
Jefry Sastre Pérez

A Framework to automate data science tasks
through personalized chatbots

Tese de Doutorado

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor : Prof. Helio Cortes Vieira Lopes
Co-Advisor: Dr. Marx Leles Viana

Rio de Janeiro
November 2021

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Jefry Sastre Pérez

A Framework to automate data science tasks
through personalized chatbots

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee:

Prof. Helio Cortes Vieira Lopes
Advisor

Departamento de Informática – PUC-Rio

Dr. Marx Leles Viana
Co-Advisor

Pesquisador Autônomo

Profa. Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Prof. Bruno Feijó
Departamento de Informática – PUC-Rio

Prof. Luiz André Portes Paes Leme
UFF

Prof. Marcos de Oliveira Lage Ferreira
UFF

Prof. Cassio Freitas Pereira de Almeida
ENCE

Prof. Marco Antonio Casanova
Departamento de Informática – PUC-Rio

Rio de Janeiro, November 19th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

All rights reserved.

Jefry Sastre Pérez

The author graduated in Computer Science from the Uni-
versity of Havana in 2015. In 2018, he obtained his master’s
degree in Computer Science at PUC-Rio. He has an interest in
Data Science, Machine Learning, and Software Engineering.

Bibliographic Data
Sastre Pérez, Jefry

A Framework to automate data science tasks through
personalized chatbots / Jefry Sastre Pérez; advisor: Helio
Cortes Vieira Lopes; co-advisor: Marx Leles Viana. – 2021.

78 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2021.

Inclui bibliografia

1. ciencia de dados. 2. automação de processos. 3. engenharia
de software. I. Cortes Vieira Lopes, Helio. II. Leles Viana,
Max. III. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Acknowledgments

In the first place, to my advisors, Hélio Lopes and Max Vianna, for the
opportunity, confidence, creativity, passion, and dedication to the research and
the valuable teachings through this period. To my colleagues for providing me
an exceptional environment and spirit. Also for their friendship and will to
contribute to this work.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Finally, I
would like to thank Conselho Nacional de Desenvolvimento Científico e Tecno-
lógico (CNPq), for partially financing this research under grant #140685/2018-
9.

For you all, my sincere thank you!

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Abstract

Sastre Pérez, Jefry; Cortes Vieira Lopes, Helio (Advisor); Leles
Viana, Max (Co-Advisor). A Framework to automate data
science tasks through personalized chatbots. Rio de Janeiro,
2021. 78p. Tese de Doutorado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Several solutions have been created for automating specific data science
scenarios and implementations of personalized content in conversational in-
terfaces. However, the overall understanding of these conversational interfaces
that provide personalized suggestions for data scientists is still poorly explo-
red. We identify the need to automate data science procedures up to different
levels of automation. Our research focuses on helping data scientists during the
automation of these procedures by using conversational interfaces. We propose
a framework for creating a chat-bot system to facilitate the automation of data
science common scenarios. In addition, we instantiate the framework in two
different data science scenarios. The first scenario focuses on outlier detection,
and the second scenario on data cleaning. We conducted a study with 28 par-
ticipants to demonstrate that data scientists can use the proposed framework.
All participants completed the activities correctly, and 75 to 80% found the
framework relatively easy to extend and use. Our analysis suggests that the
use of conversational interfaces can facilitate the automation of data science
tasks.

Keywords
data science; automation; software engineering.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Resumo

Sastre Pérez, Jefry; Cortes Vieira Lopes, Helio; Leles Viana, Max.
Um framework para automatizar tarefas de ciencia de
dados através de interfaces conversacionais. Rio de Janeiro,
2021. 78p. Tese de Doutorado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Diversas soluções foram criadas para automatizar cenários específicos de
ciência de dados e implementações de conteúdo personalizado em interfaces de
conversação. No entanto, o entendimento geral dessas interfaces de conversação
que fornecem sugestões personalizadas para cientistas de dados ainda é pouco
explorado. Identificamos a necessidade de automatizar procedimentos de ciên-
cia de dados até diferentes níveis de automação. Nossa pesquisa se concentra
em ajudar os cientistas de dados durante a automação desses procedimentos
usando interfaces conversacionais. Propomos um framework para a criação de
um sistema chat-bot para facilitar a automação de cenários comuns de ciên-
cia de dados. Além disso, instanciamos a solução em dois cenários diferentes
de ciência de dados. O primeiro cenário se concentra na detecção de valores
discrepantes e o segundo na limpeza de dados. Conduzimos um estudo com 28
participantes para demonstrar que os cientistas de dados podem usar a solução
proposta. Todos os participantes concluíram as atividades corretamente e 75 a
80 % acharam o framework relativamente fácil de estender e usar. Nossa aná-
lise sugere que o uso de interfaces conversacionais pode facilitar a automação
de tarefas de ciência de dados.

Palavras-chave
ciencia de dados; automação de processos; engenharia de software.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Table of Contents

1 Introdução 1
1.1 Motivation 1
1.2 Problem definition 4
1.3 Methodology 5
1.4 Contributions 6
1.5 Document details 6

2 Backgorund 7
2.1 Chatbots 7
2.2 AutoML 8

3 Related works 10
3.1 Overview 10
3.2 Articles Selection 11
3.2.1 Conversational Interfaces 12
3.2.2 Personalized Content Implementation Examples 14
3.3 Considerations 17

4 Proposed Solution 19
4.1 Overview 19
4.2 Architecture 20
4.3 Implementation details 20
4.3.1 Identify Intention Bot 21
4.3.2 Commands Hierarchy 23
4.3.3 Speech Tree Structure 25
4.3.4 Pipelines 27
4.3.5 Task Manager 30
4.3.6 Code Generation 31
4.3.7 User Profile 32
4.3.8 Personalized Content 35
4.3.9 Telegram Integration 37
4.4 Framework Overview 38

5 Evaluation 40
5.1 Framework instances 40
5.1.1 Outlier detection 40
5.1.2 Data Cleaning 43
5.2 User Study 45
5.2.1 Results 47
5.2.2 Discussion 52

6 Conclusion 54
6.1 Future works 55

Bibliography 56

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

A Appendix 62
A.1 Installation guide and tutorial 62
A.1.1 A Simple Example 62
A.1.2 Creating New Command 63
A.1.3 Study Activities 66

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

List of Figures

Figure 1.1 Desired levels of automation in every stage of the DS/ML
project. Image taken and adapted from (Wang et al., 2021). 2

Figure 1.2 Our plan to answer the research questions. 5

Figure 4.1 Features timeline. 19
Figure 4.2 Architecture of the proposed solution. 20
Figure 4.3 Sequence of events triggered after a new user input

message. 21
Figure 4.4 Example of phrases dataset. 21
Figure 4.5 Sequence of dataset preprocessing steps 22
Figure 4.6 Models used for classification 23

(4.6(a)) Initial classification model 23
(4.6(b)) Classification model with drop out layers 23

Figure 4.7 Commands separated by groups. 24
Figure 4.8 Base classes of the commands hierarchy 25
Figure 4.9 Example of arguments in user inputs. 25
Figure 4.10 Example of conversation into tree data structure. 27
Figure 4.11 Activities of the OutlierPipeCommand. 28
Figure 4.12 Example of speech tree with pipe. 29
Figure 4.13 Class diagram of the Task Manager. 30
Figure 4.14 Class diagram of the Task Manager. 32
Figure 4.15 Code generation example of the LoadDataset command. 33
Figure 4.16 User profile types and their related commands. 34
Figure 4.17 Example of arguments in user inputs. 34
Figure 4.18 Example of user profile after the first update by the

LoadDataset command 35
Figure 4.19 User history dataset. 36
Figure 4.20 Personalization manager types and their related com-

mands. 36
Figure 4.21 User history dataset. 37
Figure 4.22 Overview of hot spots. 38

Figure 5.1 Outlier detection use case framework implementation. 41
Figure 5.2 Scatter plot result of the outlier. 42
Figure 5.3 Data cleaning use case framework implementation. 44
Figure 5.4 Dataset before and after the data cleaning 45

(5.4(a)) Before 45
(5.4(b)) After 45

Figure 5.5 Frequency of events in the dataset. 49
Figure 5.6 Correlation of the variables. 50
Figure 5.7 Scatter matrix of the strongest correlated variables. 51

(5.7(a)) Scatterplot of single value occurrences. 51
(5.7(b)) Scatter correlation matrix of the python_installed,

python_experience and the activities difficulty. 51

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Figure A.1 Basic framework example. 63
Figure A.2 New command class. 63
Figure A.3 Command initialization. 64
Figure A.4 Overriding default functionalities. 65
Figure A.5 Basic framework example. 66

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

List of Abbreviations

AutoML – Automated machine learning

IA – Artificial Intelligence

ML – Machine Learning

NLP – Natural Language Processing

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

1
Introdução

1.1
Motivation

Data Science (DS) and Machine Learning (ML) have been gaining
popularity and strength in different areas such as Informatics in healthcare
Liu et al. (2020); Knoop et al. (2019); Alemu and Huang (2020), Internet of
Things Tallyn et al. (2018), and Software Engineering Smestad (2018); Sun
and Zhang (2018), to name a few. The application of ML and DS technology
is a priority for many organizations Idoine et al. (2018). But, according to
Wang et al. (2021), it is such a complex and time-consuming activity that
there is a lack of professionals to fill the job demands. Recently, to widen the
adoption and improve results, the community has started to explore diverse
levels of automation of the execution of DS/ML projects. However, developing
automations to support users throughout DS/ML processes is not a trivial
task, as it requires the creation of systems capable of providing answers for
data scientists with different levels of knowledge and expertise.

Wang et al. (2021) conducted a survey with 217 DS and ML professionals
to identify desired levels of automation during the lifecycle of DS/ML project,
several of whom interested in a DS/ML project: stakeholders, programmers,
and domain experts. However, the authors consider "data scientists" only
those who code and build models. They classified automations into five levels:
no automation (L0), human-directed (L1), system-suggested (L2), system-
directed (L3), and full automation (L4).

Figure 1.1 depicts the interest of all participants concerning the levels
of automation during the model building and feature engineering stages.
However, most of the time, data scientists prefer system suggestions over full
automation. Conversely, domain experts prefer full automation in most of the
stages involving coding. It presents different points of view about automation
in DS/ML projects and show how much practitioners want the automation of
those projects.

To automate the different stages of the DS/ML process, we need to define
the different levels of automation we will provide to data scientists. There are

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 1. Introdução 2

Non−Tech. Support

Domain Expert

Manager

AI−Ops

Citizen Data Sci.

Expert Data Sci.

Req
uir

em
en

t G
at

he
rin

g

Dat
a

Acq
uis

itio
n

Dat
a

Pre
pr

oc
es

sin
g

Fe
at

ur
e

Eng
ine

er
ing

M
od

el
Buil

din
g

M
od

el
Ve

rif
ica

tio
n

M
od

el
Dep

loy
m

en
t

M
od

el
M

on
ito

rin
g

Ref
ine

m
en

t

Dec
isi

on
 O

pt
im

iza
tio

n

Role of Survey Respondents

S
ta

ge
s

of
 a

 D
at

a
S

ci
en

ce
 P

ro
je

ct

L1

L2

L3

L4

Most Frequently Preferred Automation Level

Figure 1.1: Desired levels of automation in every stage of the DS/ML project.
Image taken and adapted from (Wang et al., 2021).

several attempts to describe and formalize the data scientists’ profile (Costa
and Santos, 2017; Harris et al., 2013; Berthold, 2019). Harris et al. (2013) relate
the use of the term data science to describe different profiles. In addition, they
present the use of the term for hidden the expectations of the role. So, the
authors named data scientist as a general concept comprising traditional areas
such as mathematics and computer science, among others. Such areas have
clear expectations, but all together creates confusion. To better define data
scientists’ expectations, the authors conducted online surveys to gather data
about the required or desired skills. They summarized 22 skills divided into
five categories: Business, ML, Math, Programming, and Statistics. The authors
clustered the results in four profiles: Data Businesspeople, Data Creatives,
Data Developers, and Data Researchers.

Data Businesspeople focus on organization and business value through
data analysis. They see themselves as leaders or advisors. Data Creatives
concentrate on a broad set of tools to attack a problem. They have academic
and professional experience and see themselves as artists or hackers. Most of
the participants had contributed to open source projects. Data Developers
focus on technical problems about data, such as: where to store it and how
to extract it. They are definitively the group with most coding skills, with

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 1. Introdução 3

computer science or engineering degrees. The Data Researchers group gathers
people with academic publications and most of them have a Ph.D. degree.
They focus on the use of data to understand complex processes.

Costa and Santos (2017) present a conceptual model for a data scientist
profile, dividing the data scientists’ characteristics into two groups: knowledge
base and skill set. The knowledge base contains formal requirements such
as security, data ethics, information systems, and data management, among
others. On the other hand, the skill set focuses on tasks that a data scientist
must perform, such as visualizations, gather data, statistical methods, to cite
a few. The authors define data scientists as capable of extracting patterns
from data no matter the challenges, communicating their results, generating
data artifacts, and improving decision-making processes. We can observe that
the union of the four groups described by Harris et al. (2013) complete the
conceptual model presented by Costa and Santos (2017). Porter (2015) showed
how clustering from a population sample of STEM educators confirms the
groups presented by Harris et al. (2013), contributing to reaffirm the validity
of the data scientists groups.

Berthold (2019) reviews the required data scientists’ skills considering
three categories: novice, apprentice, and expert. The novice data scientists can
improve the results of a well-defined data science problem. The apprentices will
have to deal with data collection and processing, and can answer hypothetical
questions about the data. In turn, the expert group must deal with poorly de-
scribed situations and suggest new exploratory guidance. They are expected to
continuously refine their models with user feedback and use the knowledge from
previous experiences. The profiles described by Berthold (2019) hold strong
theoretical backgrounds, augmented with insights from previous experiences.
These categories complement previous works, concluding that data scientists
should have both theoretical knowledge and practical experience.

We foresee the use of personal assistants to automate parts of the DS/ML
projects. Fast et al. (2018) exemplify the use of conversational interfaces to
create personal assistants in the data science area. One of the main advantages
they point out is productivity, and their experiments showed that users using
data science assistants complete specific data science tasks 2.6 times faster
than using python scripts. Experienced and novice users highlight diverse
benefits: experienced users notice that the use of assistants can save time as
wrappers of python functions, and novice users take advantage of the structural
guidance provided by the personal assistant. However, to reach all the desired
levels of automation proposed by Wang et al. (2021), we must enhance the
conversational interfaces with the ability to suggest further steps (L2 system

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 1. Introdução 4

suggestions). The chatbot suggestions may vary depending on the situation.
For instance, novice users may require more guidance, while expert users may
want to create personalized execution pipelines. In any case, the conversational
interface must adapt its suggestions to fit the user’s needs.

Recent research on conversational interfaces has raised the concern of
personalized interactions (cf. Abdellatif et al. (2020); Suta et al. (2020); Reis
et al. (2020)). In most cases, the authors mention personalized content as a
means to improve overall user satisfaction. However, it is a way to provide
specific content for different groups of users. Suta et al. (2020) highlight two
limitations: understanding the context and generating a relevant response.
Their work is a bit more specific about these limitations and states that
bots should answer with emotions or/and personalized content. Abdellatif
et al. (2020) show how developers have real concerns about Natural Language
Understanding, specifically, the ability to answer. According to the authors,
it has a real impact on user satisfaction. Therefore, the ability to understand
is crucial, but a proper response is critical as well. Reis et al. (2020) provide
another example, bringing the physician and the patient concerns, use cases,
and limitations about the use of chatbots in healthcare environments. However,
such restrictions can be generalized as the ability to deal with different groups
of users. In their specific case, the authors refer to sensitive information and
patient-doctor confidentiality. In a more general sense, the authors engage
with previously presented work on the need to provide personalized content
for different groups of users.

1.2
Problem definition

With the growing demand for intelligent software solutions, the data
science area has gained immense recognition. Data science processes are com-
plex and time-consuming and lack qualified professionals to fill the job de-
mands. The complexity and the lack of qualified professionals raise the need
for some degree of automation. In this work, we address the current neces-
sity of automating DS/ML procedures. Conversational interfaces emerge as
solutions to automate different processes and interact with technology using
natural language. We believe that personalized content inside conversational
interfaces will facilitate the automation requested by data scientists in some
of the DS/ML stages. In particular, our goal is to propose a framework for
automating DS/ML processes through conversational interfaces with person-
alized interactions.

To achieve our goal, we address the following research questions:

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 1. Introdução 5

– RQ1: Can we use personalized interactions in conversational interfaces
to reach the system-suggestion level of automation (L2) inside the
framework’s core functionalities?

– RQ2: Will data developers be able to extend the proposed framework
for specific scenarios?

1.3
Methodology

In Figure 1.2, we present our plan to answer the research questions.

Figure 1.2: Our plan to answer the research questions.

First, we propose a literature review about personalized content answers
and chatbots. After the literature review, we will create the framework macro
architecture. This initial architecture might be adjusted over the course of
the implementation. The architecture must comprise the framework’s core
functionalities and the hot spots. We also plan to integrate our conversational
agent with user interfaces. Finally, we will instantiate our framework for some
DS scenarios and carry out a study to check whether other developers/ data
scientists can extend the proposed solution.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 1. Introdução 6

1.4
Contributions

There is a necessity to automate data science tasks and. To the best
of our knowledge, no one proposed the usage of conversational interfaces
with personalized interactions to reach the L2 level of automation. We use
conversational interfaces to interact with the data scientist and adopt a
strategy to learn from the user history and personalize the interactions. In
particular, we are focussing on is the suggestions that the user receives from the
chatbot. We extended previous related works such as (Fast et al., 2018). The
authors introduce the code generation feature and the commands hierarchy
to help the data scientists. We extend their approach and include pipelines
and other new features such as support for some automl tasks, tracking user
dialog history, and personalized suggestions. To evaluate our contributions, we
report a study to analyze the use of the framework by external developers
and data scientists. Participants provided suggestions and desires about new
features or modifications and showed their main drawbacks while using the
proposed solution, such as issues while generating code or confusion whether
the data was loaded or not. Opinions, suggestions, and issues expressed by
data developers about the proposed solution can encourage future works. The
framework is available online at https://pypi.org/project/dsbot.

1.5
Document details

The remaining of this document is organized as follows. In Chapter 2, we
present the main concepts to follow up with this work while. Chapter 3 sum-
marizes recent works extracted from literature. Chapter 4 shows our proposed
solution and Chapter 5 details how the proposed solution was extended and
presents our study results. Finally, Chapter 6 contains a summary of the pre-
sented work and possible future lines.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

2
Backgorund

This chapter presents the main concepts used in this work. In the Section 2.1 we
will provide a common definition of chatbot systems and Section 2.2 presents
tools to support automatic execution of data science tasks (AutoML).

2.1
Chatbots

A chatbot system can be defined as a software agent that uses natural language
to provide access to data and services Følstad and Brandtzæg (2017). Chatbots
are commonly used in a variety of scenarios such as health Dey and Zhang
(2019); Kadariya et al. (2019); Knoop et al. (2019) e-commerce Følstad et al.
(2018a); Rhee and Choi (2020) and customer support Portela and Granell-
Canut (2017); Tallyn et al. (2018). According to Følstad et al. (2018b),
chatbots can be characterized by two dimensions: the control of the dialogue
and the duration of the relationship. The control of the conversation determines
who is in control of the dialog and can be one of the following options:

– Chatbot-driven dialogue: In this category, we found bots with predefined
interactions. In this case, the dialogue is somehow forced by the chatbot.

– User-driven dialogue: This kind of bot allow more flexible conversations
and adapts to user input variations. In this case, the conversation is up
to a certain level, controlled by the user.

Another characteristic of chatbots is the duration of the relationship with
the user.

– Short-term relation: This kind of bot focus on providing interaction
without a sustained relationship.

– Long-term relation: In this category, bots are prone to extract informa-
tion from previous conversations and use it in further interactions with
users.

In our case, we propose a Chatbot-driven, long-term relation chatbot.
The interactions are bounded into a specific domain and with syntactic
restrictions. So, the bot will guide the interactions. On the other hand, the

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 2. Backgorund 8

relationship between the bot and the user is refined along with multiple
conversations. Therefore, the is a long-term relationship.

2.2
AutoML

According to He et al. (2019), AutoML can be defined as the automation
or partial automation of a machine learning pipeline. Most machine learning
pipelines contain the data preparation, feature engineering, model generation,
and model evaluation stages. However, in Guyon et al. (2015), the author
enhances the pipeline with a more complex vision of automation and proposes
other related tasks such as automatic report generation, matching problems
to algorithms, transfer learning, among others. Those complements provide a
more wide comprehension of the acting field and the possibilities that came
together with the automl challenge. In Yao et al. (2018), AutoML is defined
as maxing the performance of a learning tool with less human assistance
and limited computational budget. Therefore, it has been a hot topic in the
industry, and there are several available tools on the internet such as AutoWeka
Kotthoff et al. (2017), TPOT Le et al. (2020), Auto-Pytorch Mendoza et al.
(2018), etc.

The basic pipeline described in He et al. (2019) contains four major steps.
The data preparation step focuses on the treatment of the data. Common tasks
within this step are normalization, cleaning, fill missing values, etc. This step
prepares the data for further processing. In the feature engineering step the goal
is to transform the data into the final usable dataset by applying dimensionality
reduction algorithms, features importance algorithms, data argumentation
techniques, among others. Note that in the first step, the number of features
remains the same. However, in this step, the number of features can be
reduced with dimensionality reduction algorithms or can be increased by
generating new features. Some strategies to generate new features are data
transformations to more complex representations. For instance, algebraic linear
applications can transform Rn space into Rm. The model generation step
contains the mapping of the data into an algorithm and the tuning of the
hyperparameters. Nowadays, there is a wide variety of algorithms and each
one can have uncountable parameters. Most traditional algorithms such as
Decision trees and SVM have a limited number of hyperparameters. However,
modern neural networks can have multiple layers with different architectures.
Automatic tuning of neural network architectures can deal with millions of
hyperparameters, such as the case of the VGG-16 Simonyan and Zisserman
(2014) with more than 130 million parameters. Finally, the model evaluation

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 2. Backgorund 9

step has determined the quality of the generated models. However, the training
of several models can be a time-consuming task and there are several strategies
to improve the model evaluations. For example, early stopping is a strategy
used to avoid overfitting in traditional methods, and resource-aware is a
strategy to monitor the consumption of resources (Memory, CPU, and GPU)
and compensate with other metrics such as accuracy, precision, recall, and f1-
metric. In this case, even when the model may lose performance it can gain a
significant resources economy.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

3
Related works

This chapter presents works related to personalized content generated by
conversational interfaces. In Section 3.1 we present an overview of personalized
content and provide authors to highlight the importance of personalized
content in conversational interfaces. In Section 3.2 we bring a summary of
selected previous works about conversational interfaces where users suggest
some form of personalized content and present an examples of personalized
content in conversational interfaces implementations. In Section 3.3 we show
our final considerations about the analyzed works.

3.1
Overview

The authors in Chaves and Gerosa (2019) propose a survey of the lit-
erature to derive a conceptual model of social characteristics for chatbots.
The authors argue that chatbots should be enriched with social characteristics
to avoid users dissatisfaction. The literature reviewed in this survey strongly
supports chatbots with social characteristics. The authors found three major
social characteristics groups in chatbots (Conversational intelligence, Social
intelligence, and Personification). Personalization is located inside the Social
intelligence groups and focuses on providing personalized interactions. Accord-
ing to the authors, the main drawback of personalization is data privacy: the
system must have personal information to adapt itself and to provide per-
sonalized interaction. However, the user’s personal information, sensible and
requires security and becomes a privacy concern. Personalized interactions are
separated into three main advantages. First, to enrich interpersonal relation-
ships: the user should control the amount of personal information the bots
have access to. Second, provide unique services. For instance, a tour assistance
system could use geolocation services to provide conveniently located places.
Finally, reduce interaction breakdowns. In this case, the UI should adapt to
different kinds of users. For example, the system could use larger fonts for older
people.

On the other hand, Rönnberg (2020) focuses on persuasive and personal-
ized chatbot conversations. First, the authors raise the importance of creating

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 11

personalized interactions between chatbots and users. According to Brandtzaeg
and Følstad (2018) bots are generally implemented as "one-size-fits-all". How-
ever, the author presents the personalized content as a demanding challenge.
The author focuses the research on the driving and safety areas. But, the im-
portance of the challenges and guidelines presented applied to multiple areas.
The author presents three dimensions of the personalizations: the parts of the
systems, the target, and the automation. The first refers to the parts of the
system that can be or need personalization. The second refers to the target or
group of targets that the personalization address. Finally, the last dimension
refers to the automation of the personalization or if it requires manual actions.
The authors present the final version of the guidelines. The guidelines, as the
author state, are supposed to help in the design of persuasive and personalized
chatbots. According to the authors, personalization is an important part of the
chatbot’s design and provides a tailored user experience.

In Brandtzaeg and Følstad (2018), the authors focus on presenting
needs and challenges emerging in the chatbot area. The authors present the
motivation for future use of chatbots from the user’s point of view. First,
the authors state that chatbots are not only a change in the interface with
technology but also a change in the dynamics and ways to use the technology.
This implies that bots are not only new ways to get to technology as it is, but
technology needs to move forward and adapt to the new tendencies coming
together with the use of chatbots. To achieve this purpose, the author shows
the need to improve the user and context models. According to the authors, the
users need to feel in control of technology. It means being able to do tasks fast
and efficiently. Finally, the author brings an important lesson learned through
their research: chatbots are not a unique solution for all users because people’s
motivations and purposes are diverse. Instead of a "one-solution-fits-all", the
author suggests multiple use cases in contexts. This is closely related to the
personalized content response because it reveals the need to behave properly
in different scenarios.

3.2
Articles Selection

In this section, we present researches related to personalized content
in conversational interfaces. First, in Subsection 3.2.1 we gather general
chatbot works where the users ask for personalized content of any form and
Subsection 3.2.2 present previous approaches.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 12

3.2.1
Conversational Interfaces

In Ghandeharioun et al. (2019), the authors present a comparison of how
users interact with an emotionally expressive bot against a neutral bot. The
authors design and implement an emotion-aware chatbot that answers with
emotionally appropriate conversations. The authors conclude that participants
showed more positive when dealing with the emotional bot. The authors added
emoticons to smooth the conversations. The author conducted a study with
39 participants and identified several possible guidelines for future works. One
limitation of the work is that authors scripted all textual interactions, and
eventually the response of the bot became predictable. In this way, the authors
propose the use of machine learning techniques to generate automatic answers
enhanced by sentiments and emotions. This is an example of personalized
content answers. In this case, the authors use the emotional components to
determine the personalized answer for every emotion included in the research.
We can map the emotion to a group of users. In this way, the system generates
personalized answers for different groups of users.

The work Smestad (2018) presents a framework to design user-centered
personality chatbots and how the personality influences the user experience
while interacting with chatbots. The motivation of the work was to investigate
to what extent personality affects user perception of chatbots. The author
shows that two chatbots offering the same service and effectiveness can be rated
differently based on pragmatic qualities. The framework proposed provides
a stable path to build personality chatbots prototypes in conformance with
personality theory. The authors conducted an experiment to evaluate the
influence of personality on the user experience and came to the conclusion
that it significantly enhances the user experience. As future work, the authors
propose to extend the framework and include a tone analyzer, which can
determine the mood of the user input and dynamically change the response.
The tone analyzer could benefit from the framework to generate a response
according to the personality. This future work is an example of personalized
content responses, in which the bot will generate different answers for different
moods.

In Neururer et al. (2018), the authors were motivated by the lack
of social competence of conversation agents and what characteristics might
contribute to the authenticity of the chatbots in future implementations. The
authors conducted a series of interviews with experts from different areas to
reach a consensus definition of authenticity in conversation agents. The main
contribution of the work is a theoretical definition of authenticity through

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 13

the fusion of concepts found in artificial intelligence and social ethics. The
author concludes there are several characteristics that facilitate authenticity
such as having a transparent purpose, learning from experience, showing strong
conversational behavior, among others. However, the authors agreed that the
main point is to learn from experience. By learning from experience the
author means keeping track of the conversations, behavior, and being coherent.
The authors state that providing personalized information can strengthen the
relationship with the user and maintain the user’s engagement.

The authors in Portela and Granell-Canut (2017) present and empir-
ical research about engagement and affection within conversational agents.
The purpose of the research is to find how the users feel having empathy re-
lations with conversational agents. To accomplish the objective, the authors
conducted a series of interviews with 13 participants and two different con-
versational agents. The first agent was created using the traditional AIML
specifying language format with predefined conversations, and the second bot
was personified by a Wizard-Of-Oz strategy. The first chatbot mapped words
or phrases to respond accordingly while the second bot gave more contextu-
alized answers. The survey reflected that users’ experience with the second
chatbot was better than the experience with the first chatbot. The authors
state that with the current level of AI technologies, conversational agents are
focused on specific purposes instead of broad contextual intelligence. However,
the authors conclude that including different behavior strategies in the design
of chatbots can positively influence user engagement and the user experience.

The authors in Tallyn et al. (2018) present Ethnobot, a bot that collects
ethnographic data and presents opportunities and challenges of collecting
this information during an event. The authors conducted a study with 13
participants to gather information. The Ethnobot is an example of the user of
IoT technologies to enhance user interaction, however, some of the participants
felt frustrated by the understanding capabilities of the bot. Nevertheless,
some participants found the chatbot pleasant company during the event.
The authors demonstrate the effectiveness of the Ethnobot form collection
information. However, some participants reported that Ethnobot should use
their current location to guide them to more convenient places to visit. Also,
some participants reported that the bot should ask for references to direct
the participant to areas meeting their expectations. The information the
participants reported is a close example of personalized content answers. The
conversational agent should collect the personal information of the users to
provide a more specialized answer.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 14

3.2.2
Personalized Content Implementation Examples

In Dey and Zhang (2019) the authors propose a mechanism in a data
processing system to provide personalized drugs response for patients. A key
piece of the proposed mechanism is the drug response estimation engine, com-
posed of a patient similarity network, a lasso regression analysis, and a patient
clustering component. The author uses the drugs response estimation engine
in a flow to predict drug responses for new patients. The flow begins when the
mechanism receives new world information. Then, the engine processes the in-
formation and generates the group patients via clustering so there are specific
drugs in each group patient. Based on these groups the mechanism can predict
drug responses for new patients. The authors present the cognitive system as
a general-purpose mechanism and provide a specific example in the health-
care area. The presented example uses a question/answer pipeline to receive
information. However, the means to receive information may vary in differ-
ent applications. Anyway, the proposed cognitive system aims to personalize
the drug treatment based on similarity networks and population clustering
analysis.

In Kadariya et al. (2019) the authors present kbot, a chatbot for
monitoring asthma patients under 15 years old. The bot alert the patient about
medication, environmental changes, and asthma management in general. The
authors emphasize the need to contextualize, learn and personalize to maintain
a meaningful dialog. Personalization is achieved through the conversation. In
the beginning, the patient profile is constructed based on existing medical
records. Within the whole process, kbot respects the data privacy and uses
HIPPA compliant anonymized data. The personalization of the bot comes
in two circumstances: First, by checking the medication history and found
poor compliant medications, and second by checking environmental conditions
that may trigger asthma reaction based on previous asthma reports. Kbot
is presented as an Android application with a NoSQL database and Google
DialogFlow to identify the user intentions. The author performed usability tests
with 16 participants(8 physicians and researchers) and came to the conclusion
that chatbots can be more effective when using patient history and domain
knowledge to generate personalized answers.

This work Knoop et al. (2019) presents a mechanism to dynamically
generate personalized questions for health risk assessment. The proposed
system begins with a battery of questions and analyzes the results to generate
the initial patient profile. With the initially gathered information, the system
fits the patient into a patient group and determines the next question to present

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 15

to the patient based on the fitted patient group similarities. This process
generates a loop in which patients are presented with a question, the answer
fits the patient into a new patient group and using the patient’s similarity
inside the new group the system determines the new question to present.
This loop repeats until certain conditions meet, and the systems calculate the
health risk scores and present them with an uncertainty score. The authors
present QA systems to communicate with the patients effectively and search
through large sets of documents and records. In this case, the proposed system
segment question is based on patient groups and fits patients into groups to find
more personalized questions to present. The authors state that clustering and
machine learning techniques can be used to generate the question segmentation
database. Even when this work presents strategies to generate personalized
questions, it is an example of personalized content generation for different user
groups.

In Musto et al. (2020), the author presents MyrrorBot, a conversational
interface based on a user profile strategy called Myrror. MyrrorBot contains
two principal components, the intention recognizer, and the answer generator.
the intentions recognizer receives the user request in natural language, query
the Myrror user profile and send the results to the answer generator. The
answer generator has a composite answer. All the answers have a static part
equal to every user and a dynamic part depending on the user profile results.
In this case, the dynamic part represents a personalization of the content
provided to the user by the answer generator. The authors carried out a
controlled experiment with 67 subjects to evaluate the proposed system and
concluded that almost 90% of the participants argued that MyrrorBot provided
the answer they were looking for.

The work Liu et al. (2020) shows research about mirroring during a
dialogue with a conversational interface. The authors propose a technique
to learn user speech patterns during the dialogue, and adapt the answers
according to the learned patterns. The method consists of two steps: the
n-grams extraction and the pattern injection. The n-gram extraction selects
common structures used by the users while speaking and stores the n-grams
for further learning. To inject patterns, the authors use two approaches: the
BERT+Explicit pattern and the seq2seq neural network. The BERT+Explicit
patterns inject sentences into patterns wildcard. For instance, the pattern "I
said *" could be transformed into "I said take a look ...". On the other hand
the seq2seq network with the original sentences without the n-gram as the
dataset and the full sentence as the annotation. In other words, the seq2seq
network is trained to inject the n-grams into the sentences. The authors test the

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 16

methods using a dataset of the 17k sentences in Donald Trump’s 2016 campaign
speeches, and the results showed that with small amounts of data the seq2seq
has lower perplexity values than the BERT+Explicit pattern. However, both
methods reflect the speaking patterns. Those two techniques are examples of
personalized content in conversational interfaces. Both techniques could be
used to mirror speaking styles back to the user to gain authenticity.

In Rhee and Choi (2020), the authors present a base-voiced conversa-
tional agent to explore the impact of personalized content on customer pref-
erences in a shopping scenario. The authors also evaluate the impact of the
different conversational agent personalities such as friends or secretaries. The
personalized message is a well-known marketing strategy, and there is research
result behind the personalization of advertising messages on the web. The con-
versational agent was simulated by a speaker placed on the participant desktop
and connected to another desktop where a researcher followed a scripted con-
versation. The author used text-to-speech technologies to simulate a personal
assistant such as Alexa or Siri. In fact, in the experiments, the conversational
agent responds to "Jenny". The personalization of the messages was made in-
dividually for each participant. Before the experiment, the authors asked the
participants to answer a survey about preferences and usages. With this infor-
mation, the authors prepare one script for each participant with personalized
content. The authors conducted experiments with 124 participants varying the
role and the personalization level of the conversational agent and analyzed the
data of 122 participants. The results showed a significant effect of the person-
alization, and participants seem to be more positive with a recommendation
as a friend rather than a personal assistant.

In Sun and Zhang (2018), the authors present a framework to merge rec-
ommender systems with conversational interfaces. According to the authors,
traditional dialog systems often use only the current conversation and ignore
past conversations. They take advantage of past purchases of the user that can
improve metrics such as conversion rate. The proposed framework has three
components: the believe tracker, the policy network, and the recommender.
The believe tracker transforms user inputs into vector representations called
"belief". The policy network receives the user’s belief and generates an answer.
Sometimes, the policy network calls the recommender to receive a personalized
list of suggestions for the user. The personalization is achieved through a factor-
ization machine model that uses past information and the current conversation
to generate recommendation rankings. To evaluate the proposed framework,
the authors use the Yelp challenge recommendation dataset and simulate on-
line and offline evaluations of the framework. The results showed the impact of

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 17

incorporating recommendations systems to conversational interfaces and the
merits of taking action to optimize long-term rewards.

Sun and Zhang (2018) presented a framework to merge recommender
systems with conversational interfaces. They take advantage of user’s history to
improve metrics such as conversion rate. According to the authors, traditional
dialog systems often use only the current conversation and ignore past ones.
Their proposed framework has three components: the tracker, the policy
network, and the recommender. The policy network calls the recommender to
receive a personalized list of suggestions for the user. The framework presents
the recommender feature as a separate component of the solution. It interacts
with other components to provide personalized content. Chittò et al. (2020)
propose a framework for generating a chatbot out of a website equipped with
bot-specific HTML annotations. The authors used the tree representation of
the HTML elements to insert specific tags with intentions. In this way the
authors create a tree of intentions linked with the HTML elements. We adopt
the ideia of representing the intentions of the conversation in a tree data
structure.

Ed-douibi et al. (2021) propose a framework to generate chatbots tailored
to Open Data API technologies. The APIs are modeled as annotated UML
schemas and then used to generate the corresponding chatbot to access the
Open Data source. The generated chatbot transforms the conversation into
API queries. We found this approach useful to access data sources, and adapted
the proposed algorithms to our data science scenario. Pérez-Soler et al. (2021)
introduced a platform called CONGA, a model-driven solution for forward
and backward chatbot engineering with a recomender system to help select
an adequate chatbot development tool. CONGA provides a domain-specific
language (DSL) to model chatbot functionalities, a questionnarie to selected
the best development tool, a code generator to build the chatbot, and an
integration tool to deploy the chatbot in some social networks and applications.
This platform uses the idea of code generation to build chatbots. By contrast,
we will create chatbots with code generation on each intention. So, our plan is
to generate code from the conversation with the bot.

3.3
Considerations

With the analysis of the previous works, we demonstrate that the need for
personalized content conversational interfaces contributes to the authenticity
of the chatbot (Neururer et al. (2018)), to avoid bot answers to became
predictable (Ghandeharioun et al. (2019)) or to show empathy based on the

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 3. Related works 18

user mood (Smestad (2018)). We identify two main strategies to personalize
the content. The first, used in (Knoop et al. (2019) and Dey and Zhang
(2019)) tends to separate the users into clusters and provide different answers
per cluster. On the other hand, Kadariya et al. (2019); Musto et al. (2020);
Tallyn et al. (2018) look after specific information such as historical records or
geolocation data to provide more precise content in special situations.

Our solution aims to merge, adapt, and continue insights from previous
works. We plan to generate personalized content in a separate component
based on the architecture proposed by Sun and Zhang (2018). Also, we take
advantage of the tree structured proposed by Chittò et al. (2020) to store our
conversation, and use the strategies proposed by Pérez-Soler et al. (2021); Fast
et al. (2018) to generate code. None of the revised work provides native support
for the L2 level of automation. The main advantage of our work over the articles
mentioned above is that we provide support to personalized content as a native
functionality of the framework. In addition, we create pipelines, responsible for
gathering a group of commands. Based on the previously analyzed techniques,
we will present our proposal to use conversational interfaces with personalized
content to reach the L2 level of automation in DS/ML projects. Level L2 is the
main goal of our work, given the research carried out in (Wang et al., 2021),
to which several experts in the field of data science replied that they would
like to receive suggestions during the DS/ML process.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

4
Proposed Solution

This chapter presents our proposed solution. First, in Section 4.1, we present
an overview of its features and then we go into details about how they work
and communicate with each other (Section 4.2 and Section 4.3). Finally, in
Section 4.4, we present the solution as a framework.

4.1
Overview

The proposed solution evolved through planning and implementation itera-
tions. Figure 4.1 shows how we add features to our solution over time. First,
we created a module capable of identifying the user’s intention: as the conver-
sation flows, the system maps text input with a predefined set of intentions.

Figure 4.1: Features timeline.

The commands hierarchy module collects the base classes and core func-
tionalities of every command. The speech tree structure stores a conversation
with the user and transforms the conversation into a tree-based data struc-
ture. The context feature saves all the variables during the execution of the
commands. The code generator exports all commands into usable python code
and pipelines merge several commands into one. The task manager separates
the commands execution thread from the user interface. The proposed solution
supports automl features to enhance pipeline usage. The system creates a user
profile through the user inputs. Finally, the personalized content module use
the information collected in the user profile to provide suggestions.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 20

4.2
Architecture

The proposed system has four modules (Command Manager, Speech Manager,
ChatBot, and User Profile). Figure 4.2 depicts how the features are organized
in modules.

Figure 4.2: Architecture of the proposed solution.

The Command Manager module includes the Command Hierarchy, the
Pipelines with the AutoML support, and the Personalized Content features.
The ChatBot module contains the Identify Intention feature, but the User
Profile Module is a feature by itself. Finally, the Speech Manager includes
the Code Generation, the Execution Context, the Speech Tree Structure, and
the Task Manager features. The Speech Manager Module connects all other
modules and works as a command center and entry point of the solution as
illustrated in Figure 4.3.
The Speech Manager receives user messages. A message is sent to the Chatbot
to identify the user’s intention. With the user’s intention, the Speech Manager
calls the Command Manager to create an instance of the specified command
and organize it into the tree structure. Finally, the speech manager executes
the command to return the proper response to the user. Commands execution
is asynchronously handled inside the speech manager by the Task Manager
feature, so each sequence of events is independent.

4.3
Implementation details

In this section, we are going to present implementation challenges we went
through the construction of each feature.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 21

Figure 4.3: Sequence of events triggered after a new user input message.

x︷ ︸︸ ︷
Lets load a dataset |

y︷ ︸︸ ︷
load_dataset

x︷ ︸︸ ︷
load the dataset |

y︷ ︸︸ ︷
load_dataset

x︷ ︸︸ ︷
load a csv file |

y︷ ︸︸ ︷
load_dataset

Figure 4.4: Example of phrases dataset.

4.3.1
Identify Intention Bot

The ChatBot module contains the Identify Intention feature. It is in charge
of recognizing what the user wants with each input. We define the problem of
identifying the user’s intention as a supervised learning classification problem.
On system startup, the chatbot module creates a dataset of phrases and maps
each phrase to a single intention. For example, the sentence "Let’s load a
dataset" will be mapped onto the load_dataset intention. We have a finite
number of intentions, one for each command available on the chatbot. So, as
the number of commands grows up, the complexity of this task grows as well.
Figure 4.4 shows how the intentions dataset was built. The x represents the
learning data while the y holds the labels.

We preprocess our phrases dataset to build a classifier and detect the
user intention as shown in Figure 4.5. First, we apply a tokenization strategy
to split the sentences into vectors. Then, we remove the stop words and apply
an orthographic correction. However, in some scenarios like system paths or

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 22

dataset references, we should avoid orthographic correction.

Figure 4.5: Sequence of dataset preprocessing steps

We applied a stemming process to keep the root of the words. Next, we
create a global words vector and transform each sentence by setting to ones the
indexes of its words. So, we create a vector of zeros with the length of the global
words vector and change to one the position corresponding to the words of the
sentence. In this way, we represent a sentence as a binary vector. Then we map
each vector to its classification y and save the dataset for further learning. We
use neural network models described in Figure 4.6a and Figure 4.6b to train
classifiers.

Figure 4.6a shows the first attempt to classify the user’s intentions.
This model was usable for the first stages of the project, but as the number
of commands grew, we had to migrate to our second model presented in
Figure 4.6b. The ChatBot module contains a trained model to classify each
user input. However, note that the last layer of both models is a softmax layer.
Therefore, the classifier will return the probability of the user input belonging
to every possible intention. It means that the classifiers will not return the
intention directly. However, the bot uses a threshold value to compare the
softmax probabilities and returns a valid intention only when any probability
value is greater than the predefined threshold. In case no probability is greater
than the threshold, the bot will return a wildcard text and the no_understand
state to the speech manager. Summing up, the bot will preprocess every
user entry and transform it into a valid binary representation. After the
transformation, it will predict the probabilities of every possible intention
and finally compare against a threshold value to return the most probable
intention. If two probabilities are greater than the threshold and very close to
one another, the bot will return the greater probability.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 23

(4.6(a)) Initial classification
model

(4.6(b)) Classification model
with drop out layers

Figure 4.6: Models used for classification

4.3.2
Commands Hierarchy

In this subsection, we show how we transform the user intentions into com-
mands, explain how we group them by categories, and detail the class hierarchy
behind them.

Fast et al. (2018) created a mechanism to capture triggers and comple-
ment baseline commands. For example, when the system identifies a new input
for using a command, the system adds this new input to the triggers collec-
tion of the selected command. Therefore, the DSL and the trigger-enhanced
mechanism provide a base transformation from functions to commands. So, we
create an initial mapping of functions to commands and complement the trig-
gers with new inputs. Once we include a new trigger phrase, we must retrain
our identify intention model. Figure 4.7 shows some user intentions separated
by categories.
We created seven categories to group the commands: Base, Context, Algo-
rithms, Preprocess, Visualization, Pipes, and Metrics. In the Base category,
we put base classes of the hierarchy and commands related to a basic con-
versation (greetings and goodbye). The Context category gathers commands
related to the running environment. For example, the LoadDatasetCommand
accesses the file system to load a CSV file. The Algorithms category con-
tains the implementations of different algorithms, and the Metrics category
has commands to evaluate the algorithm results. The Pipe category has our

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 24

Figure 4.7: Commands separated by groups.

implemented pipes, and the Visualization category presents commands to gen-
erate charts. Finally, the Preprocess category has the tools to work with the
datasets after the loading stage.

The base category contains the super classes of the commands hierar-
chy:Command, CommandWithArgs, and Argument. The Command class rep-
resents all the commands, while the CommandWithArgs represents all com-
mands with arguments. For instance, the LoadDatasetCommand requires two
arguments: the path of the dataset and the name. Note that there are a few
commands that do not require any parameters, like GreetingsCommand. Fi-
nally, the Argument class represents the arguments of the commands. Fig-
ure 4.8 detailed the methods and properties of these classes.
In particular, the Argument class uses regular expressions to capture the value
of the arguments. Figure 4.9 show an example.
The complete user input "Let’s load the dataset outliers_sample in
data/outliers.csv" is identified with the load_dataset intention. The sys-
tem transforms the load_dataset intention into a LoadDatasetCommand. The
LoadDatasetCommand has two arguments (dataset_name and dataset_path).
Each argument is an instance of the Argument class. In this case, the
dataset_name uses the dataset ([a-zA-Z0-9_]+) regular expression to
extract the dataset name, while the dataset_path uses at ([a-zA-Z0-9_]+)
to select a file path. Arguments can have multiple regular expressions attached
and will evaluate all until one finds a match. For example, the dataset_path
argument contains three regular expressions: in ([a-zA-Z0-9_.]+), in the
file ([a-zA-Z0-9_.]+) and dataset_path = ([a-zA-Z0-9_.]+).

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 25

Figure 4.8: Base classes of the commands hierarchy

Lets load the dataset

dataset_name︷ ︸︸ ︷
outliers_sample in

dataset_path︷ ︸︸ ︷
data/outliers.csv

Lets load the dataset

dataset_name︷︸︸︷
iris

Figure 4.9: Example of arguments in user inputs.

Arguments can be optional, such as the dataset_path argument of
the LoadDatasetCommand. In the sentence "Let’s load the dataset iris", the
dataset_path is missing. However, the iris dataset is a well-known dataset. The
LoadDatasetCommand commands contain a collection of well-known datasets.
In these cases, the command does not require a path to load the dataset.

4.3.3
Speech Tree Structure

This subsection describes how commands create a tree data structure
and how we iterate over a conversation. All commands inherit from the
base Command or CommandWithArgs classes and contain a list of children
commands. Also, every command has a parent property referencing their
parent command. These two properties (children and parent) create a tree
structure during a conversation.

In particular, we use an Abstract Syntax Tree (AST) to capture the
meaning of the conversation because it can formally represent the critical
structure of the input while avoiding syntactic resources (Jones, 2003). AST

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 26

implementations benefit from Object Oriented Programming (OOP) languages
due to inheritance and polymorphism. In this case, all the AST nodes derive
from base classes that share common attributes. A useful pattern to comple-
ment AST and OOP is the Builder pattern. The builder pattern allows the
expansion of the AST dynamically with new nodes.

The Tree Structure of a conversation contains three levels. The first
level is the SpeechManager, the second level includes the children of the
SpeechManager, which are Command or CommandWithArgs instances, and
the third level contains Argument instances. Figure 4.10 shows a speech tree
example of the following conversation.

- User: Hi
- Bot: Hello
- User: Lets load the dataset outliers_sample_data in data/outliers.csv
- Bot: Done
- User: ...
- Bot: ...
- User: Bye
- Bot: Bye

In the beginning, there is only the SpeechManager node in the tree. This
node is the root and has no parent nodes. After the first user input "Hi",
the speech manager identifies the greetings intention and creates a child node
GreetingsCommand. The GreetingsCommand has no arguments, so it has no
children of its own. When the user asks to load the dataset, the speech manager
identifies the load_dataset intention and appends a LoadDatasetCommand
child. The LoadDatasetCommand has two arguments extracted from the user
input and creates two Argument children nodes (one for each argument).
Finally, when the user says "Bye", the SpeechManager recognize the goodbye
intention and creates a GoodbyeCommand node.
In this example, the first level of the tree has the SpeechManager, the sec-
ond level contains the GreetingsCommand, LoadDatasetCommand, and Good-
byeCommand commands, and the third level has the arguments.

The Speech Manager has a context to save execution variables and data.
This context is empty at the beginning of the conversation, but, as soon as
commands execute, it holds the variables and the results. Each Command
has a property named complete, and it notifies the SpeechManager when
it is ready to execute. Commands execution is always children first and
left to right. For instance, When the user says "Hi", the GreetingCommand
generated has no arguments, so it is complete and able to run. However,
the LoadDatasetCommand is ready only when all its children are ready. So,

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 27

Figure 4.10: Example of conversation into tree data structure.

it depends on the completion of their Argument children. In this case, the
arguments are in the same user input. In the case where required arguments
are missing, the bot asks for them, and the SpeechManager saves the last
non-complete children. The bot will resume the execution once the required
arguments are with proper values. When the LoadDatasetCommand loads
the dataset in memory, it saves a reference in the context object for future
commands.

4.3.4
Pipelines

In this subsection, we describe pipeline objects. Firstly, we show how we group
commands into pipelines. Then we show how pipelines are represented in
the speech tree structure and finally some execution details. In (Fast et al.,
2018), the authors present an interactive data science tool and argument that
extensive data science tasks would require structured pipelines of commands.
Extensive data science tasks can take days to complete. Pipelines provide an
instant follow-up after each command and visualize only partial or final results.

Pipeline commands are a collection of other commands, and by definition,
a Pipeline can not be recursive, so it can not have a child of the same class
type. For example, in the case of outliers detection, we created the OutlinePipe
command. The OutlinePipe command has the following activities presented in
Figure 4.11.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 28

Figure 4.11: Activities of the OutlierPipeCommand.

All the activities grouped inside the OutlierPipe command are commands
(Figure 4.8). The ColumnExtraction and ColumnDeletion commands belong
to the Preprocessing group, and the Algorithm and Prediction are inside the
Algorithms Group. The Accuracy belongs to the Metrics group. Finally, the
ScatterPlot is located in the Visualization group.

- User: Hi
- Bot: Hello
- User: Lets load the dataset outliers_sample_data in data/outliers.csv
- Bot: Done
- User: Do an outlier detection analysis in the dataset out-
liers_sample_data

- Bot: Done
- User: Bye
- Bot: Bye

The dialog above is an example of pipeline command usage. When the user
says "Do an outlier detection analysis in the dataset outliers_sample_data",
the Speech Manager recognizes the outline_pipe intention and creates an
instance of the OutliersPipe command. The OutliersPipe command is located
between the LoadDataset command and the Goodbye command, as shown in
Figure 4.12.
The OutliersPipe command contains six children nodes, one for each activity
listed in Figure 4.11. Notice that with the addition of pipes, the levels defined
for the speech tree structure change. The first level remains only with the
SpeechManager, and the second level now can contain instances of Command,
CommandWithArgs and pipes. Therefore, the third level, which only had
Argument instances, can have Argument, CommandWithArgs, Command and
other pipes. Notice that a pipe can not contain itself as a child, but it can
contain other pipes.

The execution of a pipe depends on their children nodes. However, the
arguments of the commands inside a pipe are not specified by the user. In this
case, the pipe generates the values of their children’s commands. For example,
the Algorithm Fit and the Model Prediction are subsequent activities of the
OutliersPipe command. After the execution of the Algorithm command, the

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 29

Figure 4.12: Example of speech tree with pipe.

OutliersPipe saves the result in the execution Context and passes the reference
of the model to the Model Prediction command. In this way, the OutliersPipe
command links its children commands for a straightforward execution.

The pipes can test several algorithms and select the one with the best
results. But we needed to try several combinations of parameters as well.
To achieve our goal, we support some automl tasks inside the system to
complement the pipes. We found several possible automl packages available
on the internet: TPOT, auto-sklearn, autoPyTorch, and Hyperopt-Sklearn.
However, they are all specific and build upon existing libraries. For example,
Auto-sklearn performs automl tasks with the scikit-learn library algorithms
while the autoPyTorch uses pytorch networks. We need a tool capable of extent
functionalities outside those libraries and adapt to new algorithms. We selected
the TPOT library to execute automl tasks within the system. The TPOT
library is based on the scikit learn library, but it can be adapted to other
algorithms which maintain the same programmable interface and methods. So
we could adapt the TPOT library to other algorithms outside the scikit-learn
library such as the PyOD library.

We created the TPOTCommand, which has access to the TPOT opti-
mization algorithms and extends the pipe base class. In this way, the TPOT
command can integrate with the system while executes the TPOT algorithms
to find the best arguments combination.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 30

4.3.5
Task Manager

The task manager deals with the execution thread in the application. Some
commands demand high computing resources, and the execution time became
greater than acceptable to hold the user waiting for an answer. In this case,
we decided to separate a thread for the conversation and other threads to
execute the Command instances. A Command instance sometimes depends on
previously executed commands and uses results from other commands. So, we
created an execution pool where all the tasks are gathered and organized for
execution. Figure 4.13 details the members of the TaskManager feature.

Figure 4.13: Class diagram of the Task Manager.

The Task Manager has a collection of Workers, capable of running as a
background execution thread. It returns the result after the Task completion.
The Task class is a definition of a job to be executed. It contains a function to
execute, the arguments, and a callback to notify the results. The TaskManager
inherits from the basic Queue and contains a queue of Task and a group of
Workers.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 31

The Speech Manager contains an instance of the Task Manager available
to all its Command children. The sequence of events triggered after a new
user message Figure 4.3 changes a little bit. From now on, the Speech Manager
creates a Task instance with the execution of the child Command embedded
and sends an asynchronous message to the Task Manager to run the Task.
The Task Manager adds the received Task instance into its processing queue,
and the Workers will execute it at some point. Notice here that the Speech
Manager returns to the user with a resulting promise. When the Task ends,
the Speech Manager will receive a notification via Task callback and present
the actual results to the user.

4.3.6
Code Generation

In this section, we introduce the code generation feature. The code generation
feature allows the system to generate usable python code from the speech tree
structure. The user triggers the generation of the code through a command.
The CodeGenerationCommand inherits from the CommandWithArgs base
class and contain one Argument. The required argument is the path to
save the generated code file. When the user asks for code generation, the
SpeechManager recognizes the code_generation intention and sets the Task as
it would normally do. The code generation begins with the execution of the
CodeGeneration command. This command goes up in the speech tree structure
and calls the generate_code method from the top of the tree. Figure 4.14
presents the CodeGenerator object.

The CodeGenerator has the code and the imports as a text attribute
and support operations to handle python code (indent and dedent). The Com-
mandManager module contains an instance of the CodeGenerator passed as a
parameter in the generate_code method to every command to generate their
code blocks. The code generation follows the same execution order and uses the
context to access variables and data. For instance, the LoadDatasetCommand
code generation applies the following steps detailed in Figure 4.15. Initially,
the command writes a code comment to set up the dataset loading code block.
All commands generate comments and separate their code into blocks. Next,
there come the general usage imports such as numpy and pandas. The Load-
DatasetCommand verifies if the dataset is a well-known dataset available in a
package or a dataset loaded from an external file.

In the case of a known dataset, the command generates the required
imports of the dataset and uses the load function provided by the package to
use the dataset. When dealing with external files, the command uses a read

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 32

Figure 4.14: Class diagram of the Task Manager.

function provided by the pandas library to read the file. Notice that the path
of the dataset is the dataset_path Argument of the LoadDatasetCommand.

4.3.7
User Profile

In this subsection, we present the user profile feature. We explain the structure
used to save a user profile and how we update it after each interaction with
the system. We categorized all available commands into eight groups as shown
in Figure 4.22: preprocessing, algorithm, visualization, pipe, metrics, code
generation, speaking, and others. The preprocessing group contains commands
related to the data manipulations such as the ColumnsExtractionCommand,
and the algorithm category has commands related to algorithm usage like
KNNCommand. The visualization category gather commands related to charts,
statistical plot and other commands with visual feedback. The pipe group has
all the PipelineCommand instances, and the metrics group has the commands
related to the metrics. The CodeGenerationCommand has its category, and
the speaking group contains the commands needed to maintain a conversation
with the bot. The others category comprises all the commands that do not fit
into any other category.
The created categories summarize a group of actions. With continuous use of

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 33

Figure 4.15: Code generation example of the LoadDataset command.

the system, each user may apply the commands inside a category more than the
rest. In this case, we assume that the user has a preferred category. We create
a structure to log the commands usage and ponder the categories presented in
Figure 4.17.
Initially, all categories receive the same initial value, and the sum is equal
to 1. This structure persists across multiple executions of the system. In this
way, the user preferences reflect the user’s continual usage. When the user
executes a command, the system updates the user profile with a predefined
rate. Algorithm 1 detailed the steps to update the user profile.
Algorithm 1 receives the current user profile and the last command executed.
In the first line (2), the algorithm saves the command, and in line 3 it increases
the value of the category by the update rate (0.01). The algorithm normalizes

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 34

Figure 4.16: User profile types and their related commands.

user_profile←

Preprocessing = 0.125
Algorithm = 0.125

V isualization = 0.125
Metrics = 0.125
Speaking = 0.125

Pipe = 0.125
Code = 0.125
Other = 0.125

Figure 4.17: Example of arguments in user inputs.

Algorithm 1 Update user profile with a new entry
1: procedure update_profile(user_profile, last_command)
2: last_command_category ← last_command.category
3: user_history[last_command_category]+ = 0.01
4: index← 0
5: total_sum← sum(user_history)
6: while index < len(user_history) do
7: current_command← user_history[index]
8: current_command.value← current_command.value/total_sum
9: end while

10: end procedure

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 35

the values from lines 6 to 9, so the sum of all categories is back to 1.0.
For example, after the creation of the user profile, assume that the first

command is a LoadDataset command. The algorithm (in line 3) updates the
value 0.125 to 0.126. Lines 6 to 9 normalize the rest of the categories, so the
sum scores one. Figure 4.18 presents the values of each category after the
update.

user_profile←

Preprocessing = 0.1257...
Algorithm = 0.1237...

V isualization = 0.1237...
Metrics = 0.1237...
Speaking = 0.1237...

P ipe = 0.1237...
Code = 0.1237...
Other = 0.1237...

Figure 4.18: Example of user profile after the first update by the LoadDataset
command

Notice how the execution of one command affects the values of other categories.

4.3.8
Personalized Content

In this subsection, we describe a process to personalize the bot for a
particular user. The idea is to learn from the user history like previous related
works such as (Kadariya et al., 2019; Musto et al., 2020; Tallyn et al., 2018).
Our goal is to reach the L2 level of automation in data science and machine
learning projects. Therefore, the bot does not have the autonomy to execute
commands by itself but commands given by the user. It means that the bot will
not take the initiative, but it can learn the most frequent command sequences
and propose a continuation of the analysis. For example, a user often uses
the PredictCommand after training a model through the AlgorithmCommand.
In this case, the bot could present the prediction results when the user asks
for the AlgorithmCommand. However, our system does not execute commands
proactively and will not execute the PredictCommand in this case. The bot can
use this knowledge differently. The system can provide suggestions to the users.
The suggestions execute when the user asks for them in compliance with the
L2 level of automation. The difference remains in the fact that the bot remains
reactive to the user commands. If the user wanted both commands executed
together, they would merge both actions into one command through a pipeline.
For example, the user could create a pipe command with AlgorithmCommand
and PredictCommand commands.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 36

Last five commands︷ ︸︸ ︷
greetings, load_dataset, ..., predict,

user_profile︷ ︸︸ ︷
0.123, 0.153, ..., 0.138 |

clf︷ ︸︸ ︷
plot_bar

Figure 4.19: User history dataset.

The system builds a dataset with the command history and the user profile to
generate suggestions. This dataset holds the most recent command chains of
the conversation. Figure 4.19 shows a row of the dataset. The row comprises a
fixed number of previous commands, the current user profile, and the current
command. It reads as follows: A user with this kind of profile executes the
current command after these previous commands. In this way, each new
command turns into a row of the dataset. This dataset stores personalized
information of every user and interactions with the system. We created a
DecisionTree model with the user dataset and saved it for later predictions.
This decision tree model is used in the PersonalizationManager class as shown
in Figure 4.20.

Figure 4.20: Personalization manager types and their related commands.

The SpeechManager passes an instance of the PersonalizationManager to the
tree structure inside the execution context. The PersonalizationManager is in
charge of providing personalized suggestions for the user through model pre-
dictions. We add the PersonalizeCommand, which inherits from the Command
class. The PersonalizeCommand is the intended way to access the Personal-
izationManager by the user. For example, in the following conversation, the

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 37

user asks for a suggestion.

- User: Hi
- Bot: Hello
- User: What can I do?
- Bot: Load a dataset.
- ...

When the user asks: "What can I do?", the bot identifies the personal-
ized_suggestion intention and creates an instance of the PersonalizedCom-
mand. The PersonalizedSuggestionCommand inherits directly from Command
instead of CommandWithArgs; therefore it does not require arguments. It cre-
ates a row for prediction with the previous commands plus the user profile. In
this case, we represent the row as follows:

Last five commands︷ ︸︸ ︷
null, null, ..., greetings,

user_profile︷ ︸︸ ︷
0.123, 0.153, ..., 0.138

Figure 4.21: User history dataset.

We use the row described in Figure 4.21 as input parameter to predict
further commands. In this case, the model predicts the load_dataset intention.
The load_dataset intention belongs to the LoadDatasetCommand, and the
PersonalizedCommand can finally suggest the LoadDatasetCommand to the
user.

4.3.9
Telegram Integration

This subsection presents how we connect our conversational agent to the Tele-
gram API interface. The Telegram API (https://core.telegram.org/bots/api)
offers several services to execute a chatbot inside the Telegram environment.
This environment includes multi-platform user interfaces for mobile, com-
puter, and tablet applications. To implement our solution, we used the li-
brary python-telegram available in https://pypi.org/project/python-telegram-
bot/. Among the services offered by the Telegram API, we can find gaming,
message editing, among others. We implement the following services in our
chatbot: receive text, send image, send text, and inline keyboard.

The text services (receive and send a text) are the base of our conver-
sational interface and solve most of the user’s needs. By combining these two
services, bots can receive user input, process it, and respond with a text mes-
sage. However, some user inputs should return charts. In these cases, the bot
uses the send image service to send an image. The inline keyboard allows mul-

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 38

tiple selections through the Telegram interface and can request confirmation
dialogs.

The bot also includes a list of specific commands. Commands are words
preceded by a slash, for instance, /start. The commands allow the user to
interact with the bot in a different scope and adjust the bot settings. Notice
that commands do not affect the current conversation history. We implement
the following commands:

– /hi to check if the bot is online.

– /spelling to enable/disable the spelling corrector.

– /learn: to map a phrase with a new intention. In this case the phrase is
added to the dataset for future learning.

– /suggest: to ask the bot for recommendations about how to continue the
analysis.

All previous commands will facilitate a more flexible conversational
interface.

4.4
Framework Overview

This subsection presents the proposed solution as a framework and high-
lights the fixed and variable components. Figure 4.22 illustrates a framework
overview of the solution.

Figure 4.22: Overview of hot spots.

The components with a white background are static, while the ones
with a red background are variable. In this case, the commands base classes
(Command, CommandWithArgs, Argument and PipelineCommand) are parts

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 4. Proposed Solution 39

of the core of the solutions. However, new commands can extend those
commands according to the situation. Other core functionalities are the
TaskManager, UserProfile, CodeGenerator, ExecutionContext, Personalization,
and IdentifyIntention modules. In the case of the IdentifyIntention module,
the model used by the bot to identify intentions needs to be adapted to new
commands. The model used in the Personalization module is in the same
situation, and we can explore other techniques to improve bot suggestions.
Finally, we can modify the categories of the UserProfile module according to
new commands, and the UserProfile module will adapt to the new categories.
In summary, the base of the modifications is new commands derived from
the Command base classes. However, other components such as UserProfile,
IdentifyIntention, and Personalization can be extended to be coherent with
new commands.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

5
Evaluation

This chapter describes how we evaluate our proposed solution, present the
results obtained, and discuss their implications. We carried out two experi-
ments. In the first experiment, Section 5.1, we instantiate our framework for
two different situations: outlier detection and data cleaning. In the second,
Section 5.2, users were asked to solve a data science task using the framework
components.

5.1
Framework instances

This section describes how we instantiate our framework in two data science
scenarios.

5.1.1
Outlier detection

One common data science problem is outlier detection, a widely explored
problem in the literature. There are many techniques and algorithms to face
such situations Chandola et al. (2007). Also, there are several applications in
credit card fraud detection (Yu and Wang, 2009), network security (Zhang
et al., 2010; Gogoi et al., 2011), to cite a few. However, all techniques rely on
data analysis to identify odd patterns. Outlier detection aims at identifying
anomalies in data (Hodge and Austin, 2004). Those anomalies can be human
mistakes, fraud, or simply natural deviation of data distributions. Simple
examples of outlier observations are negative ages due to human errors or
abnormal transactions from cloned credit cards.

We selected a set of actions related to outlier detection: (a) extract a
column from a dataset, (b) remove a column from a dataset, (c) train a specific
outlier detection algorithm, (d) predict using a created model, and (e) visualize
scatter plots. We map each action to a user intention as follow:

– Extract a column from a dataset: column_extraction

– Remove a column from a dataset: column_deletion

– Train specific outlier detection algorithm: outlier_algorithm

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 41

– predict using a created model: outlier_prediction

– visualize scatter plots: scatter_plot

Using the hot spots of the proposed solution, we create one command
for each new intention, extend the personalization model and create a new
chatbot model. The new commands require arguments; therefore, we inherit
from the CommandWithArgs base class instead of the Command base class.

Figure 5.1: Outlier detection use case framework implementation.

Figure 5.1 presents the commands created for this example: ColumnExtraction-
Command, ColumnDeletionCommand, OutlierAlgorithmCommand, Outlier-
PredictionCommand, and ScatterPlotCommand. The OutlierAlgorithmCom-
mand receives the algorithm to be trained. We incorporated the following
algorithms available in (Zhao et al., 2019): Principal Component Analysis
(PCA), One-Class Support Vector Machines (OCSVM), Local Outlier Fac-
tor (LOF), Clustering-Based Local Outlier Factor (CLOF), Histogram-based
Outlier Score (HBOS), K-Nearest Neighbors (KNN), Angle-Based Outlier De-
tection (ABOD), Isolation Forest (IForest), Extreme Boosting Based Outlier
Detection (XGBOD), Lightweight On-line Detector of Anomalies (LODA) and
Fully connected AutoEncoder (AutoEncoder). The NeuralNetworkBot uses the
same architecture detailed in Figure 4.6, while theOutlierPersonalizationModel
uses the default personalization model available in the proposed solution. We
extended both models to add debug logs of their operations.

To represent this scenario we generate a simple outlier detection dialogue:

- User: Hi
- User: Lets load the dataset dataset outlier_sample_data in
data/outlier.csv

- User: Select the target column and save it in outlier_target

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 42

- User: Remove the target column form the dataset outlier_sample_data
- User: Run the LODA algorithm and save it in autoencoder_model
- User: Predict using the autoencoder_model and save it in
model_predictions

- User: Plot a scatterplot with model_predictions as colors
- User: Generate code in data/sample.py
- User: Bye

The previous dialog contains possible user inputs. However, we omitted
bot responses and missing parameters interruptions to summarize the script.
Note that in the example script, the user triggers all the created commands
and uses some other general command such as LoadDatasetCommand or
GenerateCodeCommand.

Figure 5.2: Scatter plot result of the outlier.

Figure 5.2 shows the result of the ScatterPlotCommand. The plot uses the
predictions generated by the OutlierPredictionCommand to color the outliers
in red and the regular data in blue. The OutlierPredictionCommand used the
model generated by the OutlierAlgorithmCommand and the LODA algorithm.
The commands ColumnExtractionCommand and ColumnDeletionCommand
were used to prepare the dataset. The LODA algorithm used the default
arguments to generate the model. However, we wanted to search for a better
model. To overcome this situation, we created a pipeline to find a more accurate
model.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 43

The new pipeline command created OulierPipeCommand extends the
base class BasePipeCommand and defines the sequences of command to
execute and the execution order. In our case, we created the following sequence
of commands: ColumnExtractionCommand, ColumnDeletionCommand and
TPOTCommand. The TPOT command defines a grid search with several
algorithms and their parameters. In our example, the TPOT returned the
CBLOF(input_matrix, contamination=0.1, n_clusters=8) combination with
98% accuracy.

5.1.2
Data Cleaning

Data cleaning is one of the early stages of a data science process and is
contained inside the data preprocessing step. According to (Wang et al., 2021),
the data science process can be divided into tenv stages. One of the ten stages
is Data Preprocessing and contains data cleaning as one of the approaches
to process data. Data cleaning comprises all the techniques, strategies, and
methods to transform incorrect or inconsistent data (Hellerstein, 2008). In
this way, data should be transformed to grant the requirements of a specific
data science task (Krishnan et al., 2016). Common examples of data cleaning
are missing cells, text in numeric columns, or duplicated observations.

To implement our proposed solution framework we selected a set of data
cleaning actions: (a) duplicate in a column, (b) transform column to lower-
case/ uppercase, (c) remove additional white spaces, (d) replace Null/NaN
observations, (e) normalize column and (f) sort column. All selected activities
are handy in different situations. Transform to lowercase is useful when data
comes with the same entity written with a combination of lower and upper
case. For example, country names like (Brazil, BRAZIL, and brazil). All pre-
vious observations should be narrowed down to a single expression. Replace
Null/Nan observations comes in handy when there is a null cell in the data
that can potentially reduce performance in later stages of the data science
process. The null/ NaN observations can be replaced by the mean, median,
default value, etc. according to each problem specification or domain context.
However, in our implementation we allow the media and the median values
to replace the empty observation. Column normalization is key when there
are scaling problems with data and may mislead the rest of the data science
process. In summary, all selected data cleaning tasks help the outgoing data
science process in a very specific way. We map every task to a user intention
and generate a new command for every intention:

– duplicate in a column: column_duplication

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 44

– transform column to lowercase/uppercase: lower_upper_case

– remove additional white spaces: remove_white_spaces

– replace Null/NaN observations: replace_empty

– normalize column: column_normalization

– sort column: sort_column

Figure 5.3: Data cleaning use case framework implementation.

Figure 5.3 demonstrate how every created intention turned into a new system
command triggered by the user’s input. To extend the framework architecture,
we inherit from the appropriate base classes, retrain the intentions bot and
the personalization model. To evaluate the created command, we generate a
sample script:

- User: Hi
- User: Lets load the dataset cleaning_sample_data in data/data_cleaning.csv
- User: Remove duplicate lines from column x2
- User: Convert to lowercase the column x1 from the dataset clean-
ing_sample_data

- User: Replace empty values with the mean of the column x1
- User: Normalize the column x1 of the dataset cleaning_sample_data
- User: Sort the column x1 of the dataset cleaning_sample_data
- User: Bye

The previous dialogue was created to trigger all implemented commands
and process a test dataset. Note that we omitted bot answers and parameter
interruptions to simplify the example.

Figure 5.4(a) shows the dataset before the cleaning process while Fig-
ure 5.4(b) shows the dataset after the last sort command finished. Each com-
mand receives the dataset from the execution context, processes the data, and

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 45

(5.4(a)) Before (5.4(b)) After

Figure 5.4: Dataset before and after the data cleaning

replaces the same reference with the updated dataset. In this way, the cleaning
is made on the same dataset instead of duplicating the data on every command.
Also, by using the same reference, the commands can set a sequence similar
to the builder pattern where one command receives the result of the previous
cleaning command and generates the input for the next cleaning command.
By the end of the process, we remove unnecessary white spaces, normalize the
x1 column, replace the null/nan entries by the column mean value, and sort
the x1 column. Note how sorting messes up with the ids of the observations.

5.2
User Study

The study comprised four stages: Installation, Tutorial, Activities, and Ques-
tionnaire. Each stage has its specific purpose and depends on the completion
of previous stages. The purpose of this study is to verify if the data developer
can use the framework.

The Installation stage is to install the framework and its dependencies
on the participant’s computer. In this stage, we installed the framework on
different operating systems (Windows, Ubuntu, Debian, and Mac-OS) and
python versions (from 3.5.9 up to 3.8.5). The goal of this stage is to set up
the environment, and it was guided most of the time by the participants.
The analyst could act on installation errors that participants could not fix.
Once the participant had created the proper environment, we proceeded to the
Tutorial stage. The tutorial stage comprised several code chunks to execute and
play. The tutorial shows how to extend the framework with a new command
ColumnNamesCommand. The ColumnNamesCommand lists the columns of a
dataset already loaded by the framework. Every code chunk comes with an
explanation and enhances a complete but simple example of usage. For more
details, the tutorial is available at https://github.com/jefrysastre/dsbot. The
goal of this stage is to provide basic usage examples and an understanding

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 46

of the framework. The analyst guided this stage, and the participant followed
the instructions to get the framework with the examples working. This stage
represents a dialogue where participants ask about the framework and the
analyst answers all questions, even questions deviating from the tutorial
content. For example, the ColumnNamesCommand has a parameter to select
the dataset and show the columns. However, many participants wanted to
understand how the framework extracted the dataset name internally.

After the participants stated that they believed they could create their
commands, we proceeded with the activities stage. The activities stage com-
prised two tasks: first, to create a command to show the header of a dataset
already loaded in the framework. Our goal with this task was to get a general
idea about how much of the tutorial the user understood. Note that the com-
mand of the Tutorial ColumnNameCommand shows the columns of a dataset.
The user should make minor changes to get this task done. The second task
asked the participant to apply a logarithm function to the first column of a
dataset. This command requires a deeper understanding of the framework and
increases the difficulty of the activity. Finally, we asked the participants to ex-
ecute their code and test the two previous commands in the IRIS dataset. Our
goal was to assess whether the commands were implemented correctly and fix
the execution bugs. Finally, after a successful code test, the participants pro-
ceeded to the questionnaire stage. The questionnaire comprises four sections:
agreement, profile, activities, and code. The agreement section was created to
request permission to use participant’s data in our research. The profile sec-
tion has general questions about age, working areas, and python experience.
The activities section contains general questions about the framework. It also
has specific questions about each independent task (each command requested).
Finally, in the code section, the participants had to upload their python code
for analysis.

The proposed solution is intended for assisting data scientists who want
to automate some steps of the work process. Help novice data scientists who
can take advantage of commands made by other data scientists. Generate
data analysis scripts that can be shared and manually enhanced by other data
scientists. In other words, a data scientist arrives at a partial analysis of data
and can generate a script to share the findings made in the proposed solution
with other colleagues. The users should know the domain problem from a data
science point of view, and must define, model, and formulate the problem.

On the other hand, the users who extend the proposed solution and create
new commands will need the following background: - knowledge of python,
frameworks, and Object-Oriented Programming (OOP) - knowledge of the

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 47

data science process and the main strategies used in each stage.

5.2.1
Results

A total of 28 people participated in the study. 68% was between 31
and 40 years old, 25% was between 21 and 30 years old, and the remaining
were above 40. All participants have engineering degrees, 63% have a master’s
degree and 14% a Ph.D. degree. 82% of the participants come for computer
science programs while 18% are from other areas, such as chemistry or
telecommunication. From the 82% in computer science, 56% work with data
science. Most participants (71%) have between one and four years of experience
with python, 10% have more than four years of experience, and 18% have less
than a year of python usage. Almost all participants (90%) had previously
worked with the numpy and pandas libraries.

All participants completed both tasks answering our RQ2. In the first
task, 75% (CI95%(59%, 91%)) of the participants reported that they concluded
with little effort, while the remaining 25% claimed to have spent a moderate
amount of effort to complete the first task. None of the participants found
the first task very hard. More participants 82% (CI95%(67%, 96%)) found the
second task very easy, but they had already completed the first task. However,
one participant (3.6%) found the second task very hard to complete, and the
remaining 14% found the second task required a moderate amount of work.
The first command was very similar to the tutorial example and required
minor changes to complete. The second was more distant and required a deeper
understanding of the framework. However, more participants stated that the
second task was very easy to complete (82%) against the (75%) of the first
task. On the other hand, one participant found the second task harder than
the first one. In general, the margin of error varies from +-16% in the first task
and +-15% in the second task.

We created a set of variables to characterize each participant’s profile
and performance in the study, shown in Table 5.1.

Table 5.1: Variables created to quantify relevant aspects during the study.

Variable
Name

Description

participant This variable identifies the participants with a
unique code.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 48

installed_python This variable flags if the user had a python version
installed on the computer. Users that had not
used python recently might have greater difficulties
completing the activities.

python_experienceThis variable sets three levels of python experi-
ence: (1) for participants with less than one year
of experience, (2) for participants with one to four
years of experience, and (3) for participants with
more than four years of experience.

crawl_debugged This variable identifies the users who investigated
the source code by crawling the git files or debug-
ging the tutorial examples.

code_generation This variable identifies the participants who asked
questions, did not understand or skipped the code
generation methods.

left_super This variable identifies the participants who left
the tutorial superclass in their code.

imports This variable identifies the participants who asked
questions or missed the import numpy package
during the activities.

dataset_reference This variable identifies the participants who omit-
ted the dataset reference during the execution of
the activities.

bot_extension This variable identifies the participants who did
not register their commands in the framework.

unused_code This variable identifies the participants who no-
ticed the unnecessary code chunk in the tutorial
examples.

suggest_updates This variable identifies the participants who sug-
gested at least one relevant improvement on the
framework. This variable means that the partici-
pant achieved a reasonable level of understanding
of the framework limits and proposed an improve-
ment of some kind.

first_activity
difficulty

This variable identifies the level of difficulty to
complete the first activity. The possible values are:
(1) very easy, (2) reasonable work, (3) very hard,
(4) I couldn’t do it.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 49

second_activity
difficulty

This variable identifies the level of difficulty to
complete the second activity. The possible values
are: (1) very easy, (2) reasonable work, (3) very
hard, (4) I couldn’t do it.

25

21.43

46.43

35.71

14.29

21.43

25

10.71

25

unused_code

imports

crawl_debugged

dataset_reference

installed_python

bot_extensions

suggest_updates

left_super

code_generation

0

10

20

30

40

Analyzed variables

Fr
eq

ue
nc

y(
%

)

Figure 5.5: Frequency of events in the dataset.

In Figure 5.5, we can observe the frequency (in percentages) of the
boolean variables of interest collected in the study. Almost half of the par-
ticipants (50%) presented difficulties with code generation during the study.
However, all of them ended up completing the activities after several attempts.
Note that 25% of the participants made relevant suggestions that prove a
deeper understanding of the framework. 20% read or debugged the source code
to clarify some framework behaviors. 25% of the participants did not have a
python version installed on the computer, and only 10% noticed the unused
code lines in the tutorial. Therefore, 90% of the participants accepted those
lines of code and did not question their role in the tutorial.

We created a correlation matrix to analyze how the variables are related.
Figure 5.6 present the correlation matrix.

We can observe that the highest correlation happens between python
experience and installation concerning the perceived difficulty of the activities
with value −0.6. This negative correlation suggests, as expected, that users less
experienced with python found the activities more challenging than users with
more experience using python. Another strong correlation occurred between
python installation and code generation, with value +0.6. This suggests that
users without a python installed on their machine had more trouble completing

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 50

installed_python
python_experience
craw

l_debugged
code_generation
left_super
im

ports
dataset_reference
bot_extensions
unused_code
suggest_updates
first_activity_difficulty
second_activity_difficulty

second_activity_difficulty
first_activity_difficulty

suggest_updates
unused_code

bot_extensions
dataset_reference

imports
left_super

code_generation
crawl_debugged

python_experience
installed_python

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 5.6: Correlation of the variables.

the code generation part of the activities than users with a python installed.
People with python installed are expected to be more frequent python users
and to be more familiarized with coding activities. To investigate this in more
detail, we generated a scatterplot (Figure 5.7).

In Figure 5.7(a), we can see the occurrence of the value combina-
tions of the more correlated variables. For instance, in the case of the
code_generation and the python_installed variables we can see that the combi-
nation python_installed = 0 and code_generation = 1 did not happen for any
of the participants. Therefore, all the participants who did not have python
installed present difficulties with the code generation. Moreover, we can see
that all participants with more than one year of python experience found the
second activity very easy to complete. Only users who claimed to have less than
a year of python experience found the second activity more difficult. Also, all
participants who found the second activity with a moderate to a high level of
complexity presented problems during code generation. Therefore, all the par-
ticipants that did not have difficulties with code generation found the second
task very easy to complete.

Figure 5.7(b) presents the correlation matrix between python_installed,
python_experience, first_activity_difficulty and the second_activity_difficulty.
As expected, we can observe a positive linear correlation between the in-
stalled_python and the activities difficulty. There is a negative linear cor-

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 51

1 1.5 2 2.5 3

0

0.5

1

0 0.5 1

1

1.5

2

2.5

3

1 1.5 2

0

0.5

1

1 1.5 2 2.5 3

1

1.5

2

python_experience code_generation first_activity_difficulty second_activity_difficulty

in
st
al
le
d_

py
th
on

py
th
on

_e
xp

er
ie
nc

e
co

de
_g

en
er
at
io
n

fir
st
_a

ct
iv
it
y_

di
ff
ic
ul
ty

(5.7(a)) Scatterplot of single
value occurrences.

−0.5 0 0.5 1

−0.5

0

0.5

1

−0.5 0 0.5 1

−0.5

0

0.5

1

−0.5 0 0.5 1

−0.5

0

0.5

1

python_experience first_activity_difficulty second_activity_difficulty

in
st
al
le
d_

py
th
on

py
th
on

_e
xp

er
ie
nc

e
fir
st
_a

ct
iv
it
y_

di
ff
ic
ul
ty

(5.7(b)) Scatter correlation
matrix of the python_installed,
python_experience and the

activities difficulty.

Figure 5.7: Scatter matrix of the strongest correlated variables.

relation between the python_experience and the activities difficulty. Those
correlations agree with the findings from the scatter matrix. Also, we can
observe that there is a strong correlation between the participants who claimed
to have more than one year of python experience and the participants who
had to install python for the study.

We filtered the collected dataset by the python_experience variable to
keep the participants with more than one year of python experience. There
are 22 participants with more than one year of python experience and, in the
first task 82% (CI95%(69%, 95%)) found the task very easy to complete. In
this case, the margin of error varied from 16% (28 participants) to 13% (22
participants with more than one year of python experience) and maintained
the original sample distribution. However, all participants with more than one
year of python experience found the second task very easy to complete. In this
case, the margin of error varies from 15% (28 participants) to near 0% (22
participants with more than one year of python experience). We believe that
users with more than one year of python experience learned from the first task
and found the second one easier to complete. Note that four participants with
more than one year of python experience found the first task with moderate
difficulty, and all participants found the second task very easy to complete.
However, we expected it to be the other way because the first task was similar
to the tutorial example while the second was further away from the tutorial.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 52

5.2.2
Discussion

In this subsection, we first describe some recurrent scenarios during the
application of the study and then present some analysis of the collected
variables.

Five participants had wrong or broken Pip (Python installer Packages)
links due to old Pip versions. We commonly solve this error by upgrading
Pip to the latest version. In some environments, participants used packages
conflicting with another project. We create a new virtual environment with a
clean python setup. Some participants had low internet speed. This problem
did not affect the installation but instead forced two participants to schedule
a second session to continue with the study. Some computers did not have
enough disk space available. We solved this problem by freeing space on the
disk. However, we needed to free up to 3GB on the main computer partition
to complete the installation, although the installation required only 1.5GB.
Note that the Pip tool uses the main partition to download the packages, so
even when participants installed on different hard drive partitions, the main
partition needed free space. Almost all participants posed questions about the
code generation section, but only a few inspected the source code files to find
out. Other participants debugged the tutorials to gain a clear understanding
of the execution context.

Seven participants skipped the code generation for the commands or
pasted the tutorial code generation example. Some participants misunderstood
the purpose of the study. Others did not find it necessary to complete the
activities. The participants could get a false sense of completion if they skipped
the code generation because the bot executes the commands and shows results.
However, the framework did not generate code for those commands and
this might affect future code generation blocks. Almost all participants left
the ColumnNameCommand superclass for their commands and received an
execution error during the tests. All participants quickly realized and fixed the
error.

Four participants assumed that there was no need to import their
packages inside their commands. The second command requires the numpy
library, and some participants argued that the framework already loaded the
numpy library. This error could be because the numpy and pandas libraries
appear together frequently, and the framework uses the pandas library. So,
participants could use the pandas dataframe object without importing the
pandas library. Some users said: ’I already have a dataframe object, and I didn’t
import the pandas library.’. The force_training parameter determines whether

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 5. Evaluation 53

the framework can use old serialized files or it must train a new chatbot. Seven
participants left the force_training parameter set to true even when loading
an old chatbot to test several ideas. This parameter affected only the loading
time of the chatbot at every execution. However, when training heavy models,
the training should be executed only on demand. Almost every participant
used their commands without specifying the dataset value. All commands
in the Tutorial and the Activities required a dataset argument to complete
the action. However, almost no one realized that they were not specifying
the dataset value, and the framework completed the action correctly. The
framework resolved the last referenced dataset in the dialogue and used that
dataset to complete the action. Nevertheless, participants did not know about
it, and none of them questioned the framework behavior. Some participants
argued: ’Naturally, the framework uses the dataset we are talking about.’.

Seven participants did not register their commands to the extension
option of the framework. The extension option defines a list of new commands
that the framework must incorporate and train all the models. In those cases,
the code did not break, but the bot failed to recognize those commands and
some participants struggled to find out why. Most of them tried to find errors
inside their command, but the problem was in the framework initialization.
In the tutorial code, we placed an unused import of a random class from the
framework. This line of code had no explanation or links to any other code
on the tutorial. However, almost no participant (3 participants) questioned or
removed the unused code chunk. The rest of the participants (25 participants)
ignored or just accepted the code without knowing the reason for its being
there.

Some participants suggested that the framework should have a function
that receives all the hot spots and create a class internally. This approach
should remove the object-oriented programming (OOP) dependency and re-
duce the amount of code required to extend the framework. However, it be-
comes more cryptic. Other participants suggested that the bot should main-
tain the loaded object through several executions. This case happened when
the participants tried to use a dataset from old conversations.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

6
Conclusion

This work describes a framework to automate data science tasks by using
personalized chatbots. To do so, we instantiated the framework in an outlier
detection scenario. We also conducted a user study to demonstrate the use
of the tool. The proposed solution and the outlier detection instance of the
framework answer our RQ1, as discussed in Section 5.1. The outlier detection
instance shows how we instantiate framework components to automate specific
data science tasks; specifically, the personalization model to reach the desired
L2 level of automation. The user study carried out answered our RQ2, as
discussed in Section 5.2.1. It shows that data developers are able to extend the
proposed framework for specific scenarios.

We also analyzed that the highest correlation happens between python
experience and installation concerning the difficulty of the activities. We show
that this negative correlation infers that users less experienced with python
found the activities more challenging than users with more experience using
python. Our results would seem to suggest that code generation depends on
python installation. We conjecture that the main reason is that users without
python installed on their machine had more difficulty in finalizing the coding
activities than users with python installed. In addition, during the interview,
some participants suggested that the framework should have a function that
receives all the hot spots and create a class internally.

We see two main contributions of this work. First, the main contribution
is the proposed workflow to reach L2 level of automation. We achieved our
goal through conversational interfaces and personalized suggestions. Second,
the presented framework to automate some DS/ML processes.

Next, we point out some limitations of this work. First of all, our study
did not evaluate the impact of the suggestions provided by the framework to
guide the user on DS/ML procedures. For this reason, we recommend a future
study to evaluate how such recommendations influence the users’ DS/ML
procedures execution. Moreover, how new data collected from data might
improve the system recommendations. A second limitation is the monitoring
of the background activities. We did not propose tools or commands to keep
track of background activities. Therefore, the data scientists will only receive

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 6. Conclusion 55

the final results. However, sometimes the data scientist needs to collect partial
results, or the working task does not make sense anymore. Finally, a third
limitation is that the participants of our evaluation study were mostly data
developers. However, a more heterogeneous group can show different findings
and improve the user study.

6.1
Future works

As future work, we can also add another level of automation to the
framework, such as the L3 automation level as a user configuration. In this
case, the bot should have more flexibility to take action. However, the bot
may waste some time due to poor decisions. We could take advantage of the
bot suggestions and the confidence of the proposed continuation steps. The bot
can automatically initiate the suggestions above a certain confidence threshold
to achieve the desired level of automation.

Another future work can be the preparation of the framework to accept
new commands as functions. This approach should remove the object-oriented
programming dependency and reduce the amount of code required to use the
framework. The only way to extend the framework is through inheritance and
overriding the correct classes. However, several participants suggested that
they would have preferred a different approach to create new commands. In
this case, the bot instance requires methods to receive the framework hot spots
and internally create the corresponding class.

Some participants assumed that their datasets remain loaded through
several executions, but the framework releases the memory resources upon
exit. We believe that this scenario could be an interesting future work, where
users can make loaded datasets and models permanent until the user explicitly
deletes those objects. In this way, the instances will remain loaded through
several framework executions. But, we must consider memory consumption.
The bot should serialize the permanent object before exiting the application
and load it back again after the initialization.

We see that more than half of participants had some issue while generat-
ing code based on the variables collected. We propose a new study focusing on
the code generation feature to reveal why the participants had trouble genera-
tion code. From the data scientist’s point of view, the code generation feature
can turn a conversation into a script to manually work on later. This study
will clarify the code generation contributions.

Finally, one could create a domain-specific language(DSL) below the
chatbot layer to export/import conversations in a pseudo-language. In this

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Chapter 6. Conclusion 56

case, the users can modify some aspects of the conversation and run the
conversation again without going through every interaction with the bot.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Bibliography

Abdellatif, A., Costa, D., Badran, K., Abdalkareem, R., and Shihab, E. (2020).
Challenges in chatbot development: A study of stack overflow posts.

Alemu, E. N. and Huang, J. (2020). Healthaid: Extracting domain targeted
high precision procedural knowledge from on-line communities. Informa-
tion Processing & Management, 57(6):102299.

Berthold, M. R. (2019). What does it take to be a successful data scientist?
Harvard Data Science Review, 1(2).

Brandtzaeg, P. B. and Følstad, A. (2018). Chatbots: changing user needs and
motivations. Interactions, 25(5):38–43.

Chandola, V., Banerjee, A., and Kumar, V. (2007). Outlier detection: A survey.
ACM Computing Surveys, 14:15.

Chaves, A. and Gerosa, M. (2019). How should my chatbot interact?
a survey on human-chatbot interaction design.(2019). arXiv preprint
arXiv:1904.02743.

Chittò, P., Baez, M., Daniel, F., and Benatallah, B. (2020). Automatic
generation of chatbots for conversational web browsing. In International
Conference on Conceptual Modeling, pages 239–249. Springer.

Costa, C. and Santos, M. Y. (2017). A conceptual model for the professional
profile of a data scientist. In World Conference on Information Systems
and Technologies, pages 453–463. Springer.

Dey, S. and Zhang, P. (2019). Estimating personalized drug responses from
real world evidence. US Patent App. 15/855,314.

Ed-douibi, H., Cánovas Izquierdo, J. L., Daniel, G., and Cabot, J. (2021).
A model-based chatbot generation approach to converse with open data
sources. In International Conference on Web Engineering, pages 440–455.
Springer.

Fast, E., Chen, B., Mendelsohn, J., Bassen, J., and Bernstein, M. S. (2018).
Iris: A conversational agent for complex tasks. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, pages 1–12.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Bibliography 58

Følstad, A. and Brandtzæg, P. B. (2017). Chatbots and the new world of hci.
interactions, 24(4):38–42.

Følstad, A., Nordheim, C. B., and Bjørkli, C. A. (2018a). What makes users
trust a chatbot for customer service? an exploratory interview study. In
International Conference on Internet Science, pages 194–208. Springer.

Følstad, A., Skjuve, M., and Brandtzaeg, P. B. (2018b). Different chatbots
for different purposes: towards a typology of chatbots to understand
interaction design. In International Conference on Internet Science, pages
145–156. Springer.

Ghandeharioun, A., McDuff, D., Czerwinski, M., and Rowan, K. (2019). To-
wards understanding emotional intelligence for behavior change chatbots.
In 2019 8th International Conference on Affective Computing and Intel-
ligent Interaction (ACII), pages 8–14. IEEE.

Gogoi, P., Bhattacharyya, D., Borah, B., and Kalita, J. K. (2011). A survey
of outlier detection methods in network anomaly identification. The
Computer Journal, 54(4):570–588.

Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera, S., Ho, T. K.,
Macià, N., Ray, B., Saeed, M., Statnikov, A., et al. (2015). Design of the
2015 chalearn automl challenge. In 2015 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE.

Harris, H., Murphy, S., and Vaisman, M. (2013). Analyzing the analyzers: An
introspective survey of data scientists and their work. " O’Reilly Media,
Inc.".

He, X., Zhao, K., and Chu, X. (2019). Automl: A survey of the state-of-the-art.
arXiv preprint arXiv:1908.00709.

Hellerstein, J. M. (2008). Quantitative data cleaning for large databases.
United Nations Economic Commission for Europe (UNECE), 25.

Hodge, V. and Austin, J. (2004). A survey of outlier detection methodologies.
Artificial intelligence review, 22(2):85–126.

Idoine, C., Krensky, P., Brethenoux, E., Hare, J., Sicular, S., and Vashisth, S.
(2018). Magic quadrant for data science and machine-learning platforms.
Gartner, Inc, page 13.

Jones, J. (2003). Abstract syntax tree implementation idioms. In Proceedings of
the 10th conference on pattern languages of programs (plop2003), page 26.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Bibliography 59

Kadariya, D., Venkataramanan, R., Yip, H. Y., Kalra, M., Thirunarayanan,
K., and Sheth, A. (2019). kbot: Knowledge-enabled personalized chatbot
for asthma self-management. In 2019 IEEE International Conference on
Smart Computing (SMARTCOMP), pages 138–143. IEEE.

Knoop, S. E., Ng, T. H. M., and Timm, J. T. (2019). Personalized questionnaire
for health risk assessment. US Patent App. 15/716,819.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and Leyton-Brown, K.
(2017). Auto-weka 2.0: Automatic model selection and hyperparame-
ter optimization in weka. The Journal of Machine Learning Research,
18(1):826–830.

Krishnan, S., Haas, D., Franklin, M. J., and Wu, E. (2016). Towards reliable
interactive data cleaning: A user survey and recommendations. In Pro-
ceedings of the Workshop on Human-In-the-Loop Data Analytics, pages
1–5.

Le, T. T., Fu, W., and Moore, J. H. (2020). Scaling tree-based automated
machine learning to biomedical big data with a feature set selector.
Bioinformatics, 36(1):250–256.

Liu, S., Leng, Z., and Wijaya, D. (2020). Learning to mirror speaking
styles incrementally. Available at http://arxiv.org/pdf/2003.04993v1
(2020/03/05) | 4 pages, 3 tables, 1 figure.

Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., Urban, M.,
Burkart, M., Dippel, M., Lindauer, M., and Hutter, F. (2018). Towards
automatically-tuned deep neural networks. In Hutter, F., Kotthoff, L., and
Vanschoren, J., editors, AutoML: Methods, Sytems, Challenges, chapter 7,
pages 141–156. Springer. To appear.

Musto, C., Narducci, F., Polignano, M., de Gemmis, M., Lops, P., and Se-
meraro, G. (2020). Towards queryable user profiles: Introducing con-
versational agents in a platform for holistic user modeling. In UMAP
2020 Adjunct - Adjunct Publication of the 28th ACM Conference on User
Modeling, Adaptation and Personalization, pages 213–218. Association for
Computing Machinery.

Neururer, M., Schlögl, S., Brinkschulte, L., and Groth, A. (2018). Perceptions
on authenticity in chat bots. Multimodal Technologies and Interaction,
2(3):60.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Bibliography 60

Pérez-Soler, S., Guerra, E., and de Lara, J. (2021). Creating and migrating
chatbots with conga. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 37–40. IEEE.

Portela, M. and Granell-Canut, C. (2017). A new friend in our smartphone?
observing interactions with chatbots in the search of emotional engage-
ment. In Proceedings of the XVIII International Conference on Human
Computer Interaction, pages 1–7.

Porter, T. T. (2015). Identifying the data scientist amongst stem educators:
An introspective survey of work skills. PhD thesis, Capella University.

Reis, L., Maier, C., Mattke, J., and Weitzel, T. (2020). Chatbots in healthcare:
Status quo, application scenarios for physicians and patients and future
directions. In ECIS.

Rhee, C. and Choi, J. (2020). Effects of personalization and social role in
voice shopping: An experimental study on product recommendation by a
conversational voice agent. Computers in Human Behavior.

Rönnberg, S. (2020). Persuasive chatbot conversations: Towards a personalized
user experience.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Smestad, T. L. (2018). Personality matters! improving the user experience
of chatbot interfaces-personality provides a stable pattern to guide the
design and behaviour of conversational agents. Master’s thesis, NTNU.

Sun, Y. and Zhang, Y. (2018). Conversational recommender system. In The
41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, pages 235–244.

Suta, P., Lan, X., Wu, B., Mongkolnam, P., and Chan, J. (2020). An overview
of machine learning in chatbots. Int J Mech Engineer Robotics Res,
9(4):502–510.

Tallyn, E., Fried, H., Gianni, R., Isard, A., and Speed, C. (2018). The ethnobot:
Gathering ethnographies in the age of iot. In Proceedings of the 2018 CHI
conference on human factors in computing systems, pages 1–13.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Bibliography 61

Wang, D., Liao, Q. V., Zhang, Y., Khurana, U., Samulowitz, H., Park, S.,
Muller, M., and Amini, L. (2021). How much automation does a data
scientist want? arXiv preprint arXiv:2101.03970.

Yao, Q., Wang, M., Chen, Y., Dai, W., Yi-Qi, H., Yu-Feng, L., Wei-Wei,
T., Qiang, Y., and Yang, Y. (2018). Taking human out of learning
applications: A survey on automated machine learning. arXiv preprint
arXiv:1810.13306.

Yu, W.-F. and Wang, N. (2009). Research on credit card fraud detection
model based on distance sum. In 2009 International Joint Conference on
Artificial Intelligence, pages 353–356. IEEE.

Zhang, Y., Meratnia, N., and Havinga, P. (2010). Outlier detection techniques
for wireless sensor networks: A survey. IEEE communications surveys &
tutorials, 12(2):159–170.

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: A python toolbox for scalable
outlier detection. Journal of Machine Learning Research, 20(96):1–7.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

A
Appendix

The appendices contains extra material related to our work. In Ap-
pendix we present a detailed installation guide and several tutorial examples.
The installation guide will facilitate further reproductions of this work.

A.1
Installation guide and tutorial

In this section we plan to setup an environment to run the proposed solution.
We list all the prerequisites and provide a brief explanation.

DSBot is a chatbot framework to automate data science and machine
learning processes. The framework provide several common base commands
and the capability to adapt to other scenarios by creating new commands.
Install and update using pip https://pypi.org/project/pip/ tool.

The framework can be installed in Windows, MacOS and Linux using
python versions from 3.5.x to 3.8.x. The installation process takes between 15
and 30 minutes depending on the internet link speed. The framework depends
on several heavy packages such as tensorflow and pytorch. The framework
requires around 2GB to download all the dependencies on the installation
folder and up to 5GB on the main partition, specifically in the temporary
cache folder.

A.1.1
A Simple Example

This first example show the minimal settings required to execute the
framework. The bot_options object contains all framework options. In this
case the save_path option points to a folder to store the generated files. The
framework will generate files to save and load the bot after the training. Also
will serialize the user history and the preprocessed datasets.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Appendix A. Appendix 63

Figure A.1: Basic framework example.

Note: The system will create the data directory if not exist.

A.1.2
Creating New Command

In this subsection we will extend the framework to create a new command. The
command is going to be the. ShowColumnNamesCommmand. This command
will show the names of the columns in a specified dataset. Figure A.2 shows
how to create a command using the framework. We can see that we import the
CommandWithArgs base class and create a new class extending Command-
WithArgs. The tag holds the unique command code required to identify the
command. The triggers stores some patterns to execute the command. In other
words: how the command will be called during a conversation.

Figure A.2: New command class.

Our command ColumnNameCommand must know from which dataset

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Appendix A. Appendix 64

it has to list the columns. So, we need to add a parameter dataset_name.
The method create_dataset receives the dataset name and a trigger phrase.
Also, we have to prepare the bot answers responses. To do this, we setup the
__init__ method as shown in Figure A.3

Figure A.3: Command initialization.

The create_argument function will create a property dataset_name to
save the dataset parameter. In fact, the argument extraction will use regular
expressions to select what the user types after the word dataset. For instance,
when the user types "vamos carregar o dataset iris". The system will understand
the dataset_name values as "iris". Just the word after the "dataset" trigger.At
this point, we have a base command with a dataset argument, but with the
default functionality. To override the default behavior we override the run and
generate_code methods.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Appendix A. Appendix 65

Figure A.4: Overriding default functionalities.

At this point, we have a new command ready to be used by the
framework. However, to execute the bot with the new command, we need
to pass it in the initial configuration options as you can see in the following
example.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Appendix A. Appendix 66

Figure A.5: Basic framework example.

The system requires several files such as the corpus, the bot (tensorflow
files), among others. When we add new commands or extend the base com-
mands with new ones, we must recreate those files. otherwise the system will
load old files without the new commands. To summarize, the main.py needs
to have the same number of commands as the files in the data folder. For ex-
ample, if we add the ColumnNameCommand in the extend parameter without
the force_training parameter set to true, the system will load old serialized
files and return an error. The loaded commands does not match the extended
commands. To force the training and serialization of new files, we can use the
force_training parameter set to true.

A.1.3
Study Activities

Nosso estudo consiste em estender um framework para criar chatbots,
mas antes de tudo vamos entender o tutorial da ferramenta no link
https://github.com/jefrysastre/dsbot.

Crie um chat bot capaz de executar as seguintes tarefas utilizado
a ferramenta DSBot. Para criar os commandos novos vc tem que esten-
der a ferramenta. Para estender a ferramenta siga os exemplos do link:
https://github.com/jefrysastre/dsbotcreating-new-commands

– Crie um comando para mostrar o cabeçalho do dataset (as 5 primeiras
linhas). Pode usar a funcão head do pandas para mostrar as linhas.

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

Appendix A. Appendix 67

– Aplique uma transformação logaritmica na primeira coluna. Pode usar a
função np.log do pacote numpy.

– Carrege o dataset iris e teste os comandos que vc implementou. Para
carregar o dataset escreva algo do tipo: "vamos carregar o dataset iris".

DBD
PUC-Rio - Certificação Digital Nº 1813314/CA

	A Framework to automate data science tasks through personalized chatbots
	Resumo
	Table of Contents
	Introdução
	Motivation
	Problem definition
	Methodology
	Contributions
	Document details

	Backgorund
	Chatbots
	AutoML

	Related works
	Overview
	Articles Selection
	Conversational Interfaces
	Personalized Content Implementation Examples

	Considerations

	Proposed Solution
	Overview
	Architecture
	Implementation details
	Identify Intention Bot
	Commands Hierarchy
	Speech Tree Structure
	Pipelines
	Task Manager
	Code Generation
	User Profile
	Personalized Content
	Telegram Integration

	Framework Overview

	Evaluation
	Framework instances
	Outlier detection
	Data Cleaning

	User Study
	Results
	Discussion

	Conclusion
	Future works

	Bibliography
	Appendix
	Installation guide and tutorial
	A Simple Example
	Creating New Command
	Study Activities

