Título: | ANALYSIS OF MORSE MATCHINGS: PARAMETERIZED COMPLEXITY AND STABLE MATCHING | ||||||||||||
Autor: |
JOAO ANTONIO RECIO DA PAIXAO |
||||||||||||
Colaborador(es): |
THOMAS LEWINER - Orientador |
||||||||||||
Catalogação: | 16/DEZ/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56591&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56591&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.56591 | ||||||||||||
Resumo: | |||||||||||||
Morse theory relates the topology of a space to the critical elements of a
scalar function defined on it. This applies in both the classical theory and
a discrete version of it defined by Forman in 1995. Those Morse theories
permit to characterize a topological space from functions defined on it, but
also to study functions based on topological constructions it implies, such as
the Morse-Smale complex. While discrete Morse theory applies on general
cell complexes in an entirely combinatorial manner, which makes it suitable
for computation, the functions it considers are not sampling of continuous
functions, but special matchings in the graph encoding the cell complex
adjacencies, called Morse matchings.
When using this theory to study a topological space, one looks for optimal
Morse matchings, i.e. one with the smallest number of critical elements, to
get highly succinct topological information about the complex. The first
part of this thesis investigates the parameterized complexity of finding such
optimal Morse matching. On the one hand the Erasability problem, a
closely related problem to finding optimal Morse matchings, is proven to be
W[P]-complete. On the other hand, an algorithm is proposed for computing
optimal Morse matchings on triangulations of 3-manifolds which is fixed parameter
tractable in the tree-width of its dual graph.
When using discrete Morse theory to study a scalar function defined on
the space, one looks for a Morse matching that captures the geometric
information of that function. The second part of this thesis introduces a
construction of Morse matchings based on stable matchings. The theoretical
guarantees about the relation of such matchings to the geometry are
established through surprisingly simple proofs that benefits from the local
characterization of the stable matching. The construction and its guarantees
work in any dimension. Finally stronger results are obtained if the function
is discrete smooth on the complex, a notion defined in this thesis.
|
|||||||||||||
|