Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: A FRAMEWORK TO AUTOMATE DATA SCIENCE TASKS THROUGH PERSONALIZED CHATBOTS
Autor: JEFRY SASTRE PEREZ
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
MARX LELES VIANA - Coorientador
Catalogação: 31/JAN/2022 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57219&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57219&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.57219
Resumo:
Several solutions have been created for automating specific data science scenarios and implementations of personalized content in conversational interfaces. However, the overall understanding of these conversational interfaces that provide personalized suggestions for data scientists is still poorly explored. We identify the need to automate data science procedures up to different levels of automation. Our research focuses on helping data scientists during the automation of these procedures by using conversational interfaces. We propose a framework for creating a chat-bot system to facilitate the automation of data science common scenarios. In addition, we instantiate the framework in two different data science scenarios. The first scenario focuses on outlier detection, and the second scenario on data cleaning. We conducted a study with 28 participants to demonstrate that data scientists can use the proposed framework. All participants completed the activities correctly, and 75 to 80 percent found the framework relatively easy to extend and use. Our analysis suggests that the use of conversational interfaces can facilitate the automation of data science tasks.
Descrição: Arquivo:   
COMPLETE PDF