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Abstract

Sousa, Daniel Henrique Braz; Ayala, Helon V. H. (Advisor). Nonli-
near system identification of hybrid machine learning and
physical models for mechanical systems. Rio de Janeiro, 2023.
101p. Tese de Doutorado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

There is a growing demand for accurate dynamic models, driven by the
Industry 4.0 paradigm that introduces, among others, the concept of the digi-
tal twin in which dynamic models play an important role. Ideally, a dynamic
model presents a compromise between complexity and accuracy, while pro-
viding physical insight into the system. To improve a model accuracy while
keeping interpretability, the usual approach is to mathematically model all
the nonlinearities, which ultimately leads to an overcomplex model. Another
approach involves a black-box identification, a data-driven approach where a
mathematical model is adjusted to describe the system’s input-output relation,
which may provide an accurate model, but it does not provide interpretability.
The developments in computational processing capacity have allowed the flou-
rishing of the field of machine learning, which has shown interesting results in
different fields of knowledge. One of these applications is black-box identifica-
tion, where machine learning has successfully been employed in the modeling
of nonlinear systems, which has inspired research on the topic. Even though
the machine-learning-based models present enhanced accuracy, which for se-
veral applications is sufficient, they do not provide interpretability. Aiming at
providing both accuracy and interpretability while keeping a compromise with
model complexity, this work proposes a hybrid identification methodology that
combines a gray-box phenomenological model with a black-box model based
on artificial neural networks. The proposed methodology is applied in three
case studies of nonlinear systems with experimental data, namely, the vertical
dynamics of a vehicle, an elastomer-based series elastic actuator, and an elec-
tromechanical positioning system. The results show that the proposed hybrid
model is up to 60% more accurate while providing the physical interpretability
of the system, without significantly increasing the complexity of the model.

Keywords
System Identification; Nonlinear Systems; Artificial Neural Networks;

Hybrid Models.
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Resumo

Sousa, Daniel Henrique Braz; Ayala, Helon V. H.. Identificação
não linear híbrida de sistemas mecânicos com modelos
físicos e de aprendizado de máquina. Rio de Janeiro, 2023.
101p. Tese de Doutorado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

Existe uma crescente demanda por modelos dinâmicos precisos, parte
impulsionada pelo paradigma da indústria 4.0 que introduz, dentre outros, o
conceito de gêmeo digital no qual modelos dinâmicos possuem um papel im-
portante. Idealmente, um modelo dinâmico apresenta um compromisso entre
complexidade e precisão, enquanto proporciona informações sobre a física do
sistema. Para melhorar a precisão de um modelo mantendo a interpretabili-
dade, a abordagem usual é modelar matematicamente todas não-linearidades,
o que leva a um modelo muito complexo. Outra abordagem envolve identifica-
ção caixa-preta, uma abordagem onde um modelo matemático é ajustado para
descrever a relação de entrada e saída do sistema, a qual pode fornecer um
modelo preciso, porém não interpretável. Os avanços na capacidade de proces-
samento computacional permitiram o florescimento da area de aprendizado de
máquinas, a qual tem mostrado resultados interessantes em diferentes campos
do conhecimento. Uma dessas aplicações é em identificação caixa-preta, onde
o aprendizado de máquinas tem sido empregado com sucesso na modelagem de
sistemas não-lineares, o que tem inspirado pesquisas sobre o tema. Apesar dos
modelos baseados em aprendizado de máquina apresentarem elevada precisão,
o que é suficiente para diversas aplicações, eles não são interpretáveis. Dessa
forma, visando obter modelos que possuem ambas as características de precisão
e interpretabilidade, enquanto mantém um compromisso com a complexidade,
esta tese propõe uma metodologia de identificação híbrida que combina um
modelo fenomenológico caixa cinza com um modelo caixa preta baseado em
redes neurais artificiais. A metodologia proposta é aplicada em três casos de
estudo de sistemas não lineares com dados experimentais, a saber, a dinâmica
vertical de um veículo, um atuador com junta flexível baseado em elastômero
e um sistema de posicionamento eletromecânico. Os resultados mostram que
o modelo híbrido proposto é até 60% mais preciso enquanto proporciona a
interpretabilidade física do sistema, sem aumentar significativamente a com-
plexidade do modelo.

Palavras-chave
Identificação de Sistemas; Sistemas Não-lineares; Redes Neurais Artifi-

ciais; Modelos Híbridos.
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1
Introduction

Models of real systems are of fundamental importance in almost all
disciplines, especially in engineering, where they are required for the design
of new processes and the analysis of the existing ones [1]. Recently, the current
stage of technology development is characterized by arising new paradigms
for the construction of anthropogenic systems, such as cyber-physical systems
and sociocybernetic systems [2]. One of these new concepts is the Digital Twin
(DT), which can be defined as a scale, physic, unified, stochastic simulation
of an as-built system, permitted by the use of a digital thread, which employs
the best accessible models (physical, behavioral, etc.), as well as the updated
information to emulate the life cycle, actions, and operation of its real twin
[3]. In the paradigm of Industry 4.0, DT is a hot topic of research and an
urgent problem to be solved [4]. Moreover, as an emergent technology, the DT
widespread implementation is increasing in other domains than the industrial,
such as medical, automotive, and smart-cities [5].

In the construction of DT, the system’s dynamic model plays an im-
portant role in considering the requirements of accurate real-time simulations,
which not only allow for improvements in design and usability, but also a
comprehensive understanding of the system [4]. These requirements demand a
model that holds the characteristics of accuracy, simplicity, and interpretabil-
ity. Concerning obtaining a dynamic model for the system there are numer-
ous approaches in the literature, which can be divided into two main groups:
physics-based modeling, and system identification, where data-driven model-
ing is included. The physics-based modeling approach has been the workhorse
throughout time in many engineering applications [6] and relies on the physics
theory and properties of the materials to obtain the dynamic models. Even
though these approaches generate models that allow a physical insight into
the system and, therefore, the desired interpretability, depending on the com-
plexity of the system, the obtained models can be complex and computation-
ally expensive in order to achieve the desired level of accuracy. Moreover, the
accuracy is affected by parameter uncertainties and unmodelled nonlinearities.

The system identification approach can be considered the science of ob-
taining models of dynamic systems from observed input-output data [7]. The
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Chapter 1. Introduction 18

Figure 1.1: System identification procedure.

system identification procedure includes not only the model estimation but
also the experiment design and data, considering that system data should
carry the necessary information to adjust the model. Figure 1.1 shows the gen-
eral flow chart for an identification procedure. Through system identification,
it is possible to adjust the uncertain parameters of a model, known as gray-
box identification, or obtain an empirical model that predicts the system’s
behavior, known as black-box identification. For parameter and states estima-
tion Recursive Least Squares (RLS) and Kalman filter (KF) and its variations
for nonlinear systems such as Extended Kalman Filter (EKF) and Unscented
Kalman Filters (UKF) have been largely used as one can see in [8–11]. Even
though the nonlinear filters present good results in real-time applications, com-
putational complexity to achieve a given estimation accuracy is still a key issue
[12]. Additionally, the gray-box identification problem can also be interpreted
as an optimization problem where the parameters are adjusted in order to
obtain the best fit between the model response and the system data. Several
works use that interpretation and employ optimization methods [13, 14], in-
cluding swarm and evolutionary methods such as genetic algorithm [15] and
particle swarm [16], to estimate the models’ parameters. In fact, metaheuristic
and nature/bio-inspired algorithms are research topics of great importance for
the solution of complex optimization problems and recently have experienced
major advances as one can see in the surveys presented in [17–19].
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The gray-box identification approach allows the adjustment of a model
in order to fit the system’s dynamics data, however, it still depends on the
choice of a suitable model, which may present a complex formulation in order
to properly predict the system’s dynamics. Therefore, the model accuracy is
affected by unmodeled nonlinearities. Alternatively, the black-box identifica-
tion approach is focused on obtaining data-driven mathematical abstractions
of dynamic systems with little or no information about their intrinsic prop-
erties [20, 21]. Due to the advances in processing capacity and parallel com-
puting, the machine learning approach, which includes kernel-based methods,
such as Support Vector Machines (SVM) and Gaussian Regression (GR), and
Neural Networks (NN) have been extensively employed [22]. Machine learning
black-box models usually are accurate models, nonetheless, they do not provide
any interpretability about the system. A broad review of recent developments
in the field of complex dynamical systems with an emphasis on data-driven,
data-assisted, and artificial intelligence-based discovery of dynamical systems
is presented in [23].

For the specific case of systems whose dynamics are defined by partial
differential equations, which is the case of fluid dynamics and mechanics
of materials, several works have been developed in order to insert physics-
driven or physics-based constraints during artificial neural network training.
Generally, there are three distinct neural network frameworks that enforce the
underlying physics: physics-guided neural networks, physics-informed neural
networks, and physics-encoded neural networks [24]. Each framework has its
own advantages and drawbacks. For a critical review of the recent developments
and research in that subject, one can recall to [24, 25].

In machine learning, ensemble learning models are commonly used since
it was noticed that an ensemble of predictors performs better than a single
predictor in the average [26]. Ensemble modeling is a process where multiple
models are used to predict an outcome, whose objective is to reduce the
generalization error [27]. This fact urges the research of new architectures that
combine different model approaches in order to obtain models for nonlinear
systems that are interpretable, more accurate, and yet mathematically simple,
all ideal characteristics for modern engineering applications.

1.1
Objectives

This thesis proposes a novel architecture of hybrid models that combines
a phenomenological gray-box model and an Artificial Neural Network black-
box model to be applied in the modeling of nonlinear systems. The proposed
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hybrid model provides the desired combination of interpretability and accu-
racy without increasing mathematical complexity significantly. Therefore, the
general objective of this thesis is to present three contributions regarding the
modeling of nonlinear systems using the proposed approach. The contributions
are:

– Contribution 1: Modeling of the vertical dynamics of a Toyota Hilux
RWD using the data from the vehicle acquired during the transposition
of a type-A bump described in the Test Operations Procedure (TOP)
01-1-011B of the Vehicle Test Facilities at Aberdeen Test Center and
Yuma Test Center [28]. The hybrid model used combines a linear half-
car vertical model with two Nonlinear Auto-Regressive models with
exogenous input (NARX) adjusted using a neural network.

– Contribution 2: Modeling of an elastomer-based Series Elastic Actuator
(eSEA) using its experimental data. The eSEA is an inherent nonlinear
system because of its elastomer-based compliant element. Several hybrid
models, which combine a phenomenological gray-box model with a
NARX neural network model, are used.

– Contribution 3: Modeling of a Electromechanical Positioning System, a
system extensively used in the manufacture of robotic manipulators and
machine tool, which has challenging friction characteristics. The hybrid
model proposed combines an phenomenological model with a Radial
Basis Function Neural Network (RBFNN) model.

1.2
Document Organization

The remainder of this thesis is organized as follows. The first part is
dedicated to exposing the literature review, motivation, and contribution of
the thesis. The second part presents the theoretical background that includes
the gray-box and black-box algorithms used in the proposed methodology. In
the third part, the contributions of the thesis are exposed, with the details
inherent to each one, including the specific problem definition, the results, and
a discussion about them. In the last part, the conclusions of the thesis are
discussed, as well as the possible future research that may be developed using
the theory basis herein presented.

DBD
PUC-Rio - Certificação Digital Nº 2012370/CA



2
Related Works and Originality Claims

This chapter is dedicated to presenting and discussing recent works whose
subject is related to this work. A literature review is presented, containing a
critical analysis of the research gaps, for the objectives mentioned in section 1.1.
Then, the original contributions are presented regarding each of the objectives.

2.1
Critical Literature Review

The critical literature review is divided according to the objectives
presented in Section 1.1. However, bearing in mind that Objectives 2 and 3
are related to modeling of robotics, a single literature review encompass both
objectives.

2.1.1
Vehicle vertical dynamics modeling

In the context of vehicle vertical dynamics, a dynamical model can
be used in the design of an active suspension system and in the analysis
of comfort and performance, for instance. Therefore, several physics-based
dynamic models were developed and their use depends on the intended
applications

The quarter-car model is the simplest suspension model and various
works are focused on improving its accuracy. In Sandu and Andersen [29]
a quarter-car test rig McPherson structure suspension is identified using a
multi-body quarter-car suspension model. The identified multi-body model
presented better results when compared with a linear quarter-car suspension
identified using the same data A similar approach is addressed in Fallah et
al. [30] where a nonlinear quarter-car model for a McPherson suspension is
proposed for riding control applications. The model simulations showed good
results compared with an ADAMS McPherson suspension model. In Hurel
et al. [31], equivalent stiffness and damper parameters for a quarter-car sus-
pension model are analytically derived considering the suspension kinematics.
Simulation results were compared with an ADAMS multi-body model show-
ing an increase in accuracy when compared to the conventional quarter-car
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linear model. Niu et al. [32] derived a whole-range nonlinear dynamic model
for a double wish bone suspension for geometric optimization purposes, which
was validated using an ADAMS model of the suspension. Gonçalves et al. [33]
used a similar dynamic model for a double-wishbone suspension to study the
interaction of asymmetrical damping and geometrical nonlinearity and the ef-
fects on comfort. A test rig was specially designed to validate the simulations
results. Chiang and Lee [34] proposed an optimized virtual model reference
control synthesis method for semi-active suspension based on a quarter-car
McPherson suspension model. The simulations results of the proposed archi-
tecture presented better results when compared to a linear quadratic regulator
(LQR) control. All the aforementioned work aimed to improve the accuracy of
a quarter-car suspension model taking into consideration the kinematics and
dynamics of the suspension elements and, therefore, increasing the complexity
of the models. Furthermore, the quarter-car model only considers the dynamics
of the suspension, neglecting the vehicle’s pitch dynamics.

A more complex model is the full-car model, which considers the chassis’
pitch and row dynamics, as well as each suspension dynamics. Zhou et al.
[35] proposed a new method to obtain the equivalent suspension and damping
rates for different suspension geometries to be applied in a full vehicle model.
The model’s performance is then compared with a multi-body ADAMS model
showing a minimal error between simulations for several scenarios. Kanchwala
[36] obtained a full-car model using test track data. A frequency-domain
identification was employed to adjust the model. Reiterer et al. [37] combined
three identification techniques to adjust a full-car model using experimental
data from a sensored vehicle. The proposed approach allowed the identification
of all the model’s parameters based only on the vehicle sensor’s measurements.
Attia et al. [38] proposed an observer/controller method to estimate the states
and improve stability and riding comfort using the measurements of a single
IMU. The state observer is based on a full-car model with active suspension.
Those works are focused on a full-car suspension model, which is a more
accurate model, but also mathematically complex.

A model between the above models in terms of complexity is the half-
car model, which considers the chassis’ pitch dynamics and the front and
rear suspensions sets. In Cui et al. [39] three nonlinear empirical damper
models were adjusted using test rig data. Afterward, the influence of the
damper model on the parameter identification of a half-car model was analyzed.
In this case, for the identification process, simulated data was used. The
results obtained showed that the damper models previously adjusted have
no significant impact on the parameters identification when simulated data
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is used. A continuous system identification approach is used in Thaller et al.
[40] to identify the damper coefficient of a vehicle’s suspension using a half-car
linear model. The identification is performed using simulated data obtained
with CarMaker software package. The results showed that the employed
methodology was able to identify the damper coefficients for several different
simulated data scenarios. Pedro et al. [41] used a half-car model with active
suspension to implement a model predictive control whose parameters were
optimized using a Particle Swarm Optimization algorithm. Simulations showed
the superior performance of the proposed control in rejecting the deterministic
road disturbance when compared to the passive vehicle suspension system
and the non-optimized Model-based Predictive Control (MPC). The half-car
model, the focus of the previously mentioned works, is the simplest suspension
model that takes into consideration the influence of the vehicle’s body.

Several of the aforementioned works are based on data-driven modeling
techniques to adjust the parameters of a model. Other works use state esti-
mators to obtain the vehicle states and the suspension parameters. Imine and
Madani [42] used the sliding mode observer approach to estimate the vertical
forces and to identify dynamic parameters, such as damper coefficient and un-
sprung masses, based on a half-car model for roll dynamics of a heavy vehicle.
Experimental data were measured from an instrumented semi-truck perform-
ing a double-lane change maneuver at different speeds. The results showed
that the sliding mode observer has a quick convergence and presented minimal
error. The state observer approach can also be applied in fault detection on
suspension systems. Alcantara et al. [43] compare two different techniques of
fault detection for semi-active suspensions. One is based on state observers and
the other on system identification. Both techniques use a quarter-car model of
a semi-active suspension. The techniques are compared through simulations,
and results show that the approaches have complementary characteristics, al-
though the state observer technique presented better qualitative and quanti-
tative performance. In fact, state observer and Kalman-filters techniques are
largely used for vehicle states and parameter estimation, for instance one can
refer to Antonov et al. [44], Wenzel et al. [45], Hong et al [46], Liu et al. [47],
Reina and Messina [48], among others.

The neural-network approach has been extensively employed in the study
of vehicle systems as seen in the following. In Yao and Xu [49] a progressive
neural network is used to identify the suspension parameters of a tracked
vehicle. In this case, the suspension damping is modeled as a cubic polynomial
and the neural network is employed to determine the polynomial coefficients.
The neural network is trained using simulated data from a vehicle model
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implemented in ADAMS. Results show that the application of the progressive
neural network in the identification of suspension parameters is feasible. A
neural network approach is also employed by Witters and Swevers [50] where a
nonlinear black box model for a semi-active damper is obtained using a neural
network based on output error (NNOE). The neural network was adjusted
using a set of experimental data obtained from a test rig. The experimental
data was optimally designed for that purpose. The results showed that the
NNOE black-box model was able to describe the dynamics of the semi-active
damper with minimal error, except at very low damper velocities. Liu and
Cui [51] employed a Nonlinear Auto-regressive model with eXogenous input
(NARX) neural-network method to identify the road roughness. The data
for the training and identification process were generated using a full-car
suspension model. In fact, the neural-network approach is commonly used in
the identification of nonlinear damper models as can be seen in [52–55].

When the accuracy of a vehicle dynamic model needs to be improved,
the general approach is to mathematically model the nonlinearities, which in-
evitably increases the model complexity, or employ a black-box identification
technique that generates a model which does not allow any physical interpre-
tation.

2.1.2
Robotic systems modeling

In the case of robotic systems, obtaining an accurate model can be a par-
ticularly challenging task given that they are inherently nonlinear systems not
only because of their dynamics but also because of joint friction and gear/chain
backlash [56–59], for example. For robots with SEA, the compliant element can
add another source of nonlinearity. Furthermore, besides the system nonlin-
earities, parameter uncertainties represent an additional difficulty in obtaining
an accurate model.

For Series Elastic Actuators (SEA), one of the ways to reduce the param-
eter uncertainties about the compliant element is by optimizing its design to
present desired characteristics of weight, dimension, and stiffness. Yildirim et
al. [60] designed and developed an SEA with optimized spring topology, which
was submitted to numerous experimental tests to validate the design. The stiff-
ness test showed that the spring can be used as a torque sensor, presenting a
5% nonlinearity error in most of the specified torque range. However, near the
maximum torque, the nonlinearity error reaches its maximum value of 13%.
Irmscher et al. [61] develop a similar work, but focuses only on the design and
optimization of the compliant element. In this case, experimental data and
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simulation results showed discrepancies that can be attributed to fabrication
imperfections and differences in the material properties. A similar explanation
can be found in Liu et al. [62], where the compliant element presented a stiff-
ness 32.6% larger than the simulations. In these works, the compliant element
had its design optimized, however, the optimization algorithms were based on
finite element models (FEM), which require a compromise between accuracy
and complexity to be computationally cost-effective. Therefore, the discrepan-
cies between simulations and experimental data are common, especially when
material property mismatches are present. This urges a data-driven modeling
to obtain more accurate dynamic models.

Through gray-box identification it is possible adjust a model to fit a
dynamic system data, but it is still depends on the choice of a suitable model
to describe the system behavior. In fact, a gray-box identification can be
addressed as an optimization problem and, therefore, there are many methods
to obtain a solution. Because of its simplicity and good performance in ill-
posed problems, some works use evolutionary algorithms in the identification of
models that consider nonlinear friction [63, 64] or other nonlinearities including
elasticity and hysteresis [65]. Most parameter estimation methods are based
on Maximum Likelihood Estimation (MLE) [66], least squares algorithm [67–
69] and its expansion such as weighted least squares (WLS) [70], recursive
least squares [66, 71], and nonlinear least squares (LS) [68, 69, 72]. Jia et al.
[73] propose a method that integrates MLE and WLS to identify the dynamic
parameters of a SEA manipulator. Other alternative estimation approaches
commonly used are based on state observers, mainly to estimate disturbances
[74–76], Kalman Filter (KF) [77, 78], and other filter architectures [79]. For
a more extensive survey about parameter identification in robotics, one can
recall to Leboutet et. al. [80].

There are several machine learning approaches used in robotics black-box
identification, for instance, Banka et al. [81] use a complex-valued Gaussian
Process Regression (cGPR) technique to estimate a linearized local system
model to reduce position tracking errors. However, one of the most used
approaches is Neural Networks (NN) due to their simplicity and performance
in modeling nonlinear systems. Mukhopadhyay et al. [82] compare 3 types of
recursive neural networks in the modeling of two robotic manipulators with
7 DoF. Zhang et al. [83] use a recurrent fuzzy Neural Network to adjust a
nonlinear autoregressive moving average with an exogenous input model to
describe the load-dependent dynamic behavior of a pneumatic artificial muscle.
Shao et al. [84] use a RBFNN to model the nonlinear behavior of a series elastic
drive joint, while Wang et al. [85] uses to model static friction in robotic

DBD
PUC-Rio - Certificação Digital Nº 2012370/CA



Chapter 2. Related Works and Originality Claims 26

manipulator joint.
Regarding eSEA, Seo et al. [86] use a MATLAB parameter estimation

toolbox to adjust a Bouc-Wen hysteresis model for an eSEA. Sun et al. [87]
and Kim et al. [88] also model the hysteresis of a eSEA, the first adjusts
the parameters of a proposed hysteresis model, and the last uses a Gaussian
process to adjust a nonlinear auto-regressive moving average with exogenous
inputs (NARMAX) model. Austin et al. [89] use a Zener model to describe
the compliant element of eSEA in order to implement a nonlinear observer-
based control. A Zener model was also used in Wei et al. [90] combined with a
nonlinear friction model to build an eSEA model used in the implementation
of a dual Kalman filter (DKF) for torque estimations. As it can be seen, those
works approach the nonlinearities of the eSEA by either employing a gray-box
identification method to adjust the parameters of a model, or by employing a
black-box approach.

A gray-box model still relies on a mathematical model, which may
become excessively complex to reach the desired level of accuracy; on the
other hand, a black-box model may reach the desired level of accuracy but
does not offer any phenomenological insight about the system, which is crucial
to optimize the system. In fact, for a DT, a dynamic model must have a
compromise between complexity and accuracy, but also must be interpretable,
an important characteristic that allows the proper study of the system.

2.2
Contributions

The machine learning approach has been successfully employed in the
modeling of nonlinear systems [49–55, 81–90], however, despite its ability to
accurately model nonlinear systems, it does not provide interpretable models,
except for specific cases [91]. Alternatively, physics-based modeling and gray-
box identification approaches [29–48, 60–80] do provide interpretability about
the system, but in order to achieve accuracy the system nonlinearity has to
be mathematically modeled, which ultimately may lead to a computationally
expensive model. Thus, this work aims at filling this gap, by proposing different
methods to construct hybrid models that would provide interpretable and
accurate models.

In the following, we establish the contributions of this thesis, which are
divided into three groups:
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– Vehicle vertical dynamics modeling (presented in Chapter 4):

– Propose and test a novel nonlinear hybrid half-vehicle model for
vertical dynamics, which to date has not been explored in the
literature;

– Validate the method using experimental track data acquired from
a TOYOTA HILUX RWD.

This chapter has been submitted for review:

SOUSA, D. H. B.; AYALA, H. V. H. A Novel ensemble model
approach applied to vehicle vertical dynamics modeling. Under
Review in Vehicle System Dynamics, 2022.

– Elastomer-based Series Elastic Actuator Modeling (presented in Chapter
5):

– Propose a hybrid model approach to be applied in the modeling of
an 1-DOF eSEA which combines a phenomenologycal model with
a NARX neural network;

– Compare with original data several hybrid models which use differ-
ent phenomenological models.

This chapter has been submitted for review:

SOUSA, D. H. B.; LOPES, F. L.; LAGO, A. W. C.; MEGGIOLARO,
M. A.; AYALA, H. V. H. Hybrid Grey and Black-box Nonlinear
System Identification of an Elastomer Joint Flexible Robotic
Manipulator. Under Review in Mechanical System and Signal Process-
ing, 2022.

– Modeling of a Electromechanical Positioning System (presented in Chap-
ter 6):

– Propose a nonlinear hybrid model approach the combines a phe-
nomenological model with a RBFNN black-box model;

– The RBFNN is used to model a nonlinear friction model which is
inserted in the model state-space equations;

This chapter has been submitted for review:

SOUSA, D. H. B.; SOUSA, L. C.; AYALA, H. V. H. An hybrid gray
and black-box artificial neural network friction identification of
an Electromechanical Positioning System. To be submitted, 2023.
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Additionally, the following papers have been published in conference
proceedings as a result of collaboration throughout the completion of the
present thesis:

– PEREIRA, C. L.; DE SOUSA, D. H. B. ; AYALA, H. V. H.. Three-axle
vehicle lateral dynamics identification using double lane change
maneuvers data. In: 2021 29th MEDITERRANEAN CONFERENCE
ON CONTROL AND AUTOMATION (MED), p. 910–915. Puglia, Italy,
2021. IEEE.

– LAGO, A. W. C. ; SOUSA, L. C. ; SOUSA, D. H. B. ; LOPES, F. R.
; MEGGIOLARO, M. A. ; AYALA, H. V. H.. Identificação usando
método não linear de um sistema de posicionamento. In: 2022
XXIV CONGRESSO BRASILEIRO DE AUTOMÁTICA. Fortaleza,
Brazil, 2022. SBA.

– LAGO, A. W. C. ; CAMERINI, I. G. ; SOUSA, L. C. ; SOUSA, D.
H. B. ; LOPES, F. R. ; MEGGIOLARO, M. A. ; AYALA, H. V. H..
Black-Box Identification with Static Neural Networks of Non-
linearities of an Elastomer-Based Elastic Joint Manipulator. In:
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NET-
WORKS. Queensland, Australia, 2023. IEEE.
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3
Identification Methods

This chapter deals with the identification methods employed in the
contributions presented in Part II. First, the gray-box identification method,
which is common to all contribution, is presented. Then, it is presented two
different black-box identification methods based on artificial neural networks.

3.1
Gray-box Identification Method

Given a suitable dynamic model of a system, the gray-box identification
consists in tuning the unknown parameters from the model in order to make its
simulations fit the system available data. Therefore, the gray-box identification
can be considered an optimization problem whose objective is to minimize a
cost function defined as the error between the system data and the model
simulations, and the control variables are the model’s unknown parameters.

In order to carry on the models simulations and, consequently the
optimization problem, the dynamic models are discretized in this thesis with
4th-order Runge-Kutta algorithm.

Generally, a discrete-time nonlinear state space model may be defined
as: x(k + 1) = f(x(k), u(k))

z(k + 1) = h(x(k + 1), u(k + 1)) + ξn

(3-1)

where the index k denotes discrete-time dependence, x(k) is the state vector,
u(k) is the input vector of the system, and z(k) is the output vector. Functions
f(·) and h(·) are called state and measurement equations, respectively, and
they are nonlinear mappings, generally.

Therefore, let y be the system output data and p the vector of unknown
parameters, and considering the system discrete representation in (3-1), cost
function, i.e., the error function is defined as follows:

J (p) = ∥y − z∥2 (3-2)
The method chosen to solve the referred optimization problem is the

multiple-shooting algorithm [92], extensively used in Model-based Predictive
Control (MPC) problems [93]. Then, considering N as the size of the opti-
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mization window, and X as the set of the possible values of the states x, the
following optimization problem is defined:

min
xk+1,k+N+1,p

k+N−1∑
i=k

∥y (i) − z (i)∥2

s.t. x (i + 1) − f (x (i) , u (i)) = 0, i = k, k + 1, . . . , k + N − 1

x (i) ∈ X, i = k, k + 1, . . . , k + N − 1

pmin ≤ p ≤ pmax

(3-3)

where pmin and pmax defines the parameters searching space. Thus, in order
to perform the gray-box identification, the nonlinear optimization problem
defined in (3-3) must be solved.

In this thesis, the algorithm was implemented in MATLAB® using
the CasADi optimization tool [94]. The solution to nonlinear optimization
problems using CasADi is performed through nonlinear programming (NLP)
and in this work is used the plugin Interior Point Optimization (IPOPT),
which may be used on higher dimension problems with faster local convergence
[95]. The NLP is solved through symbolic variables, using the Lagrange
Multipliers method and the Karush-Kuhn-Tucker (KKT) conditions [96]. The
implementation of the above optimization problem is similar to the ones for
nonlinear MPC, which is presented in detail in [96] and [97].

3.1.1
Constrained Optimization Problem

Constrained optimization problems, such as the one presented for the
gray-box identification method used in this thesis, may be formulated as
follows:

arg min fobj(x)

s.t. gi(x) = 0, i = 1, · · · , ng

hj(x) ≥ 0, j = 1, · · · , nh

(3-4)

The function fobj is the cost or objective function, whose argument is the
vector x ∈ Rn. The problem is constrained by ng equality constraints gi(x),
and nh inequality constraints hj(x). To solve this constrained optimization
problem, a Lagrangian function must be defined:

L(x, λ, µ) = f(x) −
ng∑
i=1

λigi(x) −
nh∑

j=1
µjhj(x) (3-5)

where λi and µj are the Lagrange multipliers related, respectively, to equality
and inequality constraints. The feasible set Ω of the optimization problem is:

DBD
PUC-Rio - Certificação Digital Nº 2012370/CA



Chapter 3. Identification Methods 31

Ω = {x| gi(x) = 0, i = 1, · · · , ng; hj(x) ≥ 0, j = 1, · · · , nh} (3-6)

The KKT conditions, presented in the following, are the necessary, but
not sufficient first-order conditions for the existence of a local solution to the
optimization problem. Supposing that f , gi, hj are continuously differentiable,
for a local solution x∗ ∈ Ω of the Eq. (3-4), there is a set of Lagrange multipliers
(λ∗, µ∗) so that the following conditions are satisfied:

∇xL(x∗, λ∗, µ∗) = 0 (3-7a)

gi(x∗) = 0, for i = 1, · · · , ng (3-7b)

hj(x∗) = 0, for j = 1, · · · , nh (3-7c)

µj
∗ ≥ 0, for j = 1, · · · , nh (3-7d)

λi
∗gi(x∗) = 0, for i = 1, · · · , ng (3-7e)

µj
∗hj(x∗) = 0, for j = 1, · · · , nh (3-7f)

The two last ones are known as complementarity conditions, which
indicate that if these conditions are active, i.e., equal to zero, the relative
Lagrange multipliers are positive. If the conditions are inactive, the Lagrange
multipliers are zero. Consequently, the value of each multiplier indicates the
application of the condition [98].

The second-order conditions are related to the Lagrangian second deriva-
tive, and they are also sufficient conditions. It is possible to prove that a feasi-
ble point x∗, for which a set of Lagrange multipliers (λ∗, µ∗) satisfy the KKT
conditions, is a strict local solution for the optimization problem if:

sT ∇2
xxL(x∗, λ∗)s > 0, ∀s ∈ C(x∗, λ∗, µ∗), s ̸= 0 (3-8)

where C(x∗, λ∗, µ∗) (critical cone) is the set that contains the critical directions
w for which it is not possible to define the direction of ∇f(x∗). Equivalently:

s ∈ C(x∗, λ∗, µ∗) ⇒ sT ∇f(x∗) =
ng∑
i=1

λis
T ∇gi(x) +

nh∑
j=1

µjs
T ∇hj(x) = 0 (3-9)

Therefore, the sufficient condition is that the Hessian of the Lagrangian
function must be positive-definite for all critical directions [98].

In this thesis, as mentioned before, the IPOPT algorithm is employed
to numerically solve the constrained optimization problem. This algorithm
uses a point in the interior of the feasible region to approximate the solution.
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Consequently, the cost function is replaced by a barrier function that takes
into consideration the inequality constraints:

P (x, ρ) = f(x) − ρ
nh∑

j=1
log(hj(x)) (3-10)

The barrier function, as defined, prevents the iteration point from leav-
ing the feasible region, considering that the closer the iterate solution of the
boundaries of feasible sets, the higher its value, tending to infinity. Further-
more, because the solution is searched inside the feasible region, where the
constraints are active, the problem can be solved using unconstrained opti-
mization methods [99].

3.2
NARX Neural Networks

The black-box identification approach is commonly used in the model-
ing of dynamic systems with undetermined nonlinearities or when there is no
previous knowledge about the system physics. A black-box model uses approx-
imation functions to describe the input/output relations of the system [100].
Machine learning and NN approaches have been largely applied in robotics
with significant results in black-box modeling [22, 101].

In this thesis, a multi-layer artificial neural network is used to adjust a
Nonlinear Auto-regressive model with Exogenous inputs (NARX). A NARX
model is mathematically represented in Eq. (3-11), where F is a nonlinear
function, ŷ is the model output prediction, u is the input, ny is the output
regression order, and nu is the input regression order. In this case, the nonlinear
function is a multi-layer neural network, whose schematic of its application in
the identification of the NARX model is presented in Fig. 3.1.

ŷ (t) = F [ŷ (t − 1) , . . . , ŷ (t − ny) , u (t − 1) , . . . , u (t − nu)] (3-11)

For the NN training, the Adaptive Moment estimation method (ADAM)
[102] was chosen as the optimizer, and the Exponential Linear Unit (ELU)
function as the activation function. This function is designed for faster and
more precise learning in deep neural networks and outperformed other activa-
tion functions in several scenarios [103]. The ELU function is defined as follows,
where α is a constant with a default value of 1:

ELU (x) =

α (ex − 1) if x < 0

x if x > 0
(3-12)
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Figure 3.1: Multi-layer artificial neural network schematics

In this thesis, the NARX NN was implemented and trained using the
Python programming language using TensorFlow [104]. Due to its extensive
usage by the artificial intelligence and machine learning communities, there
are several dedicated packages, which facilitate the tasks of implementation
and training of the NN.

3.3
Radial Basis Function Neural Networks

Radial Basis Function Neural Networks (RBFNNs) have been extensively
used for function approximation purposes, such as in black-box systems
identification [105]. An RBFNN is a feedforward network with three layers:
the inputs, the hidden/kernel layer, and the output node, whose hidden layer
neurons activation function is a radial basis function [106].

In this thesis, the Gaussian radial basis function is used . The Gaussian
radial basis function is defined as follows:

ϕ (x) = exp

[
−(x − c)2

2σ2

]
(3-13)

Where c and σ are, respectively, the centers and the width of the Gaussian
function. Figure 3.2 show a general schematics of a RBFNN, whose mathe-
matical model is presented in Eq. (3-14).

yrbf =
m∑

i=1
wiϕ (x, ci, σi) (3-14)
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Figure 3.2: Radial basis function artificial neural network schematics

3.4
Validation Metrics

Three metrics were used in this thesis to measure and compare the
accuracy of the models: the mean square error (MSE), the root mean square
error (RMSE), and the multiple correlation coefficient (R2). Considering y as
the measured data, y as the measured data mean value, and ŷ as the model
prediction, both metrics are defined as follows:

MSE =
∑n

i=1 (yi − ŷi)2

n
(3-15)

RMSE =

√∑n
i=1 (yi − ŷi)2

n
(3-16)

R2 = 1 −
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − y)2 (3-17)

The more precise model will present a MSE and a RMSE closer to zero
and a R2 closer to one. For most applications, R2 > 0.9 is considered sufficient
[107].
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4
A Novel hybrid model approach applied to vehicle vertical
dynamics modeling

Dynamical models are essential in the engineering field, and depending
on the application, they need a compromise between simplicity and accuracy.
The usual approach to obtain more accurate models is to increase their
mathematical complexity to address the nonlinearities. This contribution
proposes a novel approach to vertical dynamics modeling based on hybrid
models. To date, there is no research on hybrid models applied to vehicle
vertical dynamics. The proposed approach combines a gray-box identification
with a black-box identification to obtain a novel nonlinear half-car hybrid
model. The methodology is tested and the hybrid model is validated using
experimental data. Results indicate that the obtained hybrid model is up to
84% more accurate without significantly increasing model complexity.

4.1
Problem Definition

Dynamical models are essential in many engineering applications, such
as control design, parameter optimization, behavior prediction, fault detection,
and other simulation purposes. In the case of vertical dynamics, a dynamical
model can be used in the design of an active suspension system and in the
analysis of comfort and performance, for instance.

Although precision is the primary goal of a dynamical model, an over-
complicated model can be time-consuming to simulate and unfeasible to be
applied [108]. Therefore, a model needs to have a compromise between precision
and complexity.

One of the strategies to obtain a model is through system identification
[109]. Not only does the system identification allow us to optimize the param-
eters of a mathematical model of the system studied, but it also allows us to
obtain a model which has no physical interpretation. The first case is known
as gray-box identification, and the last is known as black-box identification.

This contribution aims to propose a Hybrid identification technique that
combines a gray-box identification, whose purpose is to identify the suspension
parameters of a half-car model using field data, with a black-box identification

DBD
PUC-Rio - Certificação Digital Nº 2012370/CA



Chapter 4. A Novel hybrid model approach applied to vehicle vertical dynamics
modeling 37

where an artificial neural network is employed in the modeling of the nonlinear
error between the half-car model and the data. Using this approach, it is
expected to obtain a simple model with enhanced accuracy.

4.2
Case Study and Experiment Description

The case study consists in using experimental data acquired from a four-
wheel vehicle transposing an obstacle at a constant speed to obtain a hybrid
model that describes the vertical dynamics of the vehicle.

The field measurements are from a Toyota Hilux RWD vehicle trans-
posing a type-A bump described in the Test Operations Procedure (TOP)
01-1-011B of the Vehicle Test Facilities at Aberdeen Test Center and Yuma
Test Center [28] at the constant speed of 20 km/h. During the test, the driver
was responsible for maintaining the vehicle at the predefined speed. Figure 4.1
shows the dimensions of the type-A bump.

Figure 4.1: Type-A bump dimensions in meters [28].

The measurement data were collected using a VBOX/Racelogic® inertial
measurement unit (IMU) positioned on the vehicle’s center of gravity (CG) as
shown in Figure 4.2. The IMU provides pitch, roll, and yaw rates using three
rate gyros, as well as, x, y, and z-axis accelerations from three accelerometers.
In this study, only the pitch rate and the z-axis acceleration are used. The data
were recorded at 100 Hz sample rate and saved for subsequent analysis.

Due to disturbances mainly caused by vibrations from the running engine
and the road roughness, data preprocessing is imperative to ensure good
results in the identification process. Therefore, a first-order Butterworth filter
with a cutoff frequency of 5 Hz was applied to the pitch rate and z-axis
acceleration. The application of this filter intends to remove high-frequency
content from the measurements, such as sensor noise and the aforementioned
vehicle’s vibrations.

Figure 4.3 shows filtered data of pitch angular velocity and vertical
acceleration. As can be noticed, the designed filter was capable of filtering
the high-frequency noise of both data sets.
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Figure 4.2: IMU positioning inside the vehicle.

The proposed method needs the signals of pitch angular velocity and
vertical velocity. Therefore, the vertical acceleration signal was integrated to
obtain the vertical velocity of the vehicle’s center of gravity. Figure 4.4 shows
both pitch angular velocity and vertical velocity, which are used in the proposed
method.

4.3
Half-car model

The half-car model is the one used in this work. It is a well-known
modeling assumption for vertical vehicle dynamics. In this model, the car is
assumed to be a two-dimensional object with a front and rear suspension, as
shown in Figure 4.5. A more detailed description of the model can be obtained
in [110]. In this thesis, for the sake of keeping the model simple, the springs
and the dampers were considered to have a linear behavior.

To obtain the equations of motion of the model, the Euler-Lagrange
approach was used. Figure 4.5 shows the generalized coordinates used to derive
the motion equations, where zf and zr are, respectively, the vertical position
of the front and rear suspension masses, zc is the chassis’s vertical position,
and θ is the chassis’s pitch angular position. The entries for the model are the
positions of the ground surface at the front wheel contact point uf and at the
rear wheel contact point ur. The Euler-Lagrange equation is presented as:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ ∂R

∂q̇
= 0 (4-1)
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Figure 4.3: Filtered data.

where R is Rayleigh dissipation function for the viscous forces of the dampers
and L is the Lagrangian of the system:

L = T − V (4-2)
In Equation (4-2), T and V are the total kinematic and potential energies,

respectively. Therefore, to derive the dynamic equations, the kinematic energy,
potential energy, and Rayleigh dissipation function are needed for the chassis,
and for the front and rear suspension masses. These terms are calculated as
follows, where the subscript c is referring to the chassis, f to the front floating
mass, and r to the rear floating mass:

Tc = 1
2mcż

2
c + 1

2Iyyθ̇2 (4-3)
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Figure 4.4: Pitch rate and vertical velocity data used in the method.

Vc = mczcg (4-4)

Tf = 1
2mf ż2

f (4-5)

Vf = mfzfg + 1
2kf [zf − (zc − lfθ)]2 + 1

2kp (uf − zf )2 (4-6)

Rf = 1
2cf

[
żf −

(
żc − lf θ̇

)]2
(4-7)

Tr = 1
2mrż

2
r (4-8)

Vr = mrzrg + 1
2kr [zr − (zc + lrθ)]2 + 1

2kp (ur − zr)2 (4-9)

Rr = 1
2cr

[
żr −

(
żc + lrθ̇

)]2
(4-10)

DBD
PUC-Rio - Certificação Digital Nº 2012370/CA



Chapter 4. A Novel hybrid model approach applied to vehicle vertical dynamics
modeling 41

Figure 4.5: Half-car suspension model.

In Eqs. (4-3) – (4-10), Iyy is the chassis’ moment of inertia with respect
to the y-axis; kf and kr are, respectively, the front and rear spring stiffness; cf

and cr are the front and rear damping coefficient; kp is the tire stiffness; lf and
lr are the front and the rear axle distance; and mc, mf and mr are the mass
of the chassis, the front, and rear floating masses.

Therefore, the total kinematic and potential energies and the Rayleigh
term are calculated as follows:

T = Tc + Tf + Tr (4-11)

V = Vc + Vf + Vr (4-12)

R = Rf + Rr (4-13)
With Eqs. (4-11) – (4-13) and the Lagrange equation, the equations

of motion of the half-car model are obtained. Defining the vector of states
qT =

[
żc θ̇ żf żr zc θ zf zr

]
and the vector of inputs as uT = [uf ur], it

is possible to write the equations of motion in the form q̇ = f (q, u). The
components of q̇ are shown in Eq. (4-14).
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z̈c = − 1
mc

[g mc + cf żc − cf żf + cr żc − cr żr + kf zc − kf zf + kr zc − kr zr−

− cf lf θ̇ + cr lr θ̇ − kf lf θ + kr lr θ]

θ̈ = − 1
Iyy

[cf lf
2 θ̇ + cr lr

2 θ̇ + kf lf
2 θ + kr lr

2 θ − cf lf żc + cf lf żf + cr lr żc−

− cr lr żr − kf lf zc + kf lf zf + kr lr zc − kr lr zr]

z̈f = − 1
mf

[g mf − cf żc + cf żf − kf zc + kf zf + kp zf − kp uf + cf lf θ̇+

+ kf lf θ]

z̈r = 1
mr

[cr żc − g mr − cr żr − kp zr + kr zc − kr zr + kp ur + cr lr θ̇ + kr lr θ]

żc = żc

θ̇ = θ̇

żf = żf

żr = żr

(4-14)

4.4
Proposed approach

The proposed method is focused on obtaining a hybrid model which
consists of the combination of a gray-box model with two black-box models.
The gray-box model is a half-car model, and the black-box models are two
NARX neural networks, described in Section 3.2.

For the gray-box identification, the model’s known parameter and their
values are presented in Table 4.1. The vehicle’s mass and CG position were
obtained using a static weight scale, while the other information was obtained
from the vehicle’s user manual. Consequently, the unknown parameters are the
stiffness (kf , kr) and the dumping coefficients (cf , cr) of both suspensions, the
tires stiffness (kt) and the moment of inertia (Iyy). The gray-box identification
was performed using the method described in Section 3.1.

Table 4.1: Model’s known parameters.

Parameters Values
Vehicle’s mass mc 1250 kg

Front axle distance lf 1.50 m
Rear axle distance lr 1.60 m

Front floating mass mf 30 kg
Rear floating mass mr 30 kg
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The black-box identification was performed for each error individually,
i.e., one NARX model is obtained for the vertical velocity error, and another for
the pitch angular velocity error.Figure 4.6 presents a block-diagram describing
the steps of the proposed method for one of the degrees of freedom. Both
models consider the tires contact point position inputs uf and ur, and the
gray-box simulations as inputs. Therefore, the models can be represented as
follows:

êb (t) = F [êb (t − 1) , . . . , êb (t − ne) , uf (t − 1) , . . . , uf

(
t − nuf

)
, . . .

. . . , ur (t − 1) , . . . , ur (t − nur) , ŷg (t − 1) , . . . , ŷg

(
t − nŷg

)
]

(4-15)

Figure 4.6: Block diagram of the proposed methodology.

Consequently, the combination of the estimated output of the gray-box
half-car model ŷg with the estimated error of the black-box NARX model êb

is considered to estimate the vehicle’s behavior:

y ≈ ŷ = ŷg + êb (4-16)

4.5
Results

In this section, the proposed method is applied to the vehicle’s filtered
data shown in Figure 4.4. First, the gray-box identification is performed
in order to adjust the half-car model. Therefore, the optimization problem
described in Eq. (3-3) is solved. Table 4.2 shows the half-car model’s estimated
parameters while Figure 4.7 contains the comparison between the experimental
data and the model simulation for vertical velocity and pitch angular velocity.

From the analysis of Figure 4.7, it is possible to observe that the half-
car model simulations present a curve shape similar to the data. However,
they differ in amplitude. A possible explanation for that behavior is the
nonlinearities from the suspension components, such as spring stiffness and
damping, and from the suspension kinematics, which is not considered in the
model. Furthermore, one can notice a slight delay between the curves. This
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Table 4.2: Gray-box model estimated parameters.

Parameters Estimated Values
Iyy 2441.0 kg.m4

kf 22223 N/m
kr 52916 N/m
cf 2273.6 N.s/m
cr 1938.6 N.s/m
kt 5.1148 · 106 N/m
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Figure 4.7: Comparison between the data, the gray-box half-car linear model
and the hybrid model simulations.

delay is due to the vehicle’s speed variations during the test. Those effects
reflect in the model’s metrics, especially the R2 coefficient, which has an order
of magnitude of 0.8 for both data sets.
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Table 4.3: Gray-Box model metrics.

RMSE R2

Vertical velocity 0.0678 0.8474
Pitch angular velocity 0.0533 0.8682
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Figure 4.8: Error between the measured data and the gray-box model simula-
tions.

With the error data between the vehicle data and the gray-box model
simulations, the NARX models’ black-box identification is performed. Figure
4.8 presents the error data for both vertical velocity and pitch angular velocity.
As mentioned in section 3.2, two NARX models are identified, one for the
vertical velocity error, and another for the pitch angular velocity error.

It is considered that both NARX models have the same regression order.
The chosen regression orders were 7 for the error, 2 for both tires inputs uf
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and ur, and 4 for the gray-box simulation data. Consequently, in Eq. (4-15),
ne = 7, nuf

= nur = 2, and nŷb
= 4 for both NARX models.

The multi-layer neural networks employed in the black-box identification
have the same number of neurons per layer for all layers, i.e., the input layer,
the hidden layers, and the output layer have all the same number of neurons.

Considering that the parameters of a neural network that have the greater
effect on the complexity of the black-box model are the number of neurons per
layer and the number of hidden layers, several configurations were tested in
order to obtain a model with a compromise between complexity and precision.
Tables 4.4 and 4.5 show the configurations tested and the metrics considering
the simulations of the hybrid model ŷ, shown schematically in Figure 4.6, for
the vertical velocity and the pitch rate, respectively.

As mentioned before, the model that presents the best fitting will have a
RMSE closer to zero and a R2 closer to one. Therefore, based on the metrics
of Tables 4.4 and 4.5, the best model for the vertical velocity is the one with 4
hidden layers and 16 neurons per layer, and for the pitch angular velocity, the
one with 3 hidden layers and 16 neurons per layer. Comparing the hybrid model
metrics with the metrics of Table 4.3, for the RMSE, there is a reduction of
84% for the vertical velocity and a reduction of 70% for the pitch angular
velocity. In terms of the R2 coefficient, for the hybrid model, the magnitude is
greater than 0.98 for both data sets, indicating a better fitting when compared
with the half-car model.

Figure 4.7 also presents the comparison between the data and the hybrid
model simulations for the vertical velocity and the pitch angular velocity. The
figure shows the precision of the hybrid model. For both data sets, the curve
fitting has increased when compared with the simulations of the gray-box
model, in accordance with the model’s metrics. In addition, comparing the
error graphics of both models, presented in Figure 4.8, it is possible to observe
that the amplitude of the error graphics for the hybrid model is smaller than
the error graphics of the half-car model.

Figure 4.9 shows the graphic of data vs. model simulations for both data
sets. If the model were perfect, the graphic would be a straight line with 45◦

inclination. Consequently, the closer the simulations are to that line, the more
accurate the model is. By comparing the graphics presented in that figure, it
is possible to visualize that the hybrid model is more accurate.
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Table 4.4: hybrid model results (Vertical velocity).

Neurons per Layer Hidden Layers RMSE R2

8
3 0.0522 0.9093
4 0.0579 0.8886
5 0.0289 0.9723

16
3 0.0410 0.9442
4 0.0108 0.9961
5 0.0232 0.9821

32
3 0.0607 0.8776
4 0.0420 0.9415
5 0.0722 0.8267

Table 4.5: hybrid model results (Pitch rate).

Neurons per Layer Hidden Layers RMSE R2

8
3 0.0247 0.9716
4 0.0215 0.9786
5 0.0270 0.9661

16
3 0.0160 0.9881
4 0.0177 0.9854
5 0.0181 0.9848

32
3 0.0164 0.9874
4 0.0231 0.9752
5 0.0203 0.9809

4.5.1
Results discussion

This contribution used a data set obtained during a test that consisted of
a Toyota Hilux RWD vehicle transposing a standardized obstacle at a constant
speed. The vehicle was equipped with a single IMU sensor positioned in its
center of gravity.

Using the vehicle data, first, a half-car linear model is adjusted using a
gray-box identification technique. The results showed that the gray-box model
simulations presented a similar curve shape when compared to the vehicle
data, although it is clear that the model cannot explain some nonlinearities
present in the data set, hence the amplitude divergence between simulations
and data. One could address this issue by modifying the suspension model in
order to consider its geometry and kinematics [29–33], or consider a nonlinear
dumping model [39]. Both approaches or their combination would result in
a mathematically complex model whose applications in model-based control
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Figure 4.9: Data versus models estimation comparison graphic.

synthesis and real-time simulations would be limited or infeasible.
In the sequence, the proposed methodology is applied to obtain the

nonlinear hybrid model. In the proposed approach, the gray-box model is
combined with two NARX models of the error between gray-box model
simulations and the vehicle data. The results showed that the hybrid model is
up to 84% more accurate when compared with the gray-box model, a significant
improvement considering the simplicity of the hybrid model. In the hybrid
model, the nonlinearities of the system are addressed by the NARX models,
which in combination with the linear half-car are capable to describe the vehicle
behavior. Furthermore, because the hybrid model uses the gray-box model, it
allows us to have some physical insight into the system. It is important to
highlight that the aforementioned results were obtained using a single IMU
sensor, indicating that it would be possible to obtain an even more accurate
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model if more information about the other states of the vehicle have been used.
This possibility and the results here obtained urge further investigations into
the applications of hybrid models on vehicle systems.

Finally, the architecture of the proposed hybrid model combines a linear
model and black-box models which, in the case study, were successfully applied
to vertical dynamics. However, the same approach can be employed in the
study of other subjects such as, but not limited to, lateral dynamics, stability
control, active suspensions, and trajectory control.

4.6
Summary

This contribution aimed to propose a hybrid identification technique
that combines a gray-box and a black-box identification resulting in a novel
nonlinear hybrid half-car model for the vehicle’s vertical dynamics. The
proposed method consists of three steps. First, a gray-box identification is
performed in which a half-car model parameters are adjusted; second, for each
of the two chassis’ degree of freedom, a black-box identification is performed
to obtain NARX model for the nonlinear error of the half-car model; finally,
the models are combined in a hybrid model. The proposed method and the
resulting hybrid model were validated using experimental data.

Notice that the hybrid model presented an enhanced fitting with the
vehicle’s data when compared to the linear half-car model. Consequently, the
hybrid model is more precise yet simple. In addition, the proposed methodology
was able to obtain a simple and precise model for the vehicle’s vertical dynamic
using data of two chassis’ degrees of freedom obtained by a single IMU.
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5
Hybrid gray and Black-box Nonlinear System Identification of
an Elastomer Joint Flexible Robotic Manipulator

Series elastic actuators possess several properties that make them widely
used in collaborative robots which play a major role in the current paradigm
of Industry 4.0. However, the compliant element responsible for those desired
properties can also be responsible for the addition of unmodelled nonlinearities
in the system. Therefore, the aim of this contribution is to propose a novel hy-
brid model approach and apply it in the modeling of an elastomer-based series
elastic joint. The proposed hybrid model combines a phenomenological gray-
box model with a black-box Nonlinear Auto-regressive model with Exogenous
inputs, which is able to provide the desired physical insight while enhanc-
ing accuracy by addressing the unknown nonlinearities. The results showed
that the proposed hybrid model is more than 60% more accurate than the
phenomenological model, considering the mean square error, and obtained a
multiple correlation coefficient up to 0.97 considering the validation data, in-
dicating its capacity to be used in the construction of a digital twin of the
system.

5.1
Problem Definition

In the past decades, industrial robots driven by traditional stiff actuators
have made remarkable progress due to their precise and fast positioning, as
well as large force output, which provides a good performance in structured
environments [111]. However, robots with stiff actuators are not suitable to
work collaboratively with humans, considering that any unexpected impact
represents an injury risk. In this context, the series elastic actuator (SEA) is a
type of actuator that has a compliant element between the motor and payload,
which brings some properties such as intrinsic safety, low output impedance,
passive mechanical energy storage, and accurate force control. Those properties
make the SEA suitable for human-robot interactions, showing potential in
applications such as collaborative robotics, legged robots, and exoskeleton, for
instance [112].
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Obtaining an accurate model for robotic systems is particularly chal-
lenging due to their inherent nonlinearity. This is not only because of their
dynamics, but also due to joint friction, gear/chain backlash, and parameter
uncertainties. For robots with SEA, the compliant element can add another
source of nonlinearity, thus, posing an additional difficulty in obtaining an
accurate model.

In this contribution, a new hybrid identification technique is proposed in
the context of eSEA to obtain a hybrid model that combines a phenomeno-
logical gray-box model with a black-box model and to apply it in a 1 degree
of freedom (DOF) eSEA. The gray-box model is adjusted using experimental
data from the eSEA, and the black-box model, consisting of a NARX model,
is adjusted to describe the nonlinear error between the gray-box model and
the actuator data. The resulting hybrid model is capable of providing the de-
sired phenomenological insight with a compromise between complexity and
accuracy. Four cases are considered that differ in the modeling of the friction
force.

5.2
Case study

The case study consists of obtaining a dynamic model for an eSEA using
experimental data. The system was previously reported in [113] and is herein
shown in Figure 5.1a.

The link structure is made of 7075-T6 aluminum, which provides a good
relation strength-weight. The system is mounted with two identical CUI AMT
102 encoders with 8192 CPR resolution and a range of 7500 RPM. One is
responsible for measuring the motor position and the other for the link position.
The motor is a dual-axis DC brushless D5065/270KV with maximum torque
of 1.99 N · m. The eSEA is controlled using an open-source ODrive Robotics
board connected to a computer via a mini USB cable. The system is connected
to a Cophert CPS-6005 power supply. The Odrive board was set in the torque
control configuration in which the board controller is in closed-loop with the
motor. To safely operate the eSEA in order to obtain the experimental data,
a PD position controller was implemented, in an external loop, so that closed-
loop experiments could be performed. The tests were performed using a 55
Shore A compliant element [113] shown in detail in Figure 5.1b.

The design and development of the system presented in the case study
are the results of the research conducted in [114], which is currently in
the Laboratório de Desenvolvimento de Sistemas Mecatrônicos - LDSM at
Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio.
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(a) Assembled eSEA.

(b) Detailed view of the 55 Shore A compliant element.

Figure 5.1: Assembled eSEA including a detailed view of the 55 Shore A
compliant element.
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5.2.1
Data acquisition

Figure 5.2 presents the control flowchart, where τ is the torque signal;
δ and δ̇ the motor angular position and angular velocity; and θ and θ̇ the
link angular position and angular velocity. The PD position controller was
implemented in the computer using the Python programming language. The
communication was done throughout the ODrive board, as shown in the figure.
By defining a trajectory, i.e. an excitation signal to be followed by the link of
the eSEA, the controller generates the torque signal τ for the motor.

Figure 5.2: System control flowchart showing the signal flow between compo-
nents.

To perform the identification, the swept-sine signal was chosen as the
excitation signal. The swept-sine signal allows to excite the system with a
specified range of frequencies, and, therefore, to have a better picture of the
system’s dynamic behavior. Furthermore, for the validation process, due to
hardware limitations, a swept-sine signal was also used, but with a different
frequency range and amplitude. The swept-sine used in the identification
process has a frequency range varying linearly from 0.1 to 5 Hz, while
the validation data set frequency range varies linearly from 0.1 to 3.5 Hz.
Furthermore, the validation signal presents an initial phase shift of 180◦ in
relation to the identification signal.

The system input signal is the motor torque and the output is the link
angular velocity. The experimental data were recorded at a 500 Hz sample
rate and are presented in Figures 5.3 and 5.4, which contain the identification
and validation data, respectively. These figures not only do include the input
and output signal, but also their frequency spectrum showing the frequencies
that were excited during the experiment. In both, |F| represents the amplitude
of the signal’s discrete Fourier transform.
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Figure 5.3: Input and output signals used in the identification process and their
respective frequency spectrum showing the frequency range that was excited.
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Figure 5.4: Input and output signals used in the validation process and their
respective frequency spectrum showing the frequency range that was excited.

5.2.2
eSEA modeling

The series elastic actuator (SEA) is a type of actuator that has a com-
pliant element between the motor and payload, which brings some properties
such as intrinsic safety, low output impedance, passive mechanical energy stor-
age, and accurate force control. Figure 5.5 presents a schematic representation
of a SEA.

In this work, for the phenomenological model, it is considered that the
eSEA compliant element has linear elastic behavior. Furthermore, in order to
model the friction acting in the system, several friction models are considered,
including linear and nonlinear models.
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Figure 5.5: Series elastic actuator schematics.

Applying the Euler-Lagrange equations, the system’s equation of motion
in the matrix form in Eq. (5-1) is obtained, where Ke is the eSEA elastic
constant, J is the motor moment of inertia, I is the link moment of inertia
about the joint position, Ff

(
δ̇
)

is the friction force, δ is the motor angular
position, θ is the link angular position, and τ is the motor torque.J 0

0 I

 .

δ̈

θ̈

+
 Ke −Ke

−Ke Ke

 .

δ

θ

+
Ff

(
δ̇
)

0

 =
τ

0

 (5-1)

Separating Eq. (5-1) in relation to the generalized coordinates, it is
possible to obtain the equations of motion from the motor side, Eq. (5-2),
and from the load side, Eq. (5-3).

δ̈ = τ

J
+ Keθ

J
− Keδ

J
−

Ff

(
δ̇
)

J
(5-2)

θ̈ = Keδ

I
− Keθ

I
(5-3)

Defining the state vector as α =
[
δ̇ θ̇ δ θ

]T
and the input as τin = [τ ],

Eqs. (5-2) and (5-3) can be written in the form α̇ = f (α, τin) as follows:

α̇ =



τ+Keθ−Keδ−Ff(δ̇)
J

Keδ−Keθ
I

δ̇

θ̇

 (5-4)

5.2.3
Friction models

Throughout the years, many mathematical models were developed to
describe the friction phenomenon. For instance, in Marques et al. [115] a survey
and comparison are conducted on the friction models commonly employed in
dynamical systems. This work uses four different models to describe the friction
force Ff

(
δ̇
)
. The selected models are: Linear viscous friction; Coulomb friction

with stribeck effect; Dahl friction model [116]; and LuGre friction model [117].
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The simplest model is the Linear viscous friction model, represented by
Eq. (5-5), where fv is the viscous friction coefficient. This model assumes that
friction and angular velocity are linearly related.

Ffviscous
= fv δ̇ (5-5)

In this contribution, the Coulomb friction model is complemented by tak-
ing into consideration the stribeck effect. The model is presented in Eq. (5-6),
where fc is the Coulomb coefficient, fs is the static friction coefficient, and δ̇s

is the stribeck velocity.

FfCoulomb
= fv δ̇ +

[
fc + (fs − fc) e(δ̇/δ̇s)2]

sign
(
δ̇
)

(5-6)
The Dahl friction model considers the Coulomb friction with a delay due

to the pre-sliding stage. The friction force is defined by Eqs. (5-7) and (5-8),
where σ0 is the rigidity coefficient and z is an auxiliary variable that represents
the displacement in the pre-sliding stage.

FfDahl
= σ0z (5-7)

ż = δ̇

[
1 − σ0z

fc

sign
(
δ̇
)]

(5-8)

The LuGre friction model is an extension of Dahl’s model, which better
describes both static and dynamic friction characteristics [118]. The model is
described by Eqs. (5-9) and (5-10), where σ1 is the damping coefficient.

FfLuGre
= σ0z + σ1ż + fv δ̇ (5-9)

ż = δ̇

1 − σ0z

fc + (fs − fc) e(δ̇/δ̇s)2 sign
(
δ̇
) (5-10)

5.3
Proposed approach

This contribution proposes a novel hybrid model that combines a phe-
nomenological model, i.e., a gray-box model, with a NARX model, which is
described in Section 3.2. The hybrid is represented as a block diagram in Fig-
ure 5.6.

Four different friction models, described in Section 5.2.3, were tested.
Therefore, four gray-box models and four hybrid models were obtained, differ-
ing by the friction model employed in the eSEA modeling. The model known
parameters are presented in Table 5.1 and the unknown parameters are those
related to the friction models. The gray-box identification was performed using
the methodology described in Section 3.1.
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Figure 5.6: Block diagram of the proposed hybrid model.

Table 5.1: eSEA model parameters.

Parameter Value
I 0.0014 m4

J 0.0001 m4

Ke 8.459 N · m/rad

The identification of the NARX model was performed to predict the error
between the measured data and the gray-box model, as mentioned before.
The model considers the motor torque τ and the gray-box angular velocity
simulations θ̇ as inputs. Consequently, the NARX model can be represented
by the following equation:

ê (t) = F [ê (t − 1) , . . . , ê (t − nê) , τ (t − 1) , . . . , τ (t − nτ ) ,

θ̇ (t − 1) , . . . , θ̇ (t − nθ̇)]
(5-11)

where nê, nτ , and nθ̇ are, respectively, the model regression orders of the error,
the motor input torque, and the link angular velocity data.

The hybrid model output ω̂ is, then, the combination of the estimated
output of the gray-box model θ̇ with the estimated error of the NARX model
ê, as represented in Eq. (5-12):

ω̂ = θ̇ + ê (5-12)

5.4
Results

In the following, the results obtained in the application of the proposed
hybrid identification technique in the eSEA are presented. The first step is the
gray-box identification to obtain the phenomenological models of the system.
In the sequence, the black-box identification is performed to obtain a model
that describes the error between the gray-box model simulations and the
system data. A black-box model is identified for each gray-box model. The
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combination of both identified models results in the proposed hybrid model,
whose results are compared with the gray-box model. Finally, the models are
tested using the validation data in order to evaluate their performance with a
different dataset.

5.4.1
Gray-box identification

The gray-box identification was performed as described in Section 3.2
to obtain the phenomenological models of the eSEA. By this process, the
unknown parameters from the models are obtained, whose values are shown
in Table 5.2. Figure 5.7 contains the comparison between the gray-box models
and the experimental data.

Table 5.2: Estimated parameter values.

Linear Coulomb with Stribeck Dahl Lugre
fv 0.0100 0.0098 0.0046
fc 0.0089 0.0280 0.0089
fs 0.0011 0.4987
δ̇s 0.0075 1.0201 · 10−4

σ0 5.520 0.2263
σ1 0.0017

From the analysis of Figure 5.7 it is observed that the models followed the
system behavior with amplitude errors. Furthermore, the frequency spectrum
comparison shown in Figure 5.8 presents the range of frequencies in which the
gray-box models have the best fit and the offset error of the models indicated
by the difference of amplitude at 0 Hz frequency. The analysis of this figure
shows that the Dahl model has a higher offset error. This behavior affects the
model metrics presented in Table 5.4.

5.4.2
Hybrid gray and black-box identification approach

The black-box identification was performed in order to predict the gray-
box error, which is shown in Figure 5.9. It is possible to observe that the
error contains a high-frequency oscillation component. This high-frequency
component occurs because of the high-frequency oscillations presented in the
link angular velocity data, as shown in Figure 5.3, when the acceleration
changes its direction, i.e., the oscillations on the peaks and the valleys of the
graphic.

Several NARX models were tested, differing in the model order, the
number of hidden layers, and the number of neurons per layer. The range
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Figure 5.7: Result comparisons between the gray-box simulations and the
identification data showing that the models are capable of describing the
system behavior satisfactorily.

of parameter values tested is presented in Table 5.3. For all the cases, the
best results were obtained by the model with 4 hidden layers, 256 neurons per
layer, and model orders nê = 9, nτ = 6, and nθ̇ = 8, according to R2 metrics.
Figure 5.9 contains the comparison between the obtained NARX model free-
run prediction and the error data. As seen in the Figure, the NARX models
were able to adequately represent the complex behavior of the gray-box models
error.
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Figure 5.8: Frequency spectrum comparison between the gray-box simulation
and the experimental data showing the frequencies which the models fit best.

The proposed hybrid identification approach is applied by combining
the gray and black-box models as in Eq. 5-12. The comparison between both
models simulations – the gray-box model and the hybrid model, for each case –
and the eSEA data is presented in Figure 5.10. The results show that the hybrid
model was able to reduce the amplitude and offset errors. The same conclusion
was drawn from the analysis of the frequency spectrum comparison shown in
Figure 5.11, where it was possible to observe that the hybrid model obtained a
better fit throughout the range of frequencies analyzed. The metrics values for
the hybrid models are presented in Table 5.4, which summarizes the metrics
values obtained for each model for better analysis, and draws an accuracy
comparison between the gray-box and the hybrid model by the analysis of
MSE reduction. The results showed that the hybrid models present a MSE

up to 89% smaller than the gray-box models.
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Table 5.3: NARX neural network parameters values tested.

Parameter Range of values
Model order 1 ≤ nê, nτ , nθ̇ ≤ 10

Number of hidden layers 2 ≤ nlayers ≤ 6
Number of neurons per layer 8 ≤ nneurons ≤ 1024
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Figure 5.9: Comparison between the gray-box model error data and the NARX
model free-run prediction demonstrating that NARX models were able to
accurately predict the errors of the gray-box models.

Table 5.4: Model metrics comparison (Identification).

Model MSE R2 MSE reduction
Linear 3.3253 0.8989 84.91%hybrid model (Linear) 0.5018 0.9847

Coulomb with Stribeck 4.5041 0.8630 89.42%hybrid model (Coulomb) 0.4765 0.9855
Dahl 4.1782 0.8729 47.30%hybrid model (Dahl) 2.2018 0.9330

LuGre 1.7023 0.9482 60.95%hybrid model (LuGre) 0.6648 0.9798
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Figure 5.10: Result comparison between the gray-box simulations, hybrid
model simulations, and the identification data showing the enhanced accuracy
of the hybrid models.

5.4.3
Validation

In the validation process, the validation data is used to evaluate the
performance of the models identified in the previous sections over a different
data set. First, the performance of the gray-box models is evaluated, then,
the black-box models are used to predict the gray-box models error. Finally,
the results are combined to obtain the hybrid model simulations and then its
performance is compared with the gray-box model.
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Figure 5.11: Frequency spectrum comparison between the gray-box simulation,
hybrid model simulation and the identification data showing that the hybrid
model results in a better fitting for all the frequencies considered.

Figures 5.12 and 5.13 contain the comparison between the gray-box
model and the validation data in the time and frequency domain, respectively.
These figures show that the models followed the system behavior with ampli-
tude errors.

In the sequence, the NARX black-box models are used to predict the
gray-box models error. Figure 5.14 presents the comparison between the error
data and the NARX black-box model free-run simulation. Even though the
results are not as good as the ones obtained in the identification process, the
models were able to predict the error with considerable accuracy, except for
the case of the Dahl model, where the NARX model did not present a good
fitting.

Finally, both gray and black-box models are combined to obtain the
hybrid models simulations, which are presented in time and frequency domain
in Figures 5.15 and 5.16, respectively. These figures show that, even though
the NARX predictions are not as accurate as the ones with the identification
data, the hybrid model is still able to enhance the accuracy, except for the
Dahl case, as verified by analyzing the model metrics in Table 5.5.
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Figure 5.12: Result comparisons between the gray-box simulations and the
validation data showing that the models are capable of describing the system
behavior satisfactorily.

5.5
Results discussion

There are several advantages to using an elastomer-based compliant
element, including cost reduction. However, due to the compliant material,
some nonlinear behavior is expected under faster dynamics. This behavior was
observed in the higher frequency region of the experimental data. Moreover, in
addition to the compliant element nonlinear behavior, the eSEA may present
other sources of nonlinearities, such as friction and assembly misalignment.
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Figure 5.13: Frequency spectrum comparison between the gray-box simulation
and the validation data showing the frequencies which the models fit best.

Table 5.5: Model metrics comparison (Validation).

Model MSE R2 MSE reduction
Linear 1.3800 0.9229 61.26%hybrid model (Linear) 0.5346 0.9701

Coulomb with Stribeck 1.5279 0.8695 15.09%hybrid model (Coulomb) 1.2974 0.9059
Dahl 1.0859 0.9341 −27.20%hybrid model (Dahl) 1.3813 0.8933

LuGre 0.7609 0.9575 5.05%hybrid model (LuGre) 0.7225 0.9596

For the gray-box identification, the eSEA compliant element is considered
a linear elastic material, and four different friction models are used to model
the friction force acting in the system. Comparing the results in Figure 5.7,
it is observed that all the gray-box models result in similar simulations, a
fact also observed when comparing the results in the frequency domain in
Figure 5.8. The metrics presented in Table 5.4 show that the LuGre gray-box
model is the most accurate, followed by the Linear model, the Dahl model,
and the Coulomb model. Nevertheless, all the models metrics values are close.
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Figure 5.14: Comparison between the gray-box model error data and the
NARX model free-run prediction considering the validation data.

Therefore, depending on the application, the linear gray-box box model would
be a better choice for it is the simplest yet accurate, and may provide the
necessary physical information about the system. Based on the results, it
is possible to conclude that the error between the gray-box model and the
experimental data is mostly due to unmodeled nonlinearities.

To deal with the system unmodelled nonlinearities, a black-box identifi-
cation is performed in order to adjust a NARX model to predict the nonlinear
error of the gray-box models. The results, presented in Figure 5.9, showed that
the NARX model is capable of predicting the nonlinear error despite its com-
plex behavior, however, for the Dahl case the fitting was not as good as the
other cases.

Then, the proposed hybrid approach is applied by combining the models.
The resulting hybrid models accurately predict the system behavior, including
the nonlinearities associated with the compliant element behavior under fast
dynamics, as seen in Figures 5.10 and 5.11. The models accuracy can also be
evaluated from the analysis of the hybrid models metrics shown in Table 5.4,
which indicates that the hybrid models are up to 89% more accurate than the
respective gray-box models.
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Figure 5.15: Result comparison between the gray-box simulations, hybrid
model simulations, and the experimental data showing the enhanced accuracy
of most of the hybrid models.

Finally, the identified models are tested using the validation data. The
validation data consists of a swept-sine signal with different amplitude and
frequency ranges. As expected, the results were not as good as the ones
obtained with the identification data. However, the gray-box models were still
able to follow the system behavior but with an amplitude error as seen in
Figures 5.12 and 5.13. The metrics in Table 5.5 show that, for the validation
data, the LuGre model is the most accurate, followed by the Dahl model, the
Linear model, and the Coulomb model.
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Figure 5.16: Frequency spectrum comparison between the gray-box simulation,
hybrid model simulation and the experimental data showing that the hybrid
model results in a better fitting for all the frequencies considered, with the
exception of the Dahl model.

The NARX models free-run simulations were performed to predict the
gray-box validation error. The NARX models were able to predict the vali-
dation error with considerable accuracy, as presented in Figure5.14. The ex-
ception is the case of the Dahl model for which the selected architecture was
not able to satisfactorily predict the error. The hybrid simulations for the val-
idation data are obtained by combining the gray and black-box simulations.
The results presented in Figures 5.15 and 5.16 and Table 5.5 show that the
hybrid model is able to increase the model accuracy in the majority of the
cases. In fact, the Linear and LuGre models present an R2 coefficient greater
than 0.95, with a highlight for the linear model with R2 = 0.9701, and 61.26%
more accurate than the gray-box model. This level of accuracy and the physi-
cal information provided by the hybrid models make them suitable to be used
in the construction of a digital twin of the eSEA.

The validation results showed that, when considering only the gray-
box model, the more accurate model is the LuGre, followed by the Dahl,
Linear, and Coulomb models. This indicates that the first two models are

DBD
PUC-Rio - Certificação Digital Nº 2012370/CA



Chapter 5. Hybrid gray and Black-box Nonlinear System Identification of an
Elastomer Joint Flexible Robotic Manipulator 69

capable to address some of the nonlinearities of the system, and, therefore
are more accurate. However, when the ensemble models are considered, the
Linear model is the more accurate, followed by the LuGre, Dahl, and Coulomb
models. The author interprets it as nonlinearities contained in the LuGre and
Dahl models errors are not completely addressed by the black-box model
as the nonlinearities in the Linear model error, i.e., the NARX model have
better results in estimating the nonlinearities of the system than correcting
the nonlinearities estimations of the gray-box model. Furthermore, the Author
highlights the Dahl model case where the NARX model was not able to predict
the error, causing an increase of the MSE value, as shown in Table 5.5.

It is important to notice that the proposed approach does not limit the
choice of the model for the gray-box identification, i.e., any desired model
can be used, including nonlinear models. The desired physical information
of the system will bound the model choice. Moreover, another important
characteristic of the proposed hybrid model is that most of the nonlinearities
that are not considered in the gray-box model are addressed in the black-box
model.

In fact, the main objective of this article is to prove the effectiveness
of models that combine gray and black-box models and actually show, with
original experimental data, that the proposed approach leads to better results
in terms of predictive capability while maintaining model interpretability.
The method proposed is focused on providing the necessary phenomenological
information with enhanced accuracy. The choice of the black-box NARX neural
network was based on the author’s previous experience and its wide adoption
by the system identification community since the 90s [119]. The results have
shown the capabilities of the NARX-NN in predicting the errors of most of
the models, despite the well-known artificial neural networks sensitivity to
over-fitting. However, those results have also shown that there is room for
improvements, i.e., probably there is an architecture that will provide better
results, but the author could not find it considering the time-consuming process
of training a neural network.

Moreover, despite the results obtained in this paper, it is not possible to
affirm that the ANN is the best choice, nor other machine learning models as
stated by the no-free lunch theorems [120, 121]. Testing these and other models
applicable to identification problems could be the subject of future work.
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5.6
Summary

This contribution aims to propose a novel hybrid model approach to be
applied in the modeling of an eSEA. The proposed hybrid models combine a
gray-box model with a black-box NARX model. The gray-box model provides
phenomenological insights into the system, while the NARX model is respon-
sible for dealing with unmodelled nonlinearities. The results showed that the
obtained hybrid models are capable of accurately predicting the eSEA behav-
ior, while providing the desired physical information, making them suitable to
be used in the construction of a digital twin.

Furthermore, the proposed approach is flexible in a sense that it allows
the choice of any desired model for the gray-box identification, including
nonlinear models. The choice is only bounded by the required information
of the system. Consequently, its application can be extended to other dynamic
systems [122].
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6
A hybrid gray and black-box artificial neural network friction
identification of robotic actuators

There is a growing interest in data-driven models with machine learning
for modeling and control in the context of system identification. Researchers
have recently found ways to blend physical knowledge into purely data-
driven modeling, in order to further improve model quality for analysis and
simulation. The present work proposes a novel hybrid model that combines
phenomenological gray-box models with black-box artificial neural networks
in the context of viscous friction modeling for manipulators. It can provide
desired physical insight while enhancing accuracy by addressing unknown
nonlinearities in a two-stage procedure. Firstly the nonlinear state-space gray-
box model is obtained, and later an artificial neural network is inserted into
the state-space model to compensate for unknown friction terms. The proposed
hybrid combined approach is successfully applied to real-world data, being up
to 48% more accurate than the phenomenological model in terms of mean
squared error considering the validation data.

6.1
Problem Definition

Dynamic models are crucial in most engineering applications, such as
design optimization, control synthesis, fault detection, and other simulation
applications. However, obtaining an accurate dynamical model can be a quite
difficult task due to system nonlinearities and parameter uncertainties [123].
Hence, over the years, numerous works on system identification have been
conducted to fulfill that need, as can be seen in [124].

This contribution proposes a novel hybrid identification method that
combines a gray-box model with a black-box model. Specifically, a phenomeno-
logical model, which contains all the physical information desired about the
system is combined with an RBFNN used to address the unmodeled nonlinear-
ities, which are considered as a friction force. The resulting model can provide
both physical insight and accuracy while maintaining interpretability, desir-
able characteristics for a DT. The proposed methodology is applied in the
identification of an Electromechanical Positioning System (EMPS) [125].
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Figure 6.1: EMPS identification data [125].

6.2
Case Study

The EMPS is a standard actuator configuration commonly used in
prismatic robotic joints and machine tools and it is described in detail in
[125] whose authors kindly made the data available.

The system input signal is the motor torque τ and the output signal is
the motor position expressed in the load side qm. The datasets used in the
identification and validation processes are the same ones presented in [125],
and are shown in Figures 6.1 and 6.2, respectively. For more details about the
system one shall recall to [125].

6.2.1
Electromechanical Positioning System

The EMPS is a relatively simple component and its dynamical equations
can be obtained by applying Euler-Lagrange laws. Eq. (6-1) shows the dynamic
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Figure 6.2: EMPS validation data [125].

equation of the EMPS, which takes into consideration the offset effect:

Mÿ = τ − Ff (ẏ) − offset (6-1)
where M is the system mass; Ff is the friction force; and y, ẏ and ÿ are the
motor position, velocity, and acceleration, respectively.

For the friction force, it is considered that the system is subjected to a
viscous friction force and a symmetrical Coulomb friction force. Therefore, the
friction force equation is:

Ff (ẏ) = fvẏ + fcsign (ẏ) (6-2)
where fv and fc are, respectively, the viscous and the Coulomb friction
coefficients. Defining the state vector as y = [y ẏ]T and the input as h = [τ ],
the dynamic equation (6-1) in the state-space form is ẏ = f (y, h) and is
presented as follows:
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ẏ =
 ẏ

τ−fv ẏ−fcsign(ẏ)−offset
M

 (6-3)

6.3
Proposed Approach

This contribution proposes a model with a hybrid architecture that com-
bines a phenomenological gray-box model with a nonlinear friction RBFNN.
The objective is to address the nonlinearities not modeled by the gray-box
model as a nonlinear friction force modeled as an RBFNN. Therefore, the first
step is to perform the gray-box identification to obtain the parameters of the
phenomenological model. In this model, the unknown parameters are the sys-
tem mass M , the viscous friction coefficient fv, the Coulomb friction coefficient
fc, and the system offset.

In the sequence, The EMPS dynamic equations are modified to include
the RBFNN, reminding that the parameters M , fv, fc, and offset are
determined in the gray-box identification process:

Mÿ = τ − Ff (ẏ) − Frbf (ẏ) − offset (6-4)
The RBFNN for the case study is presented in Figure 6.3. Thus, the

nonlinear friction force Frbf is calculated as follows:

Frbf =
m∑

k=1
wiϕ (ẏ (t) , ci, σi) (6-5)

where ci and σi are, respectively, the centers and the width of ith hidden node,
wi is the output weight, and m is the number of hidden nodes. The Gaussian
activation function is used as ϕ (·):

ϕ = exp

[
−(ẏ (t) − ci)2

2σ2
i

]
(6-6)

The black-box identification is performed in order to determine the
RBFNN parameters, namely, ci, σi, and wi, given that different numbers of
hidden nodes were tested. Notice that, the black-box identification is similar to
the gray-box identification, thus, the same approach is used, i.e., to determine
the network parameters, an optimization problem was solved using the method
described in Section 3.1.

6.4
Results

In the following, the results obtained by applying the proposed approach
to the EMPS are presented. Firstly, the gray-box identification is performed to
obtain the phenomenological model, and then, using the parameters obtained
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Figure 6.3: RBFNN schematics for the case study.

in the gray-box identification, the model shown in Eq. (6-4) is used to perform
the black-box model identification where the RBFNN parameters are adjusted.
With both models, it is possible to derive the hybrid model, whose metrics are
compared with the gray-box model in order to assess the improvements that
can be achieved. Finally, the models are evaluated using the validation data
to verify the performance of the models using a different dataset. These steps
are detailed in the following.

6.4.1
Identification

First, the gray-box identification was performed to obtain the unknown
parameter of the model represented in Eq. 6-1. For the case study, the
parameters searching intervals are presented in Table 6.1, which were based
on the research presented in [125]. The unknown parameters obtained by this
process are shown in Table 6.2 and the model metrics in Table 6.3.

Table 6.1: Models parameters searching interval.

Searching interval

Gray-box

30 ≤ M ≤ 150
100 ≤ fv ≤ 300

0 ≤ fc ≤ 40
−15 ≤ offset ≤ 15

RBFNN
−1 ≤ ci ≤ 1

0.01 ≤ σi ≤ 1
−100 ≤ wi ≤ 100
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The gray-box model metrics show that the model can be considered
accurate, considering its small value of MSE and the R2 near 1. These results
show that the gray-box identification method used was able to adjust the
chosen dynamic model reasonably, which explains most of the EMPS physics.
As shown next, it is still possible to further improve the model by adding more
terms in the viscous friction terms.

Table 6.2: Gray-box model parameters.

Parameter Values
M 95.4520 kg
fv 214.9261 N · s/m
fc 19.3607 N · s/m

offset −3.2902 N

The proposed hybrid dynamic model is presented in Eq. (6-4) where an
RBFNN is used to model a nonlinear friction force whose objective is to address
the unmodeled nonlinearities. The black-box identification aims to adjust the
RBFNN parameters bearing in mind that the gray-box parameters presented
in Eq. (6-4) were already tuned. The black-box term in the model is added
thus to improve the simulation capabilities of the model by adjusting the black-
box model related parameters in an open-loop simulation using the nonlinear
hybrid state-space model. The range of the model’s free parameters is presented
in Table 6.1. For the sake of comparison, several RBFNNs were identified,
differing only by the number of nodes, for which the values Nneu = 4, 8, 16, 32
were tested.

The quantitative metrics for the hybrid model are presented in Table 6.3,
where the hybrid model MSE reduction is also presented, in percentage, when
compared to the gray-box model. The MSE reduction is used to evaluate the
accuracy increase when adopting the strategy herein proposed.

Table 6.3: Model Metrics (Identification).

Model MSE R2 MSE reduction
Gray-box 0.0049 0.9965

Hybrid - 4 nodes RBFNN 0.0036 0.9981 26.3111%
Hybrid - 8 nodes RBFNN 0.0036 0.9981 26.7965%
Hybrid - 16 nodes RBFNN 0.0036 0.9981 26.4054%
Hybrid - 32 nodes RBFNN 0.0037 0.9980 25.4198%

Comparing the metrics presented in Table 6.3 for the identification
process, it is possible to observe that the hybrid models show similar metrics,
with the model with 8 nodes presenting the highest MSE reduction. This
indicates that the RBFNN architecture has a limit to which extent it can
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improve the gray-box model quality, as increasing its complexity does not
imply further increasing model quality in the validation phase. Moreover, even
though the gray-box model is considered quite accurate, as the R2 metrics
show, the proposed hybrid models can further increase the accuracy by more
than 26%.

Considering that a dynamic model should ideally present a compromise
between complexity and accuracy, the suitable choice among the hybrid models
is the one with 4 nodes, for it provides accuracy increasing with the simplest
architecture.

6.4.2
Validation

The goal of the validation process is to test whether the identified model
can predict the system’s dynamic behavior using a different input/output
dataset than the one used for training. All the models were tested, and their
metrics are presented in Table 6.4 with the best hybrid model found in the
previous section.

Table 6.4: Model Metrics (validation).

Model MSE R2 MSE reduction
Gray-box 0.0069 0.9930

Hybrid - 4 nodes RBFNN 0.0036 0.9982 48.5478%
Hybrid - 8 nodes RBFNN 0.0035 0.9982 48.8818%
Hybrid - 16 nodes RBFNN 0.0035 0.9982 48.6024%
Hybrid - 32 nodes RBFNN 0.0036 0.9980 47.9066%

From the analysis of the validation metrics, one can noticed that the gray-
box model presents an MSE 40.82% greater, which also affects the value of the
R2 coefficient, even though it is still above 0.9. However, when the metrics of
the hybrid models are analyzed, the values are similar to the ones obtained in
the identification process. Once again, the metrics of the hybrid models have
similar values. For all the hybrid models, the MSE reduction is around 48%,
with the model with 8 nodes presenting the greatest MSE reduction. As in
the identification stage, taking into consideration the necessary compromise
between accuracy and complexity, one would choose the model with 4 nodes,
for it presents both desired characteristics. The comparison between the EMPS
data and the 4-node hybrid model simulations is presented in Figure 6.4.

The analysis of Figure 6.4 allows the verification of the model accuracy,
which confirms the metrics shown before. An accuracy comparison between
the gray-box and hybrid models can be drawn from Figure 6.5, which contains
the absolute value of the models’ errors. The more close to zero the error curve

DBD
PUC-Rio - Certificação Digital Nº 2012370/CA



Chapter 6. A hybrid gray and black-box artificial neural network friction
identification of robotic actuators 78

0 5 10 15 20 25

Time [s]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

M
o
to

r 
p
o
si

ti
o
n
 [

m
]

Hybrid RBFNN EMPS data

Figure 6.4: Result comparison between the hybrid model with 4 nodes and the
EMPS validation data showing the model enhanced accuracy.

is, the more accurate the model is. In this figure, it is possible to observe that,
on average, the hybrid model’s absolute error is closer to zero, confirming its
accuracy improvement. The same conclusion can be drawn by the raincloud
plot of the error in Figure 6.6, where it is observed the distribution density
of the hybrid model error is concentrated near zero. However, in Figure 6.6,
notice that, even though the hybrid model has improved the error distribution,
it is not a Gaussian distribution, which indicates that the dynamic model can
still be refined.

In order to compare the influence of each model in the proposed hybrid
model, the gray and black-box friction force curves were plotted in Figure 6.7,
i.e., the curve of Ff , defined in Eq. (6-2), and Frbf , defined in Eq. (6-5), are
plotted over time. Figure 6.7 shows that the influence of the gray-box friction
is greater than the black-box friction, though sufficient to considerably reduce
the final error metric. It is interesting to note that, depending on the amplitude
of the velocity, the RBFNN reduces or increases the final viscous friction.

The friction force curves of each model were also plotted over velocity,
i.e., the gray-box model friction force (Ff ) and the hybrid model friction force
(Ff +Frbf ). Figure 6.8 shows this comparison, from which is possible to observe
that the black-box friction influence is greater around 0m/s, i.e., when the
velocity changes its signal. It is also where the Coulomb friction discontinuity
is placed. Although the black-box friction is smaller than the gray-box, and
its influence is not limited to this region, it is sufficient to compensate for the
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Figure 6.5: Comparison between the absolute value of the gray-box model
and the hybrid model from which it is possible to observe the accuracy
improvement.

effect of the Coulomb model’s discontinuity. Furthermore, it is observed that
the hybrid model friction force presents an unsymmetrical curvature, which
indicates that there is a difference in friction depending on the velocity signal.

6.5
Discussion

The EMPS is a system extensively used in the industry in the construc-
tion of robotic manipulators and machine tools, which has challenging friction
characteristics. It has been tested on other modeling approaches [126–129].
The dataset is thus used in this work as a benchmark for nonlinear systems,
whose complexity may be extended to other case studies.

For the gray-box identification process, the model choice was based on
the work of [125], which considers that the friction acting in the system can be
modeled as a combination of viscous and Coulomb friction. The identification
method based on the multiple shooting algorithm was able to adjust the model
parameters, obtaining an accurate gray-box model with R2 = 0.9965, which
provides phenomenological insight into the EMPS.

On the basis of the parameters obtained in the gray-box identification,
it is proposed a hybrid model, defined in Eq. (6-4), which contains a nonlinear
friction force modeled as an RBFNN whose objective is to address the
unmodeled nonlinearities. The black-box identification built with multiple
shooting is performed for RBFNNs with varying complexity. The metrics in
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Figure 6.6: Raincloud plot of the gray-box and hybrid model errors.

Table 6.3 show that all the hybrid models presented an MSE reduction higher
than 26%. This indicates that although the gray-box model is accurate, the
proposed hybrid model was able to increase the accuracy.

The models were also validated using a different dataset. The metrics
presented in Table 6.4 show that for the gray-box model, there is an increase
in the MSE and consequently a reduction of the R2 value when compared with
the data on Table 6.3. However, the hybrid models present metrics with values
similar to the ones obtained in the identification stage. Therefore, the hybrid
models presented an MSE reduction higher than 48% when compared to the
gray-box model for the validation data.

The aforementioned results showed that the gray-box method chosen
was able to adjust a phenomenological model capable of describing most of
the system physics, given its accuracy, which can be accessed from its metrics.
The proposed hybrid model was able to increase the accuracy by over 26% in
the identification process and 48% in the validation process. Moreover, the
hybrid model’s metrics do not show significant changes in values between
identification and validation, thus indicating that the hybrid model in fact
was able to generalize well the unmodelled nonlinearities, at least the ones
excited by the used dataset.

Notice that, in the proposed hybrid identification method, the gray-
box identification is performed first to guarantee the best fit between the
system data and the gray-box model simulations, thus ensuring the model
phenomenological insight. Then, to address the unmodelled nonlinearities,
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Figure 6.7: Comparison between the gray-box friction Ff and the black-box
friction Frbf from which is possible to infer their influence in the resulting
hybrid model.

the black-box identification is performed. it is possible to verify this not
only by the models’ metrics in Tab 6.4 and Figures 6.5 and 6.6, but also
by the friction force curves in Figures 6.7 and 6.8, where it is possible to
evaluate the influence of each model in the system dynamics. Consequently, the
proposed methodology provides a model with the characteristics of enhanced
accuracy and interpretability that keeps a compromise with mathematical
complexity. These are the desired characteristics of a dynamical model that
would compose a DT. However, Figure 6.6 indicates that there is still a
possibility for improvement. Several strategies can be employed to improve
the model e.g. to use a richer signal that excites a wider range of frequency in
the identification; and to use a different combination of models, i.e. gray-box
models with different friction models and other black-box approaches such as
SVM.

Additionally, the method herein presented may be further extended to
other problems involving hybrid representations with machine learning and
physics-based dynamic models. Such a concept is important, however, they
are currently quite difficult to implement and simulate as done here. The use
of modern deep or machine learning is still not straightforward to integrate
with gray-box nonlinear state-space models as proposed. The reason is that,
in order to create a physical model prior to model, one needs to encode
such equations, which actually depend on the model characteristics. Yet,
perhaps the greater difficulty is integrating modern black-box libraries to learn
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Figure 6.8: Friction force comparison over velocity, from which it is noticed
the influence of the RBFNN friction over the region under influence of the
Coulomb friction discontinuity.

unmodeled dynamics, as the learning process actually depends on a simulation.
So the model should be built according to input and outputs that depend on
each other due to the numerical integration, which turns the identification
problem remarkably more difficult than a regular regression task.

Another aspect of the modeling paradigm that should be noted is that
it is not always straightforward to define in which terms to add the black-
box portion to the nonlinear state-space model. In the present example, the
author knows that nonlinear friction is a disputed topic [130] and has thus
decided to complement it by learning its shape directly from the data, which
is nontrivial. However, that was forced by adding the black-box term to the
acceleration equation and dependent on the velocity, which is quite typical in
friction modeling. At the same time, some terms in the state-space should not
be changed so as to maintain causality, as the equation related to the velocity,
which is the derivative of position. Thus, it is necessary to add black-boxes
where they might fit well in a complementary element to phenomenological
modeling that does not create inconsistencies.

In spite of the difficulties and challenges discussed herein, the author
hopes to motivate the use of hybrid models and the creation of toolboxes that
are able to cope more easily with such problems, as the results show great
improvement of the physics-based models by adding a black-box layer to the
model without compromising interpretability.
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6.6
Summary

Physics-based models have led to advances across engineering applica-
tions. However, numerical approximations or simplifications regarding a dy-
namic system may lead to a significant deviation from the measured data.
Thus, the discrepancies between measured and predicted data occur even in
systems where the mathematical representation is assumed to be well-known.
Therefore, to cope with these problems, this paper proposes a novel hybrid
identification approach combining a gray-box model with a black-box RBFNN.
The gray-box model provides phenomenological information about the system
in the proposed hybrid model. At the same time, the RBFNN architecture
addresses the unmodeled nonlinearities.

The results demonstrated that the hybrid models have the potential to
1) accurately predict EMPS behavior while providing the desired physical
information. These characteristics make the proposed approach suitable for
constructing a DT; 2) be flexible, considering that it allows the choice of any
desired model for the gray-box identification, bounded only by the required
information of the system.
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7
Conclusions

This thesis aims to propose a hybrid identification approach where a gray-
box model and black-box model are combined in order to obtain a dynamic
model with the characteristics of enhanced accuracy and interpretability that
keeps a compromise with mathematical complexity. These characteristics make
such models interesting for the construction of a DT.

The results obtained from experimental data in all the contributions al-
low an overall conclusion that the obtained models hold the aforementioned
characteristics, ergo, proving the efficiency of the proposed approach. Here-
after, the specific conclusions are addressed.

The first contribution aimed to model the vertical dynamics of a Toyota
Hilux RWD using the data from the vehicle acquired during the transposition
of a type-A bump. Therefore, a novel nonlinear hybrid half-car model for
a vehicle’s vertical dynamics is proposed through a hybrid identification
technique that integrates gray-box and black-box identification. The proposed
technique comprises three steps: firstly, adjusting the parameters of the half-car
model through gray-box identification; secondly, obtaining a NARX model for
the nonlinear error of the half-car model through black-box identification for
each of the two chassis’ degree of freedom; and finally, combining the models
to form a hybrid model. The proposed method and resulting hybrid model
are validated using experimental data, and the results demonstrate that the
hybrid model fits the vehicle’s data better than the linear half-car model,
while remaining accurate and simple. Moreover, the proposed methodology
successfully obtains a simple and accurate model for the vehicle’s vertical
dynamics using data from two chassis’ degrees of freedom obtained by a single
IMU. To this date, to the best of the knowledge of the author, there is no
research on the application of hybrid models in vehicle vertical dynamics, and
the results obtained encourage further research where other gray and black
box combinations may be tested.

In the second contribution, the objective was to model an eSEA using
experimental data. To fulfill this objective, a hybrid model approach for mod-
eling an eSEA is proposed. The approach combines a gray-box model with
a black-box NARX model, providing both phenomenological insights and the
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ability to handle unmodelled nonlinearities. The hybrid models accurately pre-
dict eSEA behavior and provide the desired physical information, with some
models performing better than others. Additionally, the proposed approach is
flexible and allows for the selection of any desired model for gray-box identi-
fication, including nonlinear models, limited only by the required information
of the system. Therefore, the approach has the potential to be applied to other
dynamic systems. Furthermore, the results have shown that there is still room
for improvement and the approach flexibility should be tested over other ma-
chine learning techniques.

The third contribution objective was to model an EMPS system, which is
a well-known benchmark for nonlinear modeling due to its challenging friction
characteristics. Therefore, a hybrid modeling approach is applied to model
the referred system. Physics-based models are the foundation stone of many
advances in engineering applications, however, numerical approximations or
simplifications of dynamic systems may result in significant deviations from
measured data. To address this, we propose a novel hybrid identification
approach that combines a gray-box model with a black-box RBFNN. The gray-
box model provides phenomenological information about the system, while
the RBFNN architecture addresses unmodelled nonlinearities. The results
demonstrate that the proposed hybrid models have the potential to accurately
predict EMPS behavior while providing the desired physical information. The
approach is also flexible, allowing for the selection of any desired model for
gray-box identification, limited only by the required information of the system.
This approach differs from the other in a sense that the black-box model is
inserted in the phenomenological model equations as nonlinear viscous friction,
thus encouraging further research toward other hybrid model architectures.

Finally, regarding all the hybrid model structures proposed in this Thesis,
notice that for the gray-box identification we have used an optimization
approach based on the multiple shooting algorithm, which has shown to be
able to deal with the ill-posed optimization problem defined by the gray-box
identification. In addition, two different black-box models were used in this
work, both based on artificial neural networks, namely, NARX neural network
and RBFNN. The choice of neural network was based on the author’s previous
experience and its wide adoption by the system identification community,
however, it may be sensible to overfit. Therefore, in the light of the herein
obtained results, the method presented in this Thesis may be further extended
to other problems involving hybrid representations with machine learning and
physics-based dynamic models.
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Future Works

From all results and discussions of each contribution, it is possible to
suggest some future possible researches that may be conducted from those
herein presented.

Regarding the application of hybrid models in vehicle systems, future
research possibilities may include applying the proposed method in vehicles
with more complex suspension systems, such as magnetorheological suspen-
sion, evaluating the hybrid model’s performance, and applying it to the control
synthesis of an active suspension system. Furthermore, currently, the method
is focused on the half-car model, therefore, a possible expansion for a full-car
model would consider more degrees of freedom, expanding the applicability
of the method. In addition, in this work, the application of the methodology
was focused on the vehicle vertical dynamics, therefore, future research may
address the application of the methodology in the lateral dynamics, similarly
to what was done in [131]. From lateral dynamics, it is possible to expand the
applications to trajectory control.

Related to the second contribution, considering its application in
robotics, future research can be focused on the application of the proposed
methodology in SEA manipulators with more degrees of freedom, which can
lead to the use of the hybrid model in the synthesis of an MPC trajectory
control. Furthermore, different combinations of models can be tested, as the
black-box approach enables different modeling paradigms than the ones pro-
posed here [132].

The third contribution is also related to the field of robotics. Therefore,
future work may focus on the application of the proposed methodology in other
types of actuators with challenging friction characteristics such as hydraulic
actuators. Moreover, the method proposed in the third contribution may also
be used in the modeling of eSEA, however, focused on the compliant element
nonlinear elasticity.
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