Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THERMOMECHANICAL ANALYSIS OF DAMAGE IN QUASE-BRITTLE MATERIALS
Autor: ILAMES JORDAN GAMA DE MORAES
Colaborador(es): DEANE DE MESQUITA ROEHL - Orientador
ELEAZAR CRISTIAN MEJIA SANCHEZ - Coorientador
Catalogação: 19/ABR/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58658&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58658&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.58658
Resumo:
Predicting the behavior of almost brittle materials in face of material degradation up to fracture is a topic that can be addressed with the use of continuous damage mechanics. Thermal effects, in addition to mechanical ones, may contribute significantly to the structural and material response. In this sense, the coupling between the different branches of physics takes into account the free conversion of energy in its various forms. The present work is about the thermal-mechanical coupling in in quasi-brittle materials, in which the isotropic damage model and the damage criteria are addressed, as well as the laws of evolution of thermal and mechanical damage. In addition, aspects inherent to thermodynamics and heat transfer are explained. The thermal effect in the structural analysis begins with an investigation of the requirements for temperature variations to produce thermal stresses and follows with a study of the effect of temperature on the material, which affects the elasticity module, the tensile and compression strength, in addition to the fracture energy. However, finite element modeling of stiffness degradation due to the damage process leads to problems of dependence on the mesh, which requires the use of regularization techniques, as addressed in this work. Numerical examples demonstrate the effects of thermo-mechanical coupling in the assessment of structure integrity.
Descrição: Arquivo:   
COMPLETE PDF