Título: | FLEXURAL BEHAVIOR OF I-SECTION TEXTILE REINFORCED CONCRETE BEAMS | ||||||||||||
Autor: |
KISSILA BOTELHO GOLIATH |
||||||||||||
Colaborador(es): |
DANIEL CARLOS TAISSUM CARDOSO - Orientador FLAVIO DE ANDRADE SILVA - Coorientador |
||||||||||||
Catalogação: | 22/AGO/2022 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60285&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60285&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.60285 | ||||||||||||
Resumo: | |||||||||||||
The present research aims to perform an experimental investigation on the short and
long-term flexural behavior of I-section textile reinforced concrete (TRC) beams.
Four types of carbon fabric were used, differentiated by the mesh dimensions and
yarn cross-section, as well as by the fabric coating. The samples were identified
according to the name of the coating, being styrene butadiene rubber (SBR) and
SBR impregnated with sand (SND), acrylate (ACR) and epoxy (EPX) resin.
Initially, four‐point bending tests were performed in I‐beams, considering SBR
fabric and the following conditions: (a) plain cementitious matrix; (b) plain matrix
and sand‐coated textile; and (c) strain hardening cement‐based composite (SHCC)
matrix. The main goal was to correlate the improvements on interface and matrix
properties with the crack pattern, failure mode and ductility. A theoretical method
was used to evaluate the flexural behavior of the beams and good agreement was
achieved with the experimental results. In the next step, the mechanical properties
of different types of carbon-TRC and their interface were studied through direct
tensile, pullout and compression tests. The influence of different test configurations
and the effectiveness of the parameters obtained in these tests were verified for the
performance prediction of TRC beams tested in bending in a monotonic way. The
study was able to indicate the most suitable characterization methods to derive
mechanical properties to be used in analytical methods, as well as to show the
influence of different testing parameters on the load capacity of the composite.
Finally, the long-term behavior of I-section beams reinforced with carbon fabric
under sustained loading of 4 kN was investigated. An analytical model was used to
analyze the results in terms of effective textile moduli, concrete tensile strength and
the nominal bond stress. The model showed that SBR textile is strongly affected by sustained load. SND, ACR and EPX beams formed new cracks during creep and
the reduction in effective modulus observed was not accompanied by increase in
crack width. It was confirmed the great influence of adhesion between fabric and
matrix on the load capacity of the composite, the decrease in matrix strength due to
fabric incorporation, as well as the divergence of the conditions of composite
characterization tests.
|
|||||||||||||
|