Título: | NONLINEAR SYSTEM IDENTIFICATION OF HYBRID MACHINE LEARNING AND PHYSICAL MODELS FOR MECHANICAL SYSTEMS | ||||||||||||
Autor: |
DANIEL HENRIQUE BRAZ DE SOUSA |
||||||||||||
Colaborador(es): |
HELON VICENTE HULTMANN AYALA - Orientador |
||||||||||||
Catalogação: | 16/MAI/2023 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62550&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62550&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.62550 | ||||||||||||
Resumo: | |||||||||||||
There is a growing demand for accurate dynamic models, driven by the
Industry 4.0 paradigm that introduces, among others, the concept of the digital twin in which dynamic models play an important role. Ideally, a dynamic
model presents a compromise between complexity and accuracy, while providing physical insight into the system. To improve a model accuracy while
keeping interpretability, the usual approach is to mathematically model all
the nonlinearities, which ultimately leads to an overcomplex model. Another
approach involves a black-box identification, a data-driven approach where a
mathematical model is adjusted to describe the system s input-output relation,
which may provide an accurate model, but it does not provide interpretability.
The developments in computational processing capacity have allowed the flourishing of the field of machine learning, which has shown interesting results in
different fields of knowledge. One of these applications is black-box identification, where machine learning has successfully been employed in the modeling
of nonlinear systems, which has inspired research on the topic. Even though
the machine-learning-based models present enhanced accuracy, which for several applications is sufficient, they do not provide interpretability. Aiming at
providing both accuracy and interpretability while keeping a compromise with
model complexity, this work proposes a hybrid identification methodology that
combines a gray-box phenomenological model with a black-box model based
on artificial neural networks. The proposed methodology is applied in three
case studies of nonlinear systems with experimental data, namely, the vertical
dynamics of a vehicle, an elastomer-based series elastic actuator, and an electromechanical positioning system. The results show that the proposed hybrid
model is up to 60 percent more accurate while providing the physical interpretability
of the system, without significantly increasing the complexity of the model.
|
|||||||||||||
|