
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(a) Training accuracy.
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(b) Test accuracy.

Figure 4.2: Impact of bottom-up pruning on training and test accuracy.

4.1.3
Pure Flow Pruning

Pure flow pre-pruning simplifies diagrams by directing sample flows of
a single class to its corresponding leaf. The resulting simpler model retains
its accuracy while improving its objective value as calculated by the ODD
algorithm in Section 2.3.2.2.

The effects of pure flow pruning on the objective value are presented in
Figure 4.3. While less substantial than the one for bottom-up pruning, this
effect is noticeable, with denser distribution towards lower values.

Pure flow pre-pruning has a generally positive impact on accuracy and
generalization. The impact on generalization is less significant than the one
from bottom-up post-pruning, which is expected for a pre-pruning method.
The effects of the constructive improvement on training and test accuracy are
indicated in Figure 4.4.

The described effects of pure flow pruning on objective value, training
accuracy, and test accuracy have been shown to be statistically significant by
pairwise Wilcoxon signed-rank tests (p-values < 0.001).
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Figure 4.3: Impact of pure flow pruning on objective value.
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(b) Test accuracy.

Figure 4.4: Impact of pure flow pruning on training and test accuracy.
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4.1.4
Randomized Splits

Randomization allows for the constructive algorithm to optimize over
a broader solution-space, instead of relying solely on local optimal decisions,
without the penalty of an exhaustive search. In decision diagrams, randomizing
splits should improve accuracy and generalization. This is precisely the effect
evidenced in Figure 4.5.
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(b) Test accuracy.

Figure 4.5: Impact of randomizing splits on training and test accuracy.

For the objective value, randomizing splits does not yield substantial
results. Figure 4.6 presents the distribution for this experimental case. There
appears to be a slight improvement, with more solutions found with lower
objective values, although the overall distribution remains the same.

Pairwise Wilcoxon signed-rank tests indicate that the effects of random-
ized splits on objective value, training accuracy, and test accuracy are statis-
tically significant (p-values < 0.001).
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Figure 4.6: Impact of randomizing splits on objective value.

4.1.5
Overall

Lastly, we present the overall effects of each version of the constructive
heuristic, for each analyzed variable. The comparison can be seen in Figure 4.7.
It’s clear from Figure 4.7a that bottom-up pruning accounts for most of the
improvements in the objective value. For training and test accuracies, depicted
in Figures 4.7b and 4.7c respectively, randomized splits appear to have the most
impact, although the difference between versions is not as pronounced.

For the complete version of the heuristic, which includes all improve-
ments, the effects on each metric follows the combined effects of all versions,
as expected. Pairwise Wilcoxon rank-sum tests also indicate that these effects
are statistically significant (p-values < 0.001) when compared with the initial
version of the heuristic.

4.2
DNF Learning

In this section, we analyze the classification performance of decision
diagrams and trees for different uniformly random s-terms k-DNFs, using the
constructive heuristic approach described in Chapter 3. We also present a
fragmentation analysis comparing decision diagrams and trees.
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(b) Training accuracy.
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(c) Test accuracy.

Figure 4.7: Impact of each heuristic version over all experiment configurations.



Chapter 4. Experimental Analyses 49

4.2.1
Classification Performance

For the performance experiments, we evaluated 12 s-terms k-DNFs, with
fixed k = 6. The formulas were randomly generated with d variables, for
d = {8, 16, 32, 64}, and terms count s = {3, 4, 5}. The classification task is
to learn the given DNF function from a limited set of examples. For each
DNF, a data set X of learning samples (x, y) was built from 1,000 balanced
samples drawn from the uniform distribution, so that the feature vectors
x = (x1, . . . , xd) represent an assignment of binary variables and the target
variable y is the value of the respective DNF function evaluated on this
assignment. The data set X is split into training and test sets with respective
proportions of 90% and 10%. The learned decision trees used the skeleton 1-
2-4-8-16-32-64-128, while the diagrams used the skeleton 1-2-4-...-4 with 63
layers of at most four nodes, starting from the third layer. Both models have
thus a maximum of 255 internal nodes (including the root), so as to guarantee
that the models fit the random DNFs.

The constructive heuristic used pure flow pre-pruning and randomized
splits, but no bottom-up pruning. This choice was made to allow for the models
to better fit the DNFs without having to optimize for simplicity. We used a set
of 10 seeds {0, 1, . . . , 9} for the random number generator, affecting the data
set train/test split and the randomized feature split decisions. The experiment
was run five times for each configuration. The measured outcomes were the
training error and test error.

Table 4.2 shows the experiment results. For small uniformly random k-
DNFs, decision diagrams appear to yield better classification performance on
average when compared to trees, when learning from uniformly distributed
random samples.

Figure 4.8 plots the distribution of training and test error (note that,
since there is no bottom-up pruning, training error, and objective value have
the exact same distribution). Training accuracy is significantly improved when
using the decision diagram model, but generalization is not improved as much.

4.2.2
Fragmentation

For this fragmentation analysis, we used the same setup for the classifi-
cation performance experiment. To quantify overall fragmentation in a model,
we compute the support of each node, defined as the percentage of samples
that flow through that node. We filter out the root, which always has 100%
support, and leaf nodes, whose (true) support is dependent on the class distri-



Chapter 4. Experimental Analyses 50

Table 4.2: Classification performance for learning k-DNFs

Training error (avg.) Test error (avg.)
6-DNF Size s diagram tree diagram tree
dnf01 8 3 2.3 3.6 0.8 0.9
dnf02 8 4 6.8 8.3 0.9 1.1
dnf03 8 5 4.7 11.9 0.7 1.3
dnf04 16 3 0.1 13.1 0.6 2.1
dnf05 16 4 0.2 15.8 3.1 6.0
dnf06 16 5 0.2 27.8 5.5 7.9
dnf07 32 3 0.0 5.4 2.7 2.6
dnf08 32 4 0.0 15.0 7.2 8.9
dnf09 32 5 21.1 22.3 13.0 13.7
dnf10 64 3 0.0 9.9 3.7 6.7
dnf11 64 4 0.0 13.1 8.4 12.4
dnf12 64 5 11.4 7.0 14.0 16.8
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Figure 4.8: Distribution of training and test error for learning k-DNFs.

bution for the problem at hand. The quantity we measure is then the average
internal node support for each learned model.

Figure 4.9 presents the results. In Figure 4.9a, the overall effect of using
a diagram on the fragmentation level is already visible. The average support
per DNF, as depicted in Figure 4.9b, shows the effect more clearly. For several
DNFs, the support is significantly lower – and thus the fragmentation higher
– in the decision tree model.
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(a) Average support for all configurations.
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(b) Average node support per DNF.

Figure 4.9: Distribution of average support per internal node, excluding root
and leaves. The support of a node is defined as the percentage of samples that
flow through that node. The average of node support for a model is a measure
of its fragmentation (low support means high fragmentation).



5
Explorer Tool

In this chapter, we present a tool developed to debug the decision dia-
gram constructive algorithm and analyze the proposed improvements1. Besides
visualizing the learned diagram with split and merge decisions for a particular
data set, skeleton, and α hyperparameter, the tool allows constructive improve-
ments to be individually activated or deactivated, log messages to be shown
in a debug panel, and all constructive steps to be replayed.

5.1
Overview

The explorer tool is a web application developed using the Dash frame-
work2 in Python. Its main objective is to provide a visual debugging experience
for the decision diagram constructive approaches explored in this study. The
interface is displayed in Figure 5.1.

Figure 5.1: Overview of the explorer tool GUI showing (1) the setup panel, (2)
the diagram visualization, (3) the timeline, and (4) the information panel.
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Figure 5.2: The setup panel.

5.2
Setup Panel

The setup panel is displayed in more detail in Figure 5.2. It provides
components for the selection of all required parameters for the construction of
a decision diagram. Every time a configuration is modified, the constructive
heuristic runs again and the diagram is updated.

The data sets are taken from a pre-configured directory, where they must
be stored as CSV files in the usual manner (rows represent samples, with a
column for each feature and a column for the target class). It is not possible
to define through the interface a custom split of training, validation, and test
sets, which are fixed in proportions of 50%, 25%, and 25%, respectively. The
seed value affects this data split, as well as the randomization of feature splits
if this improvement is activated.

5.3
Diagram Visualization

Figure 5.3 details the diagram visualization. Each internal node displays
its respective index and the feature split in the form xi ≥ a, where xi is

1The explorer is available in the public repository for the Optimal Decision Diagram
(ODD) algorithm in <https://github.com/vidalt/Decision-Diagrams/tree/explorer-tool>.

2<https://dash.plotly.com>

https://github.com/vidalt/Decision-Diagrams/tree/explorer-tool
https://dash.plotly.com
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Figure 5.3: The diagram visualization.

the feature being split and a is the split value. Terminal nodes display their
corresponding class instead of a split. Both types of node display a row in the
form St [S0, . . . , Sc−1], where St is the number of samples arriving at the node,
c is the number of classes in the data set, and each Si represents the number
of samples of class i ∈ [0, . . . , c− 1] that arrive at the node.

The color of the leaf nodes represents their respective class. In the internal
nodes, the highlight color has the hue of its majority class (or white, if the
samples are equally distributed among the classes), while its saturation is
proportional to the percentage of samples from the majority class. This setup
helps visualize how the class distribution in the internal nodes changes after
each split and merge.

5.4
Timeline

The timeline component allows each constructive step to be replayed
and analyzed. The step description is provided in the information panel (see
Section 5.5). To control the timeline, it is possible to directly select the desired
step by clicking on its number, use the previous or next step buttons to go
backward or forwards by a single step, or use the play button to reproduce the
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Figure 5.4: Example of the timeline component in the context of a pre-pruning
constructive step.

Figure 5.5: The information panel.

constructive algorithm steps in sequence automatically.
A static example of the timeline in action is shown in Figure 5.4. Between

steps 10 and 11 of this example, the right edge departing node 4 was connected
directly to the newly created leaf representing class 1, because of the pure flow
pre-pruning constructive improvement described in Section 3.3.

5.5
Information Panel

Finally, the rightmost panel displays information about the constructed
diagram and the algorithm steps. As shown in Figure 5.5, the panel provides
basic classification metrics for the diagram – the objective value and the
training, validation, and test accuracies. It also displays the description for
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the last selected step, including details about the decisions. Not shown in the
figure is the debugger panel, which displays messages from a debug logger.



6
Conclusion

We conclude the study by discussing its contributions and limitations.
We also point to future research paths.

6.1
Our Contributions

We implemented and analyzed improvements for the heuristic construc-
tion of decision diagrams, with particular attention to the context of the Opti-
mal Decision Diagram (ODD) algorithm (FLORIO et al., 2022). In particular,
we proposed randomizing splits, pruning sample flows consisting of a single
class and pruning nodes that do not contribute to the ODD objective value.
The most prominent impact originated in the pruning approaches, greatly re-
ducing the objective value of the resulting models. In the context of the ODD
algorithm, this has the potential of translating into better warm starts for the
mixed-integer programming (MILP) solver.

We also studied the expressiveness of decision diagrams when compared
to decision trees, by fitting boolean functions in disjunctive normal form
(DNFs). For small s-term k-DNF functions, decision diagrams yield better
classification performance. Additionally, diagrams have less overall fragmenta-
tion of samples in their internal nodes.

Finally, we presented a web application for visually exploring the con-
structive algorithm analyzed in this study. We expect that further analyses
and improvements can be made with the help of this tool.

6.2
Research Limitations

Decision diagrams, like decision trees, can be applied to both supervised
classification and regression tasks. Our study focuses solely on the classification
task and is thus an incomplete view of decision diagrams as machine learning
models.

The experimental configurations have limited scope, owing to constraints
in time and resources. For both the improvements and DNF experiments, the
breadth of the setup could be improved in terms of different topologies (i.e.,
studying the improvements in deep diagram skeletons with small maximum
width), as well as a higher number of random seeds and α hyperparameters
for more complete coverage.
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6.3
Future Research

For future work, a possible line of research is to further evaluate construc-
tive heuristic improvements. For instance, the pure flow pruning method could
be softened to allow some impurity, different randomization strategies could be
considered such as randomizing merges, and metaheuristic algorithms could be
applied to the problem of building a diagram. In this context, the improvement
impacts could also be directly evaluated by solving the MILP formulation of
the ODD algorithm and analyzing the effects on the number of optimal solu-
tions found and in other metrics of interest, such as the resulting fragmentation
level of the diagram.

Another interesting line of research would be studying decision diagrams

in the context of regression tasks. To the best of our knowledge, there are

currently no studies for decision diagrams that follow this path. Finally, a

proper study on the interpretability of decision diagrams would be beneficial

for the use of this kind of model in high-stakes decision-making.
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