Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: TUNING INFERENCE THROUGH ONDBTUNING
Autor: LUCIANA DE SA SILVA PERCILIANO
Colaborador(es): SERGIO LIFSCHITZ - Orientador
Catalogação: 11/ABR/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58605&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58605&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.58605
Resumo:
OnDBTuning is a relational database (semi-automatic) tuning ontology. Ontologies are artifacts that represent specific domain knowledge and can be used to infer knowledge. However, in general, most applications include only a formal and static description of concepts. Moreover, as database tuning involves many rules-of-thumb and black-box algorithms, it becomes challenging to describe these inference procedures. This research work first presents the OnDBTuning ontology solution focusing on the inference of tuning actions. Next, it proposes an implementation of the OnDBtuning rules using SPARQL Inferencing Notation (SPIN). Finally, it shows a practical evaluation of our solution concerning index and materialized views recommendations.
Descrição: Arquivo:   
COMPLETE PDF