
João Antônio Recio da Paixão

Analysis of Morse matchings:
parameterized complexity and stable matching

Tese de Doutorado

Thesis presented to the Postgraduate Program in Mathematics of
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Abstract

Paixão, João; Lewiner, Thomas. Analysis of Morse matchings:
parameterized complexity and stable matching. Rio de Ja-
neiro, 2014. 86p. Tese de Doutorado — Departamento de Matemá-
tica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Morse theory relates the topology of a space to the critical elements of a

scalar function defined on it. This applies in both the classical theory and

a discrete version of it defined by Forman in 1995. Those Morse theories

permit to characterize a topological space from functions defined on it, but

also to study functions based on topological constructions it implies, such as

the Morse-Smale complex. While discrete Morse theory applies on general

cell complexes in an entirely combinatorial manner, which makes it suitable

for computation, the functions it considers are not sampling of continuous

functions, but special matchings in the graph encoding the cell complex

adjacencies, called Morse matchings.

When using this theory to study a topological space, one looks for optimal

Morse matchings, i.e. one with the smallest number of critical elements, to

get highly succinct topological information about the complex. The first

part of this thesis investigates the parameterized complexity of finding such

optimal Morse matching. On the one hand the Erasability problem, a

closely related problem to finding optimal Morse matchings, is proven to be

W [P ]-complete. On the other hand, an algorithm is proposed for computing

optimal Morse matchings on triangulations of 3-manifolds which is fixed-

parameter tractable in the tree-width of its dual graph.

When using discrete Morse theory to study a scalar function defined on

the space, one looks for a Morse matching that captures the geometric

information of that function. The second part of this thesis introduces a

construction of Morse matchings based on stable matchings. The theoretical

guarantees about the relation of such matchings to the geometry are

established through surprisingly simple proofs that benefits from the local

characterization of the stable matching. The construction and its guarantees

work in any dimension. Finally stronger results are obtained if the function

is discrete smooth on the complex, a notion defined in this thesis.

Keywords
Discrete Morse theory. Optimal Morse function. Parameterized com-

plexity. Morse-Smale decomposition. Stable matching. Computational

topology.
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Resumo

Paixão, João; Lewiner, Thomas. Análise de casamentos de
Morse:complexidade parametrizada e casamento estável.
Rio de Janeiro, 2014. 86p. Tese de Doutorado — Departamento de
Matemática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

A teoria de Morse relaciona a topologia de um espaço aos elementos cŕıticos

de uma função escalar definida nele. Isso vale tanto para a teoria clássica

quanto para a versão discreta proposta por Forman em 1995. Essas teorias

de Morse permitem caracterizar a topologia do espaço a partir de funções

definidas nele, mas também permite estudar funções a partir de construções

tipológicas derivadas dela, como por exemplo o complexo de Morse-Smale.

Apesar da teoria de Morse discreta se aplicar para complexos celulares gerais

de forma inteiramente combinatória, o que torna a teoria particularmente

bem adaptada para o computador, as funções usadas na teoria não são

amostragens de funções cont́ınuas, mas casamentos especiais no grafo que

codifica as adjacências no complexo celular, chamadas de casamentos de

Morse. Quando usar essa teoria para estudar um espaço topológico, procura-

se casamentos de Morse ótimos, i.e. com o menor número posśıvel de

elementos cŕıticos, para obter uma informação topológica do complexo sem

redundância. Na primeira parte desta tese, investiga-se a complexidade

parametrizada de encontrar esses casamentos de Morse ótimos. Por um

lado, prova-se que o problema Erasability, um problema fortemente

relacionado à encontrar casamentos de Morse ótimos, é W [P ]-completo.

Por outro lado, um algoritmo é proposto para calcular casamentos de Morse

ótimos em triangulações de 3-variedades, que é FPT no parâmetro do tree-

width de seu grafo dual. Quando usar a teoria de Morse discreta para estudar

uma função escalar definida no espaço, procura-se casamentos de Morse

que capturam a informação geométrica dessa função. Na segunda parte é

proposto uma construção de casamentos de Morse baseada em casamentos

estáveis. As garantias teóricas sobre a relação desses casamentos com a

geometria são elaboradas a partir de provas surpreendentemente simples

que aproveitam da caracterização local do casamento estável. A construção e

as suas garantias funcionam em qualquer dimensão. Finalmente, resultados

mais fortes são obtidos quando a função for “suave discreta”, uma noção

definida nesta tese.

Palavras–chave
Teoria de Morse discreta. Funções de Morse ótimas. Complexidade

parametrizada. Decomposição de Morse-Smale. Casamento estável. To-

pologia computacional.
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Nomenclature

preliminaries: matchings

G = (N,A) graph G with its set of nodes N and arcs A

M ⊂ A matching

π(x, y) weight associated with arc {x, y} ∈ A

preliminaries: simplicial complexes

V finite set of vertices

∆ simplicial complex

σ, τ.ρ ∈ ∆ simplices of ∆: τ ⊂ V

σ ≺ τ σ is a facet τ

p = dim τ dimension of a simplex τ : τ has p+ 1 vertices

d = dim ∆ dimension of ∆

H Hasse diagram of ∆

preliminaries: discrete Morse theory

V discrete vector field on ∆: matching of H

σ → τ matched simplices: (σ, τ) ∈ V
Jσ0τ0 . . . σsτsI V-path: σi → τi and τi � σi+1 6= σi

χ(∆) Euler characteristic of ∆

mp number of critical simplices of dimension p

m(V) total number of critical simplices

complexity of optimal Morse matchings

∆ ∆̃ ∆ collapses to ∆̃

δ a subcomplex of ∆ with no triangle

∆ δ ∆ is erasable

T tree decomposition of a graph G

Xi, i ∈ I bag associated to node i of T : Xi ⊆ N

tw(G) treewidth of G

Fi set of forgotten nodes when reaching node i in the algorithm

v(M) binary vector for checking the marching condition of M

uf(M) union-find structure for the cycle-free condition of M

c(x) node representing the connected component of x in uf(M)

wi number of nodes in bag Xi

Γ(T ) dual graph of a simplicial triangulation of a 3-manifold T
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stable Morse matchings

f scalar function on the vertices of ∆

πf (σ, τ) arc weight associated with function f : πf (σ, τ) = f(τ \ σ)

>lex increasing lexicographic ordering of simplices

lk0(σ) vertex link of σ: lk0(σ) = {v ∈ V, σ ∪ v ∈ ∆}
vlk(σ) smallest vertex in the vertex link of σ: vlk(σ) = min lk0(σ)

vm(σ) smallest vertex in σ: vm(σ) = min σ

St(v) star of vertex v: St(v) = {σ ∈ ∆ : v ∈ σ}
St−(v) lower star of vertex v: St−(v) = {σ ∈ St(v), v′ ∈ σ ⇒ f(v) ≥ f(v′)}
St+(v) upper star of vertex v: St+(v) = St(v) \ St−(v)

>revlex decreasing lexicographic ordering of simplices

∆′ barycentric subdivision of ∆

Σ = (σ0, . . . , σp) simplex of ∆′

L(σ′, σ) simplices involved in lk0((σ′, σ)) that are not subset of σ′

l(σ′, σ) minimal simplex of L(σ′, σ)
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A major task of mathematics today is to har-
monize the continuous and the discrete, to in-
clude them in one comprehensive mathemat-
ics, and to eliminate obscurity from both.

E.T. Bell, Men of Mathematics (1937).
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1
Introduction

Classical Morse theory [53] relates the topology of a manifold to the critical

points of smooth scalar functions defined on it. This relation works in both

directions: the topology of a manifold can be studied from functions defined

on it and the behavior of a function can be captured by topological structures

induced by this function on the manifold.

To illustrate the first direction, Morse proved that a manifold that admits

a smooth function with only two critical points is homotopic to a sphere. This

motivates the search for functions with a minimal number of critical points,

called optimal Morse functions. However, identifying a topological object is

known to be a computationally difficult task. We thus expect optimal Morse

functions to be hard to compute, which is the topic of the first part of the

present thesis.

The other way to use Morse theory is to construct topological decompo-

sitions of the manifold induced by a given function to study that function. As a

fundamental example, the Morse-Smale complex (see Figure 1.1) captures the

regions of the manifold where the function leads to a uniform flow. In order to

compute such structures, a discrete representation of the function should be

defined, hopefully preserving its critical points and dynamics. The last part of

this thesis studies the behavior captured by a discrete representation of Morse

functions.

(a) Critical points of the
height function on a sine-
shaped domain.

(b) Basin of attraction of a
minimum.

(c) Intersection with the
basin of repulsion of a maxi-
mum.

Figure 1.1: A Morse-Smale complex of the height function (image from A.
Gyulassy [33].
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Chapter 1. Introduction 14

All along this thesis, we use a discrete version of Morse theory intro-

duced by Forman [26], that extended classical Morse theory to discrete objects

such as triangulated manifolds, abstract simplicial complexes and arbitrary cell

complexes. In this discrete version, the smooth functions on the manifold are

represented as a so-called Morse matching, which is a particular matching in

the Hasse diagram of the cell complex [17,26]. This discretization preserves and

extends most of smooth Morse theory’s results, in particular that a triangula-

tion of a closed manifold admitting a Morse matching with only two unmatched

(critical) elements is homotopic to a sphere [26,58]. The construction of spe-

cific Morse matchings has proven to be a powerful tool to understand topo-

logical [26,37,38,43,44], combinatorial [17,36,40] and geometrical [33,41,59,61]

structures of discrete objects. This large number of applications motivates us

to go back to the fundamentals, analyzing the constructions of both optimal

Morse matching and geometrical Morse matching.

Our story

Three years ago, when I started studying discrete Morse theory, reading my

advisor’s theses [41,43], I was struck by two intricate and weird-looking figures,

(Figures 1.2 and 1.3). But I became extremely curious when he told me that

those figures were proofs.

The first figure. Figure 1.2 is a (non-manifold) simplicial complex used

in a reduction proof which shows that Erasability, a problem strongly

related to finding optimal Morse matchings, is hard to compute (indeed NP -

hard) [25]. Essentially the authors built a simplicial complex for every instance

of a well known NP -hard problem, in their case Set Cover and showed

that if you can solve Erasability on it, then you can solve Set Cover.

Therefore Erasability is at least as hard as Set Cover. However, the

authors stated that they were not able to reduce in the other direction, to

show that Erasability is equivalent to Set Cover. They conjectured that

Erasability should be harder than Set Cover, but left this conjecture as

an open problem.

A year later, when I arrived at the University of Brisbane for my doctoral

internship, I was luckily introduced to parameterized complexity theory, which

has an entire hierarchy of problems to measure their difficulty. This was

exactly the right tool to tackle that open question and others: Is Erasability

equivalent to Set Cover? If not, how much harder is Erasability? In

Chapter 3, we give a dismal answer for these questions.
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Chapter 1. Introduction 15

Figure 1.2: Gadget utilized to prove that Erasability is NP -hard [25].

However, it was a puzzling result since, in practice, heuristics would, in

the majority of cases, solve Erasability and find optimal Morse matchings

very fast, as reported in my advisor’s thesis [43,44]. Therefore we wondered

if there was a large class of simplicial complexes where these problems could

be solved polynomial time. After the bad news, the results in Chapter 4 bring

some good news, in the order most people prefer.

The second figure. The second figure (Figure 1.3) is part of a proof that

the greedy construction of Morse matchings from a scalar function proposed

by my advisor [41,42,45], correctly captures the dynamics of that function,

and generates correct geometric information such as the one in Figure 1.1.

It is fundamental for most applications that the constructed discrete Morse

matching captures the geometric information correctly.

It is proven [41] that, for surfaces, my advisor’s construction captures the

critical points if the input simplicial complex is subdivided twice. The proof is

brute force combinatorics, it requires checking a large (impractical?) amount

of different cases the construction algorithm may generate. Figure 1.3 is a

visualization of one particular case of saddle.

My advisor believed that there should be much easier proofs and his

theorems would generalize to higher dimensions. He wrote at the end of his

thesis: “The combinatorial proof of our construction of geometrical Morse

complex seems to generalize to any dimension and to non–regular cases.

However, the proof in itself is laborious and a generalization would require

more tools from combinatorics.”
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(mv,mov)

(ao,aoq)(mv,mnv)

(os,osv)
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(c,cu)

(sv,osv)

(rv,nrv)

(c,co)

(c,cs)
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(co,coq)
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(p,np) (nr,nrv)(bn,bnr) (an,amn)

(b,bp)

(c,cq) (q,aq)(t,rt)
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(rt,brt)

(v,tv)

(t,tv)

(u,uv)

(aq,aoq)

(ap,anp)

(m,am)

(t,bt)

(n,an)

(r,nr)

(mn,amn)

(np,anp)

(p,ap)

(bt,brt)

(am,amn)

(br,brt)

(tv,rtv)

Figure 1.3: Poset used to prove that greedy construction of Morse matchings
capture the geometric information correctly [41,42].

I was intrigued, but we forgot about this problem for a while and

concentrated on just building discrete vector fields (also from a given geometric

function), a generalization of Morse matchings which is just a graph matching

problem, therefore easier to build. While reviewing the matching construction

literature, we found the stable matching, a matching with a remarkably simple

local characterization, that later on received a lot of attention since its authors

won the Nobel Prize. We decided to construct discrete vector fields with these

stable matchings to understand them with this local characterization.

Surprisingly in our computational experiments, every discrete vector field

we built, on a surface, from the stable matching turned out to be a Morse

matching. We were able to quickly prove this fact for surfaces and the proof

was so simple we believed we would be able to generalize to any dimension

and prove strong connections to the given geometry (see Chapter 5). We were

also able to characterize the critical elements of those stable Morse matchings

requiring only one barycentric subdivision. The proofs turned out to be much

simpler using a different way of translating the input geometric function, using

lexicographic orderings (which was indeed one of the first ways to build discrete

Morse matchings [4]). While cleaning the proofs, I understood the smoothing

effect of the barycentric subdivision, and introduced the concept of discrete

smooth complexes, which seems a promising category to work with discrete

geometric Morse constructions (see Chapter 6).
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Optimal Morse matchings

Morse matchings that minimize the number of critical elements are known as

optimal matchings [43], and correspond to a well-known problem in classical

Morse theory [57,65]. The number and type of the critical elements are

topological (more precisely homotopy) invariants of the cell complex, just

like in the case of the sphere described above. Forman’s definitions [17,26]

are purely combinatorial, which allows an exact interpretation of optimal

matchings computations, and gave those a strong place in the computational

topology [19]. Moreover, optimal Morse matchings are useful in practical

applications such as volume encoding [45,64], or homology and persistence

computation [30,41].

However, constructing optimal matchings is known to be NP-hard on

general 2-complexes and on 3-manifolds [37,38,43]. This result follows from a

reduction to this problem from the closely related to the erasability problem:

how many faces must be deleted from a 2-dimensional simplicial complex before

it can be completely erased, where in each erasing step only external triangles,

i.e. triangles with an edge not lying in the boundary of any other triangle of

the complex, can be removed [25]? Despite this hardness result, large classes of

inputs – for which worst case running times suggest the problem is intractable

– allow the construction of optimal Morse matchings in a reasonable amount

of time using simple heuristics [44]. Such behavior suggests that, while the

problem is hard to solve for some instances, it might be much easier to solve

for instances which occur in practice. This motivates us to look for which

parameter of a problem instance is responsible for the intrinsic hardness of the

optimal matching problem.

To do so, we use parameterized complexity [20] to study this topological

problem. More precisely, we determine the hardness of Morse type problems

using the mathematically rigid framework of the W -hierarchy. Our first main

result shows that the Erasability problem is W [P ]-complete, i.e. in the

worst category of the W -hierarchy [14] (Theorems 3.13 and 3.16), when

the parameter is the natural parameter – the number of cells that have

to be removed. In other words, we prove that the Erasability problem

is fixed-parameter intractable in this parameter. This settles a conjecture

from Eğecioğlu and Gonzalez [25] where the authors write: “We have not

been able to construct an approximation preserving reduction from the Set

Cover problem to the Erasability problem. That is why Erasability

approximation problem seems harder than the one for Set Cover.”
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From a discrete Morse theory point of view, this reflects the intuition that

reaching optimality in Morse matchings requires a global (at least topological)

context, which is known to be computationally hard. In this way, we also show

that the W -hierarchy as a purely complexity theoretical tool can be used in

a very natural way to answer questions in the field of combinatorial topology.

Although there are many results about the computational complexity of

topological problems [2,15,25,49,66], to the authors’ knowledge, Erasability

is the first purely geometric problem shown to be W [P ]-complete.

Our second result refines the observation that simple heuristics allow us

to compute optimal matchings efficiently [44]. For general 2-complexes (and

3-manifolds), the problem reduces directly to finding a maximal alternating

cycle-free matching on a spine, i.e. a bipartite graph representing the 1- and

2-cell adjacencies [3,38,43] (Lemma 3.8). To solve this problem, we propose an

explicit algorithm for computing Morse matchings on bipartite graphs which

is fixed-parameter tractable in the treewidth of the graph (Theorem 4.6).

Furthermore, we show that finding optimal Morse matchings on triangu-

lated 3-manifolds is also fixed-parameter tractable in the treewidth of the dual

graph of the triangulation (Theorem 4.8), which is a common parameter when

working with triangulated 3-manifolds [15]. Our result for 3-manifold has been

generalized in a surprising way very recently [13].

Finally, we use the classification of simplicial and generalized triangu-

lations of 3-manifolds to investigate the “typical” treewidth of the respective

graphs for relevant instances of Morse type problems. In this way, we give

further information on the relevance of the fixed parameter results. The ex-

periments show that the average treewidths of the respective graphs of simpli-

cial triangulations of 3-manifolds are particularly small in the case of general-

ized triangulations, confirming the intuition that simple heuristics for optimal

Morse matching do work on a large class of model. Furthermore, experimental

data suggest a much more restrictive connection between the treewidth of the

dual graph and the spine of triangulated 3-manifolds than the one stated in

Theorem 4.8.

Geometric Morse matchings

Using Morse theory in the other direction, one of the main applications of the

theory is to obtain a Morse-Smale complex of a scalar function f , which is a

decomposition of the domain into regions of uniform flow of −∇f [16,34,45]. In

Forman’s discrete Morse theory, the Morse-Smale complex can be seamlessly

obtained from the Morse matching [16,45], without any numerical integration
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or differentiation. The difficulty of the problem then concentrates on building

a Morse matching which is faithful to the given geometry, i.e. a function f

sampled at the vertices.

There have been numerous geometric constructions proposed for the dis-

crete gradient field. Lewiner et al. [16,45] proposed a modified greedy weighted

matching algorithm with weights based on the steepest descent, i.e. the dif-

ference of the function values at the cells. The algorithm checks an acyclic

condition at each step before adding a new edge to the matching. The geo-

metric accuracy of the algorithm was proven robust when the triangulation

is subdivided twice [41,42]. In addition, the proof techniques used are compli-

cated and convoluted, making it difficult to generalize and expand the results.

However this algorithm has been used in various applications [16,70,71].

Gyulassy et al. [34] suggested a priority-queue based algorithm to avoid

checking for cycles, but his algorithm does not have any theoretical guarantees.

This construction was used to build Morse-Smale complexes in several appli-

cations [32,62]. Robins et al. [61] developed an algorithm which uses homotopy

expansions to build the Morse matching on the lower star of each vertex, and

the authors are able to prove a one–to–one correspondence between the critical

cells and the piecewise-linear critical points on surfaces. Because of this corre-

spondence, this algorithm is a widely used algorithm in the literature [31,50,60].

Babson and Hersh [4] suggested a greedy algorithm with lexicographic

weights and they were able to characterize the critical points in the barycentric

subdivision. We were inspired in their work for the results Chapters 5 and 6.

In this thesis, we propose a construction of geometric Morse matching

with a stable matching algorithm [28], which works in any dimension. The main

advantage is that stable matching is characterized by a simple local stability

condition, which extends and greatly simplifies the proofs compared to previous

results using posets [41,42]. In Chapter 5, the local stability condition is used

to prove results about the location of critical cells and regular simplexes. In

particular we prove that, under mild assumptions on f , the acyclic condition

is automatically satisfied, therefore it yields indeed a Morse matching [55].

Under those assumptions, the stable matching construction turns out to be

equivalent to greedy constructions [41,42] that are already used in several

applications [16,45,70,71]. We introduce the notion of discrete smoothness in

Chapter 6, and fully characterize the critical cells of stable Morse matching

built from discrete smooth functions. Finally we prove that one barycentric

subdivision turns any function discrete smooth, generalizing previous results

on greedy construction to a single barycentric subdivision, and in some case

to any dimension.
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Summary of results

Chapter 3. We prove that Erasability is at the very top of hierarchy, in

terms of difficulty, of parameterized complexity theory, i.e. Erasability is

W [P ]-complete (Theorems 3.13 and 3.16). This answers a conjecture made by

Eğecioğlu and Gonzalez [25]. To the authors’ knowledge, Erasability is the

first purely topological problem shown to be W [P ]-complete.

Chapter 4. We propose an explicit algorithm for finding optimal Morse

matchings which is fixed-parameter tractable in the treewidth of the spine

of the Hasse diagram (Theorem 4.6). We also extend our result and show that

finding optimal Morse matchings on triangulated 3-manifolds is also fixed-

parameter tractable in the treewidth of the dual graph of the triangulation

(Theorem 4.8), which is a common parameter when working with triangulated

3-manifolds [15]. All the results work for Erasability as well.

To gain intuition on when the treewidth is small, i.e. when we can ef-

ficiently solve the previous two problems, we compute the treewidth of the

relevant graphs (i.e. the spine and the dual graph) of all closed generalized

triangulations of 3-manifolds up to 7 tetrahedra [11], and all simplicial trian-

gulations of 3-manifolds up to 10 vertices [48] in Section 4.6. We observe that

the treewidth is indeed small in the majority of cases.

The results from Chapters 3 and 4 are published [14] and are joint work

with Jonathan Spreer and Benjamin Burton at University of Queensland.

Chapter 5. We propose an algorithm, based on stable matchings, to construct

Morse matchings guided by geometric function on simplicial complex of any

dimension. We prove that those stable matchings are indeed Morse matchings

in Theorem 5.6. We also show that these stable Morse matchings respect

the given function since they point in the direction of the steepest descent

in Theorem 5.9 and the function value along its V-paths are decreasing

(Theorem 5.5). Part of this chapter was presented at the Young Researcher

Forum at SoCG 2013 [55]

Chapter 6. We define the concept of discrete smoothness for functions in

simplicial complexes. For these functions we characterize the behavior of the

stable Morse matching (Corollary 6.3) and its critical simplexes (Corollary 6.5).

With these results we detail the local neighborhood of critical simplexes of

discrete smooth functions in Lemmata 6.6 and 6.7 and see that they look like
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their continuous counterparts. In addition, we prove a relationship between

the critical simplicies and Banchoff’s critical vertices for smooth functions in

Section 6.3. In the last section, we show that any function becomes smooth

after a single barycentric subdividing of the simplicial complex. Therefore all

results in this chapter extend to barycentric subdivisions (Theorem 6.22).
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2
Preliminaries

In this chapter, the basic notions used throughout the thesis are defined. First

in Section 2.1, we review the concept of matchings in graphs and specifically the

notion of stable matchings. Then in Section 2.2, we define simplicial complexes,

which serves in this thesis as the discretization of a manifold. With the concepts

of matching and simplicial complex, the main ideas of discrete Morse theory

are defined in Section 2.3. Finally in Section 2.4, the theory of parameterized

complexity theory is reviewed. This theory is the main tool used in Chapters 3

and 4, to analyze the complexity of algorithms in discrete Morse theory.

2.1
Matchings

We denote a graph G by its set of nodes N and arcs A as G = (N,A) [46].

Definition 2.1 (Matching). A matching M of a graph G = (N,A) is a subset

of arcs M ⊂ A such that every node is incident to at most one arc in M .

Figure 2.1: A bipartite graph (left) with a matching: the solid arcs are the
matching arcs, and the red circles are the unmatched nodes (right).

Arcs in M are called matching arcs and the nodes of the matching arcs

are called matched nodes. Nodes and arcs which are not matched are referred

to as unmatched (Figure 2.1). An alternating path is a path in G in which the

arcs belong alternatively to M and A \M .

DBD
PUC-Rio - Certificação Digital Nº 1021470/CA



Chapter 2. Preliminaries 23

The induced M-subgraph is the subgraph of G spanned by all matched

nodes and the size of a matchingM is the number of matching arcs. A matching

M is called a maximum cardinality matching of a graph G if there is no

matching whose size is larger than the size of M .

In a weighted graph, every arc in the graph is associated to a real number

called weight. Let π(x, y) be the weight associated with arc {x, y} ∈ A.

Definition 2.2 (Unstable pair and stable matching). Given a matching M ,

an arc {x, y} ∈ A \M is unstable, if and only if both conditions below hold:

1- x is unmatched or ∃w ∈ N , such that {x,w} ∈M and π(x,w) > π(x, y),

2- y is unmatched or ∃ z ∈ N , such that {y, z} ∈M and π(y, z) > π(x, y).

M is a stable matching if there is no unstable pair (see Figure 2.2).

Figure 2.2: The four possibilities of an unstable pair.

A stable matching might not exist for every weighted graph, however it

always exists for weighted bipartite graphs [46].

Theorem 2.3 (Existence of a stable matching [28]). If graph G is bipartite,

then there exists a stable matching M of G. The stable matching M can be

found by the Gale-Shapley algorithm [28].

There can be many stable matchings in a graph however for certain weighted

graphs, the stable matching is unique.

Theorem 2.4 (Uniqueness of a stable matching [22]). If graph G is bipartite

and adjacent arcs have distinct weights, then the stable matching is unique.
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2.2
Simplicial complex

A finite simplicial complex is a finite set of vertices V along with a set ∆ of

subsets of V , such that ∆ satisfies the following two properties:

(i) V ⊂ ∆,

(ii) if τ ∈ ∆ and σ ⊂ τ , then σ ∈ ∆.

We refer to the simplicial complex as ∆. The elements of ∆ are called simplices.

A simplex τ ∈ ∆ is said to have dimension p, denoted by dim(τ) = p, if τ

contains p+1 vertices. A simplex of dimension p is called a p-simplex. Simplex

σ is a facet of τ , denoted by σ ≺ τ , if σ ⊂ τ and dim(σ) = dim(τ) − 1. The

dimension of ∆ is the largest dimension of its simplices.

Given a simplicial complex ∆, one defines its Hasse diagram H to be a

directed graph in which the set of nodes of H is the set of simplices of ∆, and

an arc goes from τ to σ if and only if σ ≺ τ (see Figure 2.3). Observed that H is

a bipartite graph since there is a partition into the even- and odd-dimensional

simplices.

Figure 2.3: A simplicial complex ∆ (left) and its Hasse diagram H = (N,A)
(right).

Let Hp ⊆ H be the bipartite subgraph spanned by all nodes of H

corresponding to simplices of dimensions p and p+1. In particular, H1 describes

the adjacency between the 2-simplices and 1-simplices of ∆, and will be called

the spine of the simplicial complex ∆. The spine of a simplicial complex will

be the main object in Chapter 4.
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2.3
Discrete Morse theory

Consider now a simplicial complex ∆.

Definition 2.5 (Discrete vector field). A discrete vector field V on ∆ is a

collection of pairs (σ, τ) of simplices of ∆ with σ ≺ τ , such that each simplex

is in at most one pair of V. We write σ → τ if (σ, τ) ∈ V, and σ 6→ τ otherwise.

A simplex σ is said to be critical for discrete vector field V if it does not belong

to any pair of V.

A discrete vector field is thus a matching on the Hasse diagram and the critical

faces are the unmatched nodes (see Figure 2.4).

Figure 2.4: The discrete vector field V on ∆ and on its Hasse diagram.

Definition 2.6 (Matched below/above). If there exists v ∈ σ, such that

σ \ v → σ, then σ is matched below. If there exists v ∈ ∆, such that σ ∪ v ∈ ∆

and σ → σ ∪ v, then σ is matched above. If σ is neither matched below nor

above, then σ is critical (see Figure 2.5).

Figure 2.5: Notation: σ matched below (left), σ matched above (center), σ
critical (right).
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Definition 2.7 (V-paths). Given a discrete vector field V on a simplicial

complex ∆, a V-path is a sequence of simplices Jσ0τ0σ1τ1 . . . σsτsI such that

for all i, σi → τi and τi � σi+1 6= σi. We say that such a path is a non-trivial

closed path if s > 0 and σ0 = σs.

Observe that a V-path is an alternating path in H with the restriction that

all the dimensions of this simplices are p or p + 1, with p = dim(σ0) (see

Figure 2.6).

Figure 2.6: A V-path vertices-edges (right) and edges-triangles (left).

Definition 2.8 (Gradient vector field). A discrete vector field V is the gradient

vector field if and only if there is no non-trivial closed V-path.

We say that a matching M associated to a gradient vector field is a Morse

matching (see Figure 2.7).

Figure 2.7: A closed V-path on vertices-edges (right) and edges-triangles (left).

The following table is a dictionary between the graph-based concepts and

the simplicial complex-based concepts.
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Graph Simplicial complex

{σ, τ} ∈M σ → τ

{σ, τ} /∈M σ 6→ τ

σ is not matched σ is critical

{σ, τ} ∈ A σ ≺ τ

nodes simplices of ∆

arcs incidence of simplices of ∆

σ matched below ∃ v ∈ σ, σ \ v → σ

σ matched above ∃ σ ∪ v ∈ ∆, σ → σ ∪ v
σ unmatched σ is critical

matching on H discrete vector field on ∆

Morse matching on H discrete gradient field on ∆

Now, the main theorem of discrete Morse theory can be stated.

Theorem 2.9. [26] Let ∆ be a simplicial complex and M be a Morse matching

on ∆. Then ∆ is homotopy equivalent to a CW -complex 1 containing a cell of

dimension p for each critical face of dimension p.

The minimization of the number of critical simplices in the Morse matching

produces a succinct representation (in homotopy) of the simplicial complex.

This is the main motivation for the optimization problem, which is primary

focus of the next two chapters. In addition, the discrete gradient field (Morse

matching) obeys the Morse inequalities, mimicking the gradient field in a

smooth manifold.

Theorem 2.10 (Weak and strong Morse inequalities [26]). Let d be the

dimension of ∆, mp be the number of critical simplices of dimension p, βp the

pth Betti number of ∆ on any field, and χ the Euler characteristic of ∆ [54].

(i) For each p = 0, 1, 2, . . . , d, we have mp ≥ βp, and

m0 −m1 +m2 − . . .+ (−1)dmd = β0 − β1 + β2 − . . .+ (−1)dβd = χ.

(ii) For each p = 0, 1, 2, . . . , d, d+ 1,

mp −mp−1 + . . .±m0 ≥ βp − βp−1 + . . .± β0.

We denote by m(V) = m0+m1+. . .+md the total number of critical simplices.

1Please refer to Lundell and Weingram’s book [47] for the definition of CW-complexes.
For our purposes, a CW-complex is only used as a reduced representation of a simplicial
complex.
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2.4
Parameterized complexity

In this thesis (Chapters 3 and 4), we study the complexity of the optimization

of Morse matchings in light of parameterized complexity theory, a more refined

type of complexity investigation. Following Downey and Fellows [20], an NP-

complete problem is called fixed-parameter tractable (FPT) with respect to a

parameter k ∈ N, if for every input with parameter less or equal to k, the

problem can be solved in O(f(k) ·nO(1)) time, where f is an arbitrary function

independent of the problem size n.

For NP-complete but fixed-parameter tractable problems, we can look

for classes of inputs for which fast algorithms exist, and identify which aspects

of the problem make it difficult to solve. Note that the significance of an FPT

result strongly depends on whether the parameter is small for large classes of

interesting problem instances and easy to compute.

There are also NP-complete problems which are not fixed-parameter

tractable. In order to classify fixed-parameter intractable NP-complete prob-

lems, Downey and Fellows [20] propose a family of complexity classes called

the W -hierarchy :

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [P ] ⊆ XP.

The base problems in each class of the W -hierarchy are versions of satisfiability

problems with increasing logical depth as parameter. On the left side of the W -

hierarchy we have the complexity class FPT which contains all problems which

are FPT in their natural parameter. Class W [P ] contains the satisfiability

problems with unbounded logical depth. The rightmost complexity class XP

of the W -hierarchy contains all problems which can be solved in O(nk) time

where k is the parameter of the problem. The satisfiability problems and logical

depth are formally defined below. We refer to Daniel Marx’s presentation2 for

further details.

Definition 2.11 (Boolean circuit). A Boolean circuit consists of input gates,

negation gates, AND gates, OR gates, and a single output gate. The weight of

an assignment is the number of true values.

Definition 2.12 (Depth and weft). The depth of a circuit is the maximum

length of a path from an input to the output. A gate is large if it has more

than 2 inputs. The weft of a circuit is the maximum number of large gates on

a path from an input to the output.

2http://www.cs.bme.hu/˜dmarx/papers/marx-warsaw-fpt3
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We can now define the Weighted Circuit Satisfiability problem.

Problem 2.13 (Weighted Circuit Satisfiability).

Instance: A Boolean circuit.
Parameter: A non-negative integer k.
Question: Is there an assignment of weight k such that the output of the

circuit is true?

A notion of reduction which preserves the chosen parameter, between problems

to group them in classes is defined.

Definition 2.14 (Parameterized reduction). A parameterized problem L re-

duces to a parameterized problem L′, denoted by L ≤FPT L
′, if we can transform

an instance (x, k) of L into an instance (x′, g(k)) of L′ in time O(f(k)|x|O(1))

for arbitrary functions f and g, such that (x, k) is a yes-instance of L if and

only if (x′, g(k)) is a yes-instance of L′.

Finally the W [t] classes can be defined, with parameterized reductions to

Weighted Circuit Satisfiability with bounded depth.

Definition 2.15. Let C[t, d] be the set of all circuits having weft at most t and

depth at most d. A problem P is in the class W [t] if there is a constant d and

a parameterized reduction from P to Weighted Circuit Satisfiability of

C[t, d]. W [P ] denotes the class having unrestricted (unbounded) depth.

Examples in W-hierarchy

As example, we show how parameterized complexity theory can distinguish

the difficulty of two NP-complete graph problems with the W-hierarchy. The

following graph problems are parameterized by their natural parameter.

Problem 2.16 (Independent Set).

Instance: A graph G=(V,E).
Parameter: A non-negative integer k.
Question: Is there a set of vertices S, |S| ≤ k, such that no two vertices in

S are adjacent?

Problem 2.17 (Dominating Set).

Instance: A graph G = (V,E).
Parameter: A non-negative integer k.
Question: Is there a set of vertices D, |D| ≤ k, such that every vertex not

in D is adjacent to at least one member of D?
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Figure 2.8: Independent Set as a Boolean circuit ( c© Daniel Marx).

Independent set. In Figure 2.8, a parameterized reduction from Indepen-

dent Set to Weighted Circuit Satisfiability of C[1, 3] is described

where each vertex vi of G is represented by an input xi and xi is true if and

only if vi is in the independent set S, identifying the parameters of both prob-

lems. Every vi is connected to a NOT gate (¬). The NOT gates associated to

xi and xj are both connected to the same OR gate (∨) if and only if vi and

vj are adjacent in G. Finally, every OR gate is connected to the unique AND

gate (∧) which leads to the output. Now, there exists an independent set of

size k in the graph G if and only if there exists an assignment of weight k in

the circuit in Figure 2.8.

There is thus a parameterized reduction from Independent Set to

Weighted Circuit Satisfiability of C[1, 3]. It follows, from Defini-

tion 2.15, that Independent Set is in W [1].

In addition there is also a parameterized reduction from Weighted

Circuit Satisfiability of C[1, 3] to Independent Set [20]. Therefore

Independent Set is W[1]-complete, which means that if Independent Set

can one day be shown to be in FPT, then W [1] = FPT. This is regarded as an

unlikely collapse in parameterized complexity theory.
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Figure 2.9: Dominating Set as a Boolean circuit ( c© Daniel Marx).

Dominating Set. Figure 2.9 shows that there is a parameterized reduction

from Dominating Set to Weighted Circuit Satisfiability of C[2, 2].

It follows, from Definition 2.15, that Dominating Set is in W [2]. In addition

there is also a parameterized reduction from Weighted Circuit Satisfi-

ability of C[2, 2] to Dominating Set [20], therefore Dominating Set is

W [2]-complete. In parameterized complexity theory, in some sense, Dominat-

ing Set is harder than Independent Set
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3
Optimal Morse matchings: the bad news

In this chapter1, the 2-dimensional simplicial complexes ∆ we consider are pure,

i.e. all maximal simplices are triangles (2-simplices) and strongly connected,

i.e. each pair of triangles is connected by a path of triangles such that any

two consecutive triangles are joined by an edge (1-simplex). In addition we

consider 3-dimensional simplicial complexes which are triangulations of closed

3-manifolds, that is, simplicial complexes whose underlying topological space

is a closed 3-manifold. Every 3-manifold can be represented in this way [51].

We will refer to these objects as simplicial triangulations of 3-manifolds.

The motivation to find optimal Morse matchings is given by Theorem 2.9,

in the last chapter. In other words, a Morse matching with the smallest number

m(M) of critical simplices gives us the most compact and succinct topological

representation up to homotopy. This motivates a fundamental optimization

problem in discrete Morse theory, Morse Matching. We write it as a decision

problem in the following form:

Problem 3.1 (Morse Matching).

Instance: A simplicial complex ∆.
Parameter: A non-negative integer k.
Question: Is there a Morse matching M with m(M) ≤ k?

3.1
Erasability of simplicial complexes

In this chapter, instead of studying the Morse Matching problem directly,

we analyze a closely related problem, Erasability, defined below.

Let ∆ be a 2-dimensional simplicial complex. A triangle t ∈ ∆ is called

external if t has at least one edge which is not in the boundary of any other

triangle in ∆; otherwise t is called internal. Given a 2-dimensional simplicial

complex ∆ and a triangle t ∈ ∆, the 2-dimensional simplicial complex obtained

by removing (or erasing) t from ∆ is denoted by ∆ \ t. In addition, if ∆̃ is

obtained from ∆ by iteratively erasing triangles such that in each step the

erased triangle is external in the respective complex, we will say ∆ collapses to

∆̃ and write ∆ ∆̃. We say that the complex ∆ is erasable if ∆ δ, where

1This chapter is a joint work with Jonathan Spreer and Benjamin Burton [14]
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δ denotes a subcomplex of ∆ with no triangle. Finally, for every 2-dimensional

simplicial complex ∆ we define er(∆) to be the size of the smallest subset ∆0

of triangles of ∆ such that ∆ \∆0  δ. The elements of ∆0 are called critical

triangles and hence er(∆) is sometimes also referred to as the minimum number

of critical triangles of ∆. Determining er(∆) is known as the Erasability

problem [25].

Problem 3.2 (Erasability).

Instance: A 2-dimensional simplicial complex ∆.
Parameter: A non-negative integer k.
Question: Is er(∆) ≤ k?

This operation can be defined in any dimension. Let σ ≺ τ ∈ ∆, such that

τ is not contained in any other facet of ∆. A collapse is the operation of

transforming ∆ to ∆ \ {σ, τ}.

3.2
Relationship between Erasability and Morse Matching

Forman established a connection between collapses and Morse matchings.

Theorem 3.3. [26] Let ∆ be a simplicial complex and Σ a subcomplex of ∆.

Then there exists a sequence of collapses from ∆ to Σ if and only if there exists

a discrete Morse matching on ∆ such that ∆\Σ contains no critical simplices.

It follows from the theorem above that Erasability can be restated as a

version of Morse Matching where only the number m2(M) of critical 2-

simplices is counted.

Problem 3.4 (Erasability, alternate version).

Instance: A 2-dimensional simplicial complex ∆.
Parameter: A non-negative integer k.
Question: Is there a Morse matching M with m2(M) ≤ k?

The complexity of computing optimal Morse matchings is linear on 1-complexes

(graphs) [26]: A Morse matching in the Hasse diagram can be constructed with

only one critical vertex by building a directed spanning tree in the actual graph

where the critical vertex is the root. The correspondence is the following: there

exists a directed arc from v1 to v2 in the directed spanning tree if and only if

(v1, v1v2) is in the matching. Such Morse matching is optimal from the Morse

inequalities, observing that there is only one critical vertex (m1(M) = 1).

The complexity is also polynomial for 2-complexes that are mani-

folds [43], where there are at most two triangles per edge. In 2-manifolds,

the adjacency between edges and triangles can also be viewed as a graph, the

dual graph (the edges are the nodes and the triangles are the arcs). Therefore
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to build a optimal Morse matching in the 2-manifold, one builds a directed

spanning tree in the dual graph and a directed spanning tree in the remainder

of the primal graph as above. The Morse matching produced has one critical

vertex and one critical triangle, therefore it is optimal from the Morse inequal-

ities. The following lemma can also be proven using directed spanning trees in

2-complexes.

Lemma 3.5. [38] Let M be a Morse matching on a simplicial complex

∆. Then we can compute a Morse matching M ′ in polynomial time which

has exactly one critical 0-simplex, the same number of critical simplices of

dimension greater or equal to 2 as M , and m(M ′) ≤ m(M).

The proof of this lemma can be found in Appendix A, and leads to the following

result.

Theorem 3.6. [38] Let ∆ be a 2-dimensional simplicial complex. There exists

a Morse matching with at most k critical 2-faces if and only if there exists a

Morse matching with at most 2(k + 1)− χ(∆) critical simplices altogether.

Therefore, in a 2-dimensional simplicial complex, if one can solve Erasability

in polynomial time, then one can solve Morse Matching in the entire

complex in polynomial time [38,43].

We now want an analogous result for 3-manifold. Using Poincaré’s

duality, the dual result from Lemma 3.5 follows.

Lemma 3.7. Let M be a Morse matching on a closed triangulated d-manifold

∆. Then we can compute a Morse matching M ′ in polynomial time which

has exactly one critical d-simplex, the same number of critical simplices of

dimension less or equal to d− 2 as M , and m(M ′) ≤ m(M).

The following lemma, which has been mentioned in previous work [3,45], is a

combination of Lemmata 3.5 and 3.7 for 3-manifolds together with the fact

that χ(M) = 0 for every 3-manifold M .

Lemma 3.8. [3,38,45] Let M be a Morse matching on a closed triangulated

3-manifold. Then we can compute a Morse matching M ′ in polynomial time

which has exactly one critical 0-simplex, one critical 3-simplex, and m1(M ′) =

m2(M ′).

An important corollary follows immediately.

Theorem 3.9. Consider a simplicial triangulation of 3-manifold. There exists

a Morse matching with at most k critical 2-simplices if and only if there exists

a Morse matching with at most 2k + 2 critical simplices altogether.
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In other words, if one can solve Erasability, then one can solve Morse

Matching on a 3-manifold. In Section 4.1 we show that if the spine of the

simplicial complex has bounded treewidth, then we can solve Erasability in

linear time. Lemma 3.8 can be used to directly generalize this result to Morse

Matching on 3-manifolds.

3.3
Fixed-parameter intractability of Erasability

In order to prove that Erasability is W [P ]-complete in the natural param-

eter, we first have to take a closer look at what has to be considered when

proving hardness results with respect to a particular parameter.

As an example, Eğecioğlu and Gonzalez [25] reduce Set Cover to Era-

sability to show that Erasability is NP-complete. Since their reduction

turns out to be a parameterized reduction, their results can be restated in the

language of parameterized complexity as follows.

Theorem 3.10. [25] Set Cover ≤FPT Erasability, therefore Erasabi-

lity is W [2]-hard.

This shows that, if the parameter k is simultaneously bounded in both

problems, Erasability is at least as hard as Set Cover. In this section we

will determine exactly how much harder Erasability is than Set Cover,

which is W [2]-complete. Namely, we will show that Erasability is W [P ]-

complete in the natural parameter k. This will be done by (i) using a W [P ]-

complete problem as an oracle to solve an arbitrary instance of Erasability

(Theorem 3.13, which shows that Erasability is in W [P ]), and (ii) reducing

an arbitrary instance of a suitable problem which is known to be W [P ]-

complete to an instance of Erasability (Theorem 3.16, which shows that

Erasability is W [P ]-hard).

There are only a few problems described in the literature which are known

to be W [P ]-complete [21, p. 473]. Amongst these problems, the following is

suitable for our purposes.

Problem 3.11 (Minimum Axiom Set).

Instance: A finite set S of sentences, and an implication relation R consist-

ing of pairs (U, s) where U ⊆ S and s ∈ S.
Parameter: A positive integer k.
Question: Is there a set S0 ⊆ S (called an axiom set) with |S0| ≤ k and a

positive integer n, for which Sn = S, where we define Si, 1 ≤ i ≤ n, to

consist of exactly those s ∈ S for which either s ∈ Si−1 or there exists a

set U ⊆ Si−1 such that (U, s) ∈ R?

Theorem 3.12 ( [20]). Minimum Axiom Set is W [P ]-complete.

DBD
PUC-Rio - Certificação Digital Nº 1021470/CA



Chapter 3. Optimal Morse matchings: the bad news 36

3.4
W [P ]-completeness of Erasability

In this thesis, to show that Erasability is W [P ]-complete, we show that

Minimum Axiom Set is both at least (Theorem 3.13) and at most as hard

(Theorem 3.16) as Erasability.

Theorem 3.13. Erasability ≤FPT Minimum Axiom Set, therefore Era-

sability is in W [P ].

Proof We show membership of Erasability in W [P ] by reducing a given

instance (∆, k) of Erasability to an instance (S,R, k) of Minimum Axiom

Set.

Without loss of generality, we can assume that the 2-dimensional simplicial

complex ∆ has no external edges (if ∆ has external edges we first remove these

edges until no external edge exists and reduce the remaining problem instance

to an instance of Minimum Axiom Set). We now identify the set of triangles

of ∆ with the set of sentences S in a one-to-one correspondence. For every

edge e ∈ ∆ we denote the set of all triangles containing e by star∆(e) ⊂ ∆,

and denote the corresponding set of sentences by Se ⊂ S. We define the set of

implication relations R by R = { (Se \ {s}, s) , e edge of ∆, s ∈ Se } . Note

that ∆ has no external edges and thus Se \ {s} 6= ∅ for every edge e.

Now, we show that for all axiom sets S0 ⊂ S of size k we have ∆ \∆0  δ,

where δ is the 1-dimensional subcomplex of ∆, for subset of triangles ∆0 ⊂ ∆

of size k associated to S0. To see that this is true, note that for the augmenting

sequence S0 ⊂ S1 ⊂ . . . ⊂ Sn = S of S, their corresponding subsets of triangles

∆0 ⊂ ∆1 ⊂ . . . ⊂ ∆n = ∆, and i ∈ {1, . . . , n} fixed, all sentences s ∈ Si \Si−1

have to occur in a relation (Se\{s}, s) for some edge e with Se\{s} ⊂ Si−1. For

the triangle t ∈ ∆ corresponding to s this means that star∆(e) \ {t} ⊂ ∆i−1.

Thus, if we assume that all triangles in ∆i−1 are already erased, t must be

external and thus can be erased as well. The statement now follows by the

fact that for i = 1, all triangles in ∆0 are already erased in ∆ \∆0 and hence

∆ \∆0  δ.

Conversely, let ∆0 ⊂ ∆ be of size k such that ∆ \ ∆0  δ. Since ∆ has no

external triangles but ∆\∆0  δ, there must be external triangles t ∈ ∆\∆0.

Hence for sentence s ∈ S corresponding to triangle t, there is a relation

(Se \ {s}, s) with Se \ {s} ⊂ S0.We then define S1 to be the union of S0

with all sentences s of the type described above. Iterating this step results in

a sequence of subsets S0 ⊂ S1 ⊂ . . . ⊂ Sn = S for some n that satisfies the

problem.

In order to show that it is in fact amongst the hardest problems in this class

we first need to build some gadgets.
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Figure 3.1: Example of a sentence gadget with m = 2 relations (U, s) and n = 3
relations (U, u) with additional tubes.

Definition 3.14 (Gadgets for the hardness proof of Erasability). Let

(S,R, k) be an instance of Minimum Axiom Set.

Let s ∈ S be a sentence. By an s-gadget or sentence gadget we mean

a triangulated 2-dimensional sphere with 2n + m punctures as shown in

Figure 3.1, where m is the number of relations (U, s) ∈ R and n is the number

of relations (U, u) ∈ R such that s ∈ U .

Let (U, s) ∈ R be a relation. A (U, s)-gadget or implication gadget is a

collection of |U |+1 sentence gadgets for each sentence of U ∪{s} together with

2|U | nested tubes as shown in Figure 3.2 such that (i) two tubes are attached

to two punctures of the u-gadget for each u ∈ U and (ii) all 2|U | boundary

components at the other side of the tubes are identified at a single puncture of

the s-gadget.

Figure 3.2: Example of a (U, s)-gadget with U = {a, b, c}, with sentence gadgets
{a, b, c, s}.

Then, by construction the following holds for the (U, s)-gadget.

Lemma 3.15. A (U, s)-gadget can be erased if and only if all sentence gadgets

corresponding to sentences in U are already erased.

Proof On the one hand, if all sentence gadgets corresponding to sentences in

U are erased, the whole gadget can be erased tube by tube. If, on the other

hand, one of the sentence gadgets still exists this gadget together with the

two tubes connected to it builds a complex without external triangles, which

thus cannot be erased.
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Figure 3.3: Constructing an instance of Erasability from an instance
(S,R) of Minimum Axiom Set, where S = {a, b, c, d, e, f, g, h, i} and R =
{({c, d, e}, i), ({f, g, h}, i), ({b}, c), ({a, d}, g)}.

With these tools, we can now prove the main theorem of this section.

Theorem 3.16. Minimum Axiom Set ≤FPT Erasability: Erasability

is W [P ]-hard when the instance of Erasability is a strongly connected pure

2-dimensional simplicial complex ∆ which is embeddable in R3. In particular

Erasability is W [P ]-hard.

The simplicial complex ∆ (see Figure 3.3) constructed to prove W [P ]-hardness

of Erasability is in fact embeddable into R3. This means that, even in the

relatively well-behaved class of embeddable 2-dimensional simplicial comple-

xes, Erasability when bounding the number of critical simplices is still likely

to be inherently difficult.

Proof To show W [P ]-hardness of Erasability, we will reduce an arbitrary

instance (S,R, k) from Minimum Axiom Set to an instance (∆, k) of Era-

sability. In order to do so, we will use a sentence gadget for each element

of S and an implication gadget for each relation R (see Definition 3.14) to

construct a 2-dimensional simplicial complex ∆ with a polynomial number of

triangles in the input size.

By construction, we can glue all sentence and implication gadgets together in

order to obtain a simplicial complex ∆ without any exterior triangles. Note

that the only place where ∆ is not a manifold surface is at the former m

boundary components of the sentence gadgets corresponding to the right hand

sides of the relations in R.
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For any axiom set S0 ⊂ S of size k, let ∆0 be a set of k triangles, one from each

sentence gadget corresponding to a sentence in S0. It follows by Lemma 3.15,

that ∆ \ ∆0 can be erased to a complex where all the sentence gadgets s

corresponding to relations (U, s), U ⊂ S0, have external triangles. Since S0 is

an axiom set, iterating this process erases the whole complex ∆.

Conversely, let ∆0 be a set of k triangles such that ∆ \ ∆0  δ. First, note

that erasing a triangle of any tube of an implication gadget always allows us

to remove the sentence gadget at the right end of this tube. Hence, without

loss of generality, we can assume that all k triangles in ∆0 are triangles of

some sentence gadget in ∆. Now, if any sentence gadget contains more than

one triangle of ∆0 we delete all additional triangles obtaining a set ∆′0 of k′

triangles, k′ ≤ k, such that ∆ \ ∆′0  δ and thus the corresponding set of

sentences is an axiom set of size k′ ≤ k.

The result now follows by the observation that ∆ can be realized by at most

a quadratic number of triangles in the input size of (S,R, k).

The W [P ]-completeness result implies that if Erasability turns out to be

fixed parameter tractable, then W [P ] = FPT, i.e. every problem in W [P ]

including the ones lower in the hierarchy would turn out to be fixed parameter

tractable, an unlikely and unexpected collapse in parameterized complexity.

Also, it would imply that the n-variable satisfiability problem could be solved

in time 2o(n), that is, better than a brute force search [1]. With respect to this

result, if we want to prove fixed parameter tractability of Erasability, the

parameter must be different from the natural parameter.
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4
Optimal Morse matchings: the good news

In this chapter1, we prove that there is still hope to find an efficient algorithm

to solve Morse Matching for certain complexes. We give positive results for

the field of discrete Morse theory by proving that Erasability and Morse

Matching are fixed parameter tractable in the treewidth (Section 4.1) of

the spine of the input simplicial complex, where this problem reduces to the

Alternating Cycle-Free Matching problem (Section 4.2). We provide

an explicit algorithm for this result in Sections 4.3 and 4.4. Then, we extend

this result to the treewidth of the dual graph of simplicial triangulation of

a 3-manifold (Section 4.5). Finally, in Section 4.6, we run some numerical

experiments to analyze the treewidth in various 2-complexes and 3-manifolds.

4.1
Treewidth

The treewidth is a fundamental concept for several parameterized complexity

problems. Its definition relies on tree decompositions of a graph as follows.

Definition 4.1 (Treewidth). A tree decomposition of a graph G is a tree T

where each node i ∈ I is associated with a bag Xi. Each bag Xi is a subset of

nodes of G such that:

(i) node coverage: every node of G is contained in at least one bag Xi

(ii) arc coverage: for each arc of G, some bag Xi contains both its endpoints

(iii) coherence: for all bags Xi, Xj and Xk of T , if Xj lies on the unique simple

path from Xi to Xk in T , then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is defined as max {|Xi| − 1, i ∈ I}, and the

treewidth tw(G) of G is the minimum width over all tree decompositions of

G.

In terms of complexity, for graphs of bounded treewidth, computing a tree de-

composition of width up to k has running time O(f(k)|V |), using an algorithm

by Bodlaender [8]. Regarding the size of f(k): using the improved algorithm by

1This chapter is a joint work with Jonathan Spreer and Benjamin Burton [14]
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Perković and Reed [56], at most O(k2) recursive calls of Bodlaender’s improved

linear time fixed-parameter tractable algorithm for bounded treewidth [9] are

needed. This latter algorithm in turn is said to have a constant factor f(k)

which is “at most singly exponential in k”. Details on the running times of tree

decomposition algorithms are available in the literature [7,39].

We often use the bag Xi to refer to node i. In fact, it is sufficient to look

for nice tree decompositions to compute the treewidth.

Definition 4.2 (Nice tree decomposition). A tree decomposition (Xi | i ∈ I, T )

is called a nice tree decomposition if the following conditions are satisfied:

– every bag of the tree T has at most two children,

root bag – there is a fixed bag Xr with |Xr| = 1 acting as the root of T ,

forget bag – if bag Xj has no children, then |Xj| = 1,

join bag – if a bag Xi has two children Xj and Xk, then Xi = Xj = Xk,

– if a bag Xi has a single child Xj, then either

introduce bag – |Xi| = |Xj|+ 1 and Xj ⊂ Xi,
or

forget bag – |Xj| = |Xi|+ 1 and Xi ⊂ Xj.

Figure 4.1: Example of a nice tree decomposition (bottom) of the spine of a
non-manifold 2-dimensional simplicial complex made of 4 triangles (top).
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A given tree decomposition can be transformed into a nice tree decomposition

(see Figure 4.1) in linear time:

Lemma 4.3. [39] Given a graph G with n nodes, and a tree decomposition

of G with width w and O(n) bags, we can find a nice tree decomposition of G

that also has width w and O(n) bags in time O(n).

4.2
Alternating cycle-free matchings

Given a graph G = (N,A) and a matching M ⊂ A on G, an alternating

path is a sequence of pairwise adjacent arcs such that each matching arc in

the sequence is followed by an unmatching arc and conversely. An alternating

cycle of M is a closed alternating path. Matchings that do not have any

such alternating cycle are called an alternating cycle-free matchings. From the

definition of Morse matching, we can state Erasability in the language of

alternating cycle-free matchings as follows:

Problem 4.4 (Alternating Cycle-Free Matching).

Instance: A bipartite graph G = (N1 ∪N2, A).
Parameter: A non-negative integer k.
Question: Does G have an alternating cycle-free matching M with at most

k unmatched nodes in N1?

Specifically, if G = H1 is the spine of some simplicial complex ∆, then

Erasability is equivalent to the Alternating Cycle-Free Matching

problem [17].

With this graph-based definition, Courcelle’s theorem [18] can be used

to show that Alternating Cycle-Free Matching and Erasability are

fixed parameter tractable in the treewidth of the associated graph. Indeed,

Courcelle’s celebrated theorem [18] states that all graph properties that can

be defined in Monadic Second-Order Logic (MSOL) can be decided in linear

time when the graph has bounded treewidth. However, it is not obvious how

to directly state Erasability and Morse Matching in MSOL. Instead,

we apply Courcelle’s theorem to Alternating Cycle-Free Matching

which by the previous comment is a graph theoretical problem equivalent to

Erasability.

Theorem 4.5. Let w ≥ 1. Given a bipartite graph with tw(G) ≤ w,

Alternating Cycle-Free Matching can be solved in linear time.

Proof LetG = (N1∪N2, A) be a bipartite graph and let N = N1∪N2 be the set

of nodes of G. We write an MSOL formulation of Alternating Cycle-Free

Matching based on the fact that M ⊂ A is an alternating cycle-free matching
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if and only if M is a matching and every induced M -subgraph contains a node

of degree 1 [29]:

maxM : ∀x ∈ N [¬∃ a1, a2 ∈M(a1 6= a2 ∧ inc(x, a1) ∧ inc(x, a2))]

∧ ∀M ′ ⊆M(∃ a ∈M ′, ∃ x ∈ N [inc(x, a) ∧ (∀x1 ∈ N,

(¬∃ a1 ∈M ′(x 6= x′ ∧ adj(x, x1) ∧ inc(x1, a1))))]),

where inc(x, a) is the incidence predicate between node x and arc a and

adj(x, x′) is the adjacency predicate between node x and node x′. The above

statement can be translated to plain English as follows: “Find the largest

matching M of G, where each node is incident to at most one arc, such that

in every subset M ′ of the matching M there exists a matched node x in M ′

such that its only neighbor matched in M ′ is the other endpoint of the unique

matching arc incident to x”.

4.3
FPT algorithm for the Alternating Cycle-Free Matching problem

The result stated by Theorem ?? is a purely theoretical result, since the

complexity stated by Courcelle’s theorem contains towers of exponents in the

parameter function. In order to obtain a more precise notion of the complexity

of Morse Matching, we focus here on the construction of a linear time

algorithm to solve Alternating Cycle-Free Matching for inputs of

bounded treewidth, and we obtain a significantly faster running time.

Theorem 4.6. Let G = (N = N1 ∪N2, A) be a simple bipartite graph with a

given nice tree decomposition. Then the size of a maximum alternating cycle-

free matching of G can be computed in O(4w2+w · w3 · log(w) · n) time, where

n = |N | and w denotes the width of the tree decomposition.

Algorithm overview

Our algorithm constructs alternating cycle-free matchings of G along a nice

tree decomposition T of G, from the leaves of T up to its root, visiting each bag

Xi exactly once. In the following we denote by Fi the set of nodes which are

already processed and forgotten by the time node i is reached; we call Fi the

set of forgotten nodes. At each bag Xi of the decomposition, we construct a set

M(i) representing all valid alternating cycle-free matchings in the subgraph

of G induced by the nodes in Xi ∪ Fi.

Each leaf bag contains a single node of G, and the only matching is thus

empty. At each introduce bag Xi = Xj ∪ {x}, each matching M of M(j) can

be extended to several matchings as follows. The newly introduced node x
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can be either left unmatched, or matched with one of its neighbors as long

as it generates a valid and cycle-free matching with M . At each join bag

Xi = Xj = Xk,M(i) is build from the valid combinations of pairs of matchings

from M(j) and M(k). The final list of valid matchings is then evaluated at

the root bag r.

However, this final list M(r) contains an exponential number of match-

ings. Fortunately, the nice tree decomposition allows us to group together, at

each step, all matchings M that coincide on the nodes of Xi. Indeed, the al-

gorithm takes the same decisions for all the matchings of the group. We can

thus store and process a much smaller listM(j) of matchings containing only

one representative M̃ of each group. In each group, we choose the one with

the smallest number of unmatched nodes so far. This grouping takes place at

the forget and join bags. This makes the algorithm exponential in the bag size,

instead of the input size.

Matching data structure

The structure storing an alternating cycle-free matching M in a setM(i) must

be suitable for checking the matching validity whenever a matching is extended

at an introduce bag or a join bag. It must store which nodes are already

matched in M to avoid matching a node of G twice (matching condition). We

use a binary vector v(M), where the x-th coordinate is 1 if node x ∈ Xi is

matched and 0 otherwise. Checking the matching condition and updating when

nodes are matched has thus a constant execution time O(1).

Also, the structure must store which nodes are connected by an alternat-

ing path in a matching to avoid closing a cycle when extending or combining

matchings (cycle-free condition). When matching two nodes x and y, an alter-

nating cycle is created if there exists an alternating path from a neighbor of x

to a neighbor of y. To test this, we use a union-find structure uf(M) [68], stor-

ing for each matched node x the index of a matched node c(x) connected to x

by an alternating path in M . For a subset of matched nodes which are all con-

nected to each other, a component index c is chosen. For each unmatched node,

we store the ordered list of component indexes of matched neighbor nodes. The

cycle-free condition check reduces to find calls on the adjacent lists, and the up-

date of the structure when increasing the matching size reduces to union calls,

both executing in near-constant time in amortized analysis. All the matchings

are stored in a hash structure to allow faster search for duplicates. Finally, we

can return not only the maximal cycle-free matching size, but an actual max-

imal cycle-free matching by storing, along with each representative matching,

a binary vector of size |Xi ∪ Fi| with all the matched nodes so far.
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Grouping

Traversing the nice tree decomposition in a bottom-up fashion, each node

appears in a set of bags that form a subtree of the tree decomposition

(coherence requirement of the tree decomposition). This means that, whenever

a node is forgotten, it is never introduced again in the bottom-up traversal.

A näıve version of the algorithm described above would build the com-

plete list of valid alternating cycle-free matchings: the setM(i) would contain

all valid matchings in the graph induced by the nodes in Xi∪Fi. In particular,

for each matching M ∈ M(i) the algorithm would store the binary vector

v(M) and the union-find structure uf(M) on Xi ∪ Fi. However, it is sufficient

to store the essential information about each M by restricting the union-find

structure uf(M) and the binary vector v(M) only to the nodes in the bag Xi

(for any matched node x ∈ Xi, node c(x) of the union-find structure is then

chosen inside Xi). More precisely, we define an equivalence relation ∼i on the

matchings ofM(i) such that M ∼i M
′ if and only if v(M)|Xi

= v(M ′)|Xi
and

uf(M)|Xi
= uf(M ′)|Xi

on the nodes of Xi. Since two equivalent matchings only

differ on the forgotten nodes Fi, and the forgotten nodes do not appear later in

the algorithm, the validation of the matching and cycle-free conditions of any

extension of M or M ′ (or any combination with a third equivalent matching

M ′′) will be equal from now on.

Since we are interested in the alternating cycle-free matching with the

minimum number of unmatched nodes, for each equivalence class we will choose

a matching M̃ with the minimum number m(M̃) of unmatched forgotten nodes

as class representative. This number m(M̃) is stored together with (v,uf) for

each equivalence class of M̃(i) = M(i)/∼i. In addition, we can compute the

alternating cycle-free matching of maximum size by storing the complete binary

vector v along with m(M̃) (since the matching is cycle-free, this is sufficient

to recover the set of arcs defining the matching).

Execution time complexity

To measure the running time we need to bound the number of equivalence

classes of M̃(i). Let wi be the number of nodes in Xi. The number of

equivalence classes of M̃(i) is then bounded above by the number of possible

pairs (v,uf) on wi nodes. The union-find stores for each matched node x a

component node c(x) ∈ Xi, and for each unmatched node a list of at most wi

component nodes, leading to at worst 2wi different lists per node, giving 2w2
i

possible combinations of lists. Also there are 2wi possible binary vectors v of

length wi, therefore there are at worst 2w2
i 2wi elements in M̃(i). Observe that

this enumeration includes invalid matchings and incoherent pairs (v,uf).

DBD
PUC-Rio - Certificação Digital Nº 1021470/CA



Chapter 4. Optimal Morse matchings: the good news 46

The time complexity is dominated by the execution at the join bag where

pairs of equivalences classes from M̃(j) and M̃(k) have to be combined. The

maximum number of combinations is the square of the number of equivalence

classes in each set, and the complexity for a join bag will beO(4w2+w·w3·log(w))

(please refer to the next section for details). Since there are O(n) bags in a

nice tree decomposition, the total execution time is in O(4w2+w ·w3 · log(w) ·n).

Finally, as already stated in Lemma 4.3, for bounded treewidth computing

a tree decomposition and a nice tree decomposition is linear. So the whole

process from the bipartite graph to the resulting maximal alternating cycle-

free matching is fixed-parameter tractable in the treewidth. Note that neither

the decomposition nor the algorithm use the fact that the graph is bipartite.

4.4
Algorithm for Alternating Cycle-Free Matching: step by step

The algorithm visits the bags of the nice tree decomposition bottom-up from

the leaves to the root evaluating the corresponding mappings in each step

according to the following rules (see Figure 4.5).

Leaf bag

The set of matchings M̃(i) of a leaf bag Xi = {x} is trivial with a unique

empty matching M̃ represented by v(M̃) = [0, . . . , 0], and uf(M̃)(x) defined

by as an empty list, associated with m(M̃) = 0.

Introduce bag

Let Xi = Xj ∪ {x} be an introduce bag with child bag Xj. The set of

valid matchings M̃(i) is built from M̃(j) by introducing x in each matching

M̃ ∈ M̃(j), generating several possible matchings M̃ ′ (see Figure 4.2).

We can always introduce x as an unmatched node, then M̃ is extended

on x by setting v(M̃ ′)|x = 0 and updating uf(M̃ ′) with the ordered list of

components for each matched neighbor of x.

In addition, for each unmatched neighbor y ∈ Xj, we can introduce x

as a matched node in the following way. We match both x and y in M̃ and

set v(M̃ ′)|x = 1 and v(M̃ ′)|y = 1. If the intersection of the list of neighbor

components of x and y is empty, then the matching of x and y does not create

cycle. In this case M̃ ′ is a valid extension of M̃ . The update of the union-

find structure must then reflect the extensions of all alternating paths through

arc {x, y}. We perform in uf(M̃ ′) a union operation for x and all its matched

neighbors (including y), and for y and all its matched neighbors. We also add

the merged component index c(x) to the list of neighbor components of each
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unmatched neighbor of x and y. Then we include all valid extensions M̃ ′ to

M̃(i), reducing v(M̃ ′) by calling find for each node and neighbor component

list entry, and we set m(M̃ ′) = m(M̃) for all extensions M̃ ′ of M̃ .

1
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31
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Figure 4.2: Detail of the decisions at an introduce bag.

Running time. There are at most 2w2
i +wi extended matchings M̃ ′ for bag

Xi (including all invalid ones), where wi = |Xi| = |Xj| + 1 (a new possible

matching can be generated only once). Each new matching is validated by a

direct lookup at v(M̃ ′) and ordered list comparison, leading to a linear time wi.

The update of each structure requires constant time for each matched neighbor

of x and almost linear time O(wi) plus the sorted insertion O(wi · log(wi)) for

each unmatched neighbor, and there are at most wi neighbors in the bag. Thus,

the total running time of an introduce bag is in O(2w2
i +wi · w2

i · log(wi)).

Forget bag

Let Xi = Xj\{x} be a forget bag with child bag Xj 3 x (see Figure 4.3). While

the set of all possible matchings on Xi∪Fi does not change (M(j) =M(i)), the

equivalence relation ∼i possibly identifies more matchings than ∼j. For each

matching M̃ ∈ M̃(j), a new matching M ′ is obtained by deleting coordinate

x of v(M̃). If c(x) = x, uf(M̃) needs to be updated. To do so, the set of nodes

Xi is traversed twice, once to look for node y 6= x of minimal index such that

c(y) = c(x) (y might be empty), and a second time to replace x by y each time

x is used as a component index. If x was unmatched in M̃ (i.e. v(M̃)|x = 0),

then we set m(M ′) = m(M̃) + 1, otherwise we set m(M ′) = m(M̃).

Once the setM(j)′ of all the generated M ′ is computed, M̃(i) is obtained

as the quotient ofM(j)′ by ∼i, the equivalence relation on Xi. More precisely,

each pair (M ′,M ′′) ∈ M(j)′2 is tested for equality on both v and uf . If they

are equal, one with the lowest m is defined to be the new representative in

M̃(i).

Running time. Each new matching M ′ is obtained from a single element

of M̃(j) in worst-case time O(w2
i · log(wi)). Equivalent matchings are detected
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Figure 4.3: Detail of the decisions at a forget bag.

on-the-fly when filling the hash structure of M̃(i), and each equivalence test

is linear in w2
i . The complexity is thus in O(2w2

j+wj · w2
j · log(wj)).

Join bag

Let Xi = Xj = Xk be a join bag with child bags Xj and Xk (see Figure 4.4).

The matchings ofM(i) are generated by combining all the pairs of matchings

(M,M ′) ∈M(j)×M(k). A combination is valid if and only if it satisfies both

the matching and cycle-free conditions. The matching condition says that a

node cannot be matched in both M and M ′, which is checked by a logical

AND operation (v(M) AND v(M ′)). The cycle-free condition is checked with

the union-find structures M and M ′: the combination is valid if no node of the

component of a matched node in uf(M) is neighbor of the same component in

uf(M ′) and vice versa, each test requiring O(w2
i ) per component.

If a combination is valid, its structure M ′′ is defined by v(M ′′) =

v(M) OR v(M ′). The union-find structure is initialized from uf(M), and

updated as the introduce bag for each matched nodes of M ′. Finally, m(M ′′) =

m(M) +m(M ′).

As in the forget bag, two combinations may result in equivalent match-

ings, and we must compare them pairwise and choose the representative with

the lowest number of unmatched forgotten bags. Note that the sets of forgotten

nodes of Xj and forgotten nodes of Xk have to be disjoint by the coherence

requirement of Definition 4.1 and hence no forgotten node can be counted

twice in this setting. Furthermore, all possible combinations of matched and

unmatched nodes are enumerated in M(j) and M(k) and hence no possible

matching is overseen.

Running time. Each pair of matchings is validated and updated in time

O(wi · w2
i · log(wi)). The comparison and the choice of representative is done

on-the-fly when filling the hash structure ofM(i). There are at worst (2w2
i +wi)2

pairs. Thus, the complexity of the join bag dominates all other running times.
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Figure 4.4: Detail of the decisions at a join bag.

Therefore, the complexity of the algorithm is in O(4w2
i +wi · w3

i · log(wi)) per

bag.

Root bag

Let Xr = {x} be the root of T . M(r) consists of at most two matchings

v(M̃) = [0] or v(M̃ ′) = [1], where uf(M̃) is an empty list and uf(M̃ ′) defined

by c(x) = x. It follows that the minimum number of unmatched nodes for any

alternating cycle-free matching of G is given by m = min
{
m(M̃) + 1,m(M̃ ′)

}
,

and the maximum size of an alternating cycle-free matching is given by

(n−m)/2 where n = |N | denotes the number of nodes of G.

Running time. The total time complexity of the algorithm is bounded

above by the running time of the join bag. Since there is a linear number of

bags, and since for every bag Xi we have |Xi| ≤ tw(G) + 1 = w + 1, the total

time complexity of the algorithm described above is

O
(

4w2+w · w3 · log(w) · n
)
.

Correctness of the algorithm

We must check that the algorithm, without the grouping, considers every

possible alternating cycle-free matching in G and that the grouping occurring

at the forget and join bags does not discard the maximal matching.

The node coverage and arc coverage properties of nice tree decompo-

sitions (Definition 4.1) ensure that each node is processed and each arc is

considered for inclusion in the matching at one introduce node. Since the in-

troduce node discards only matchings that violate either the matching or the

cycle condition, and these violations cannot be legalized by further extensions

or combinations of the matchings, all possible valid matchings are considered.
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Figure 4.5: Algorithm execution on a small bipartite cycle (top left) with its
nice tree decomposition (center). At each bag, a set of matchings M̃(i) is
generated according to the bag type. M̃(i) is represented on the side of each
bag, with the nomenclature illustrated at the top of the figure.
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Now, consider two matchings M and M ′ that are grouped together

and represented by M̃ at a forget or join bag Xi. In the further course

of the algorithm, the representative M̃ is then extended or combined with

other matchings to form new valid matchings M̃ ′. The coherence property of

Definition 4.1 assures that no neighbor of a newly introduced node can be

a forgotten node, so the extension or combination only modifies matchings

M and M̃ on nodes of Xi, which are represented in the structure of M̃ ′.

Hence, the valid matchings M̃ ′ actually represent all the valid extensions and

combinations of M and M̃ . The grouping thus generates all valid and relevant

representatives of matchings in order to find a maximal alternating cycle-free

matching. Moreover, in case M and M ′ are equivalent and both with the lowest

number of forgotten unmatched nodes, choosing M or M ′ as representative

leads to the exact same extensions and combinations.

Finally, let Mm be the alternating cycle-free matching of maximum size

of G. In each bag the corresponding matching must be one of the matchings

with the lowest number of unmatched nodes within its equivalence class

M̃m ∈ M̃(i). Otherwise, a matching in the same class M̃m, extended and

combined as Mm in the sequel of the algorithm would give rise to a matching

with fewer unmatched nodes. Therefore, the choice of the representative at the

forget and join bags never discards the future alternating cycle-free matching

of maximum size.

4.5
Treewidth of the dual graph

Up to this point, we have been dealing primarily with simplicial complexes

and their spines. We now turn our attention to simplicial triangulations of

3-manifolds and a more natural parameter associated to them.

Definition 4.7 (Dual graph). The dual graph of a simplicial triangulation of

a 3-manifold T , denoted Γ(T ), is the graph whose nodes represent tetrahedra of

T , and whose arcs represent pairs of tetrahedron faces that are joined together.

The following theorem states that, if the treewidth of the dual graph is

bounded, so is the treewidth of the spine.

Theorem 4.8. Let G be the spine of a simplicial triangulation of a 3-manifold

T . If tw(Γ(T )) ≤ k, then tw(G) ≤ 10k + 9.

Proof Let T be a tree decomposition of the dual graph, where each bag

Xi contains at most k + 1 tetrahedra. We show how to construct a tree

decomposition T ′ of the spine of T , modeled on the same underlying tree as

DBD
PUC-Rio - Certificação Digital Nº 1021470/CA



Chapter 4. Optimal Morse matchings: the good news 52

T , in which each bag X ′i contains less or equal 10(k+ 1) edges and triangles.

For each bag Xi of T , we simply define the bag X ′i to contain all edges and

triangles of all tetrahedra in Xi. It remains to verify the three properties of a

tree decomposition (Definition 4.1).

Node coverage. It is clear that every edge or triangle in the spine belongs to

some bag X ′i, since every edge or triangle is contained in some tetrahedron τ ,

which belongs to some bag Xi.

Arc coverage. Consider some arc in the spine. This must join a triangle t to an

edge e that contains it. Let τ be some tetrahedron containing t; then τ contains

both t and e, and so if Xi is a bag containing τ then the corresponding bag

X ′i contains the chosen arc in the spine (joining t with e).

Coherence. Here we treat edges and triangles separately. Let t be some triangle

in the simplicial complex. We must show that the bags containing t correspond

to a connected subgraph of the underlying tree.

If t is a boundary triangle, then t belongs to a unique tetrahedron τ , and the

bags X ′i that contain t correspond precisely to the bags Xi that contain τ .

Since the tree decomposition T satisfies the coherence property, these bags

correspond to a connected subgraph of the underlying tree. If t is an internal

triangle, then t belongs to two tetrahedra τ1 and τ2, and the bags X ′i that

contain t correspond to the bags Xi that contain either τ1 or τ2. By the

coherence property of the original tree, the bags containing τ1 describe a

connected subgraph of the tree, and so do the bags containing τ2. Furthermore,

there is an arc in the dual graph from τ1 to τ2, and so some bag Xi contains

both τ1 and τ2. Thus the union of these two connected subgraphs is another

connected subgraph, and we have established the coherence property for t.

Now let e be some edge of the simplicial complex. Again, we must show that

the bags containing e correspond to a connected subgraph of the underlying

tree. This is simply an extension of the previous argument. Suppose that e

belongs to the tetrahedra τ1, . . . , τm (ordered cyclically around e). Then for

each τj , the bags Xi that contain τj describe a connected subgraph of the

underlying tree, and the bags X ′j containing e describe the union of these

subgraphs, which we need to show is again connected. This follows because

there is a sequence of arcs in the dual graph (τ1, τ2), (τ2, τ3) and so on; from the

tree decomposition T it follows that the subgraph for τ1 meets the subgraph

for τ2, the subgraph for τ2 meets the subgraph for τ3, and so on. Therefore

the union of these subgraphs is itself connected.
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4.6
Experimental results

In this section, in addition to simplicial complexes, we briefly concentrate on

a slightly more general notion of a generalized triangulation of a 3-manifold,

which is a collection of tetrahedra all of whose faces are affinely identified or

“glued together” such that the underlying topological space is a 3-manifold.

Generalized triangulations use far fewer tetrahedra than simplicial complexes,

which makes them important in computational 3-manifold topology (where

many algorithms run in exponential time). Every simplicial triangulation

is a generalized triangulation, and the second barycentric subdivision of a

generalized triangulation is a simplicial triangulation [51], hence both objects

are closely related.

In Chapter 3 we have seen that the problem of finding optimal Morse

matchings is hard to solve in general. In this chapter, we proved that in the case

of a small treewidth of the spine of a 2-dimensional complex or, equivalently, in

the case of a bounded treewidth of the dual graph of a simplicial triangulation

of a 3-manifold, finding an optimal Morse matching becomes easier. The results

stated in Section 4.5 hold for generalized triangulations as well (also, note that

the notion of a spine or the dual graph can be extended in a straightforward

way to generalized triangulations).

Given this situation, a natural question to ask is the following: What is a

typical value for the treewidth of the respective graphs of (i) small generic

generalized triangulations of 3-manifolds, and (ii) small generic simplicial

triangulations of 3-manifolds?

In a series of computer experiments we computed the treewidth of the

relevant graphs (i.e. the spine and the dual graph) of all closed generalized

triangulations of 3-manifolds up to 7 tetrahedra [11], and all simplicial tri-

angulations of 3-manifolds up to 10 vertices [48]. The computer experiments

were done using LibTW [69] to compute the treewidth / upper bounds for

the treewidth, with the help of the GAP package simpcomp [23,24] and the

3-manifold software Regina [10,12]. We report the minimal, maximal and av-

erage treewidths of all triangulations with the same number of tetrahedra in

Table 4.1 and of all simplicial triangulations with the same number of vertices

in Table 4.2. Furthermore, in Table 4.3 we list the tree-width of the spines of

a number of small 2-dimensional simplicial complexes with various properties

which have the potential of interfering with the computation of optimal Morse

functions.

On the one hand, regarding the treewidth of generalized triangulations

of 3-manifolds, we observe that there is a large difference between the average
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n # triangulations min max avg. min max avg.

1 4 (3) 1 2 1.50 (1.67) 0 0 0.00
2 17 (12) 1 3 2.47 (2.42) 1 1 1.00
3 81 (63) 1 3 2.51 (2.49) 1 2 1.60 (1.52)
4 577 (433) 1 5(4) 2.77 (2.73) 1 3 1.91 (1.87)
5 5184 (3961) 1 6(5) 2.95 1 4 2.16 (2.18)
6 57753 (43584) 1 6 3.16 (3.19) 1 4 2.31 (2.35)
7 722765 (538409) 1 7 3.35 (3.40) 1 4 2.45 (2.50)

Table 4.1: Treewidths of the spine (left) and of the dual graphs (right) of closed
generalized triangulations up to 7 tetrahedra. The values in brackets are for
1-vertex triangulations.

treewidth and the maximal treewidth for both the dual graph and the spine.

In particular, the average treewidth appears to be relatively small. Moreover,

there is only a slight difference between the data for general closed triangula-

tions and 1-vertex triangulations. This fact is somehow in accordance with our

intuition since the number of 0-dimensional simplices should neither directly

affect the spine nor the dual graph of a generalized triangulation.

On the other hand, the gap between the maximum treewidth and the

average treewidth in the case of simplicial triangulations of 3-manifolds is

relatively small compared to the data for generalized triangulations. At this

point it is important to note that, while the data concerning the spines for

simplicial complexes only consists of upper bounds, experiments applying the

algorithm for the upper bound to smaller graphs and then computing their

real treewidths suggest that these upper bounds (in average) are reasonably

close to the exact treewidth.

Further analysis shows that the average treewidth of the spines for both

generalized and simplicial triangulations of 3-manifolds is mostly less than

twice the treewidth of the dual graph, and hence much below the theoretical

upper bound given by Theorem 4.8. Also, the ratio between these two numbers

appears to be more or less stable for all values shown in Tables 4.1 and 4.2.

This can be seen as experimental evidence that for triangulated 3-manifolds

the treewidth of the dual graph is responsible for the inherent difficulty to solve

Erasability and related problems.

Despite the small values of n in our tables, there are theoretical reasons

to believe that the patterns of small treewidth will continue for larger n. For

instance, the conjectured minimal triangulations of Seifert fibered spaces over

the sphere have dual graphs with O(1) treewidth for arbitrary n. Moreover,

following recent results of Gabai et al. [27] there are reasons to believe that

large infinite classes of topological 3-manifolds admit triangulations whose

treewidths are below provable upper bounds.
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n # triangulations min max avg. min max avg.

5 1 6 6 6.00 4 4 4.00
6 2 ≤ 7 ≤ 8 ≤ 7.50 4 5 4.50
7 5 ≤ 8 ≤ 11 ≤ 9.40 4 6 5.00
8 39 ≤ 8 ≤ 14 ≤ 11.23 4 7 5.74
9 1297 ≤ 8 ≤ 18 ≤ 13.55 4 9 7.01
10 249015 ≤ 8 ≤ 22 ≤ 16.33 ≤ 4 ≤ 13 ≤ 8.99

Table 4.2: Upper bounds and exact values for the treewidths of the spine (left)
and of the dual graph (right) of simplicial triangulations of 3-manifolds up to
10 vertices.

complex shell. ext. s. constr. vtx. dec. f -vector w

Dunce hat, Zeeman [72] No (8, 24, 17) ≤ 6
Björner [6, Exerc. 7.37] No (6, 15, 11) 5
Hachimori 1 [35] Yes No (7, 19, 13) ≤ 5
Hachimori 2 [35] No Yes (12, 37, 26) ≤ 5
Hachimori 3 [35] No Yes (13, 39, 27) ≤ 5
Hachimori 4 [35] No Yes (10, 31, 22) ≤ 5
Simon 1 [63] No (7, 20, 14) ≤ 4
Simon 2 [63] Yes No (6, 15, 10) 4
Moriyama-Takeuchi 1 [52] Yes No (6, 14, 9) 3
Moriyama-Takeuchi 2 [52] Yes No (6, 14, 9) 3
Moriyama-Takeuchi 3 [52] Yes No (6, 15, 10) 4
Moriyama-Takeuchi 4 [52] Yes No (6, 15, 10) 4
Moriyama-Takeuchi 5 [52] Yes No (6, 15, 10) 4
Moriyama-Takeuchi 6 [52] Yes No (6, 15, 10) 4
Moriyama-Takeuchi 7 [52] Yes No (6, 15, 10) 4
Moriyama-Takeuchi 8 [52] Yes No (6, 15, 11) 5
Moriyama-Takeuchi 9 [52] Yes No (6, 15, 11) 5
Moriyama-Takeuchi 10 [52] Yes No (7, 17, 11) 4
Moriyama-Takeuchi 11 [52] Yes No (7, 18, 12) ≤ 4
Moriyama-Takeuchi 12 [52] Yes No (6, 15, 10) 4
Moriyama-Takeuchi 13 [52] Yes No (6, 15, 10) 3

Table 4.3: Treewidths (w) of the spine of some 2-dimensional simplicial
complexes of particular interest for discrete Morse theory, together with
information on their shellability (sh.), extended shellability (ext. s.), vertex
decomposability (vtx. dec.), and f -vector (the i-th entry of the f -vector of
a simplicial complex denotes the number of i-dimensional simplices in the
complex) [35].
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5
Stable matchings and discrete Morse theory

In this chapter, we study how Morse matchings can be constructed from a

“geometric” function f defined at the vertices of a simplicial complex ∆, using

stable matchings (Definition 2.2). Once the matching is constructed, the related

topological structures are easily extracted through efficient algorithms [41].

To do so, we propose define the weight of an arc in the Hasse diagram

of ∆ according to function f , and construct a discrete vector field as a stable

matching (Section 5.1). Theorem 5.5 shows that the V-paths of this discrete

vector field follows decreasing directions of f . This essentially proves that

such stable discrete vector fields are in fact discrete gradient vector fields

(Theorem 5.9), and we thus call them stable Morse matchings. Since the

definition of stable matchings is local, this framework provides simple tools

to analyze the local dynamics of stable Morse matching (much simpler than

previous results [41,42]!). In particular, we characterize most pairs of any stable

Morse matching in Section 5.3, and complete this characterization under a

discrete smoothness assumption in the next chapter.

5.1
Stable matchings in the Hasse diagram

First of all, to define a stable matching in the Hasse diagram of ∆, the graph

needs to be a weighted graph. The weight of each arc is given from a geometric

function f by the following definition.

Definition 5.1 (Geometric arc weights). Given a function f defined at the

vertices of ∆, the weight of arc {σ, τ} ∈ H is defined as πf (σ, τ) = f(τ \ σ).

In the previous definition, (σ, τ) is an arc of H, so dim(τ) = dim(σ) + 1, and

thus τ \σ contains a single vertex, which is where f is evaluated. We say that πf

is tie-free if adjacent arcs have distinct weights, which implies the uniqueness

of the stable matching (see Theorem 2.4). Observe that some cell complexes

do not admit such tie-free weight (see Figure 5.1). However, they do not fit

into our definition of simplicial complex.
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Figure 5.1: Arc weights from the function values (left) and a cell (not simplicial)
complex which does not admit any tie-free weight (right).

Definition 5.2 (Stable Morse matching). Let f be a function defined on the

vertices V a simplicial complex ∆ such that the associated weight πf is tie-free.

The stable Morse matching M of f is the unique stable matching in the Hasse

diagram of ∆ weighted by πf .

The existence and uniqueness of stable matching M are guaranteed by The-

orems 2.3 and 2.4. It can be efficiently computed by the Gale-Shapley algo-

rithm [28]. Usually f is a real-valued function, however the definition of the

stable matching only requires the values of f to be comparable.

In the remainder of this thesis, we consider that function f leads to a

tie-free weight, and denote by π the associated weight, M the resulting stable

Morse matching and V the corresponding discrete vector field. The next section

justifies why this stable matching is indeed a Morse matching.

5.2
V-paths of stable discrete vector fields

The main theorem of this section states that stable Morse matchings are

decreasing (Theorem 5.5) with respect to f . Indeed, function f induces an

ordering on the simplices of ∆ using lexicographic order of the vertices. More

precisely, consider two simplices σ = {v0, . . . , vp} ∈ ∆ and σ′ =
{
v′0, . . . , v

′
p

}
∈

∆ of same dimension p, where the vertices of each simplex are ordered by

increasing f -values: f(v0) < f(v1) < . . . < f(vp) and f(v′0) < f(v′1) < . . . <

f(v′p).

Definition 5.3 (Lexicographic ordering). With the notation above, σ >lex σ
′

if and only if ∃ i < p such that ∀j < i, f(vj) = f(v′j) and f(vi) > f(v′i).

By an abuse of notation, we denote v > w whenever f(v) > f(w) and σ > τ

whenever σ >lex τ .
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With the simple and local definition of an unstable pair (Definition 2.2),

the following lemma states that a V-path cannot increase twice in a row.

Lemma 5.4 (Stability of V-path). If Jσ1τ1σ2τ2I is a V-path, then either

τ1 \ σ2 > τ1 \ σ1 or τ1 \ σ2 > τ2 \ σ2.

Proof Since Jσ1τ1σ2τ2I is a V-path, (σ1, τ1) ∈ M and (σ2, τ2) ∈ M . Now

M is a stable matching, so (σ2, τ1) ∈ A \ M is not unstable. Therefore

one of the conditions of Definition 2.2 is false: π(σ2, τ1) > π(σ1, τ1) or

π(σ2, τ1) > π(σ2, τ2). This can be written in terms of vertices: τ1 \ σ2 =

π(σ2, τ1) > π(σ1, τ1) = τ1 \ σ1 or τ1 \ σ2 = π(σ2, τ1) > π(σ2, τ2) = τ2 \ σ2 (see

Figure 5.2).

Figure 5.2: Notation for Lemma 5.4 and Theorem 5.5: observe that w1 = τ1\σ1,
w2 = τ2 \σ2, and v1 = τ1 \σ2. With this notation, Lemma 5.4 states that either
v1 > w1 or v1 > w2.

We can state this lemma with the lexicographic order: τ1 \ σ2 > τ1 \ σ1

can be written as σ1 > σ2 and τ1 \ σ2 > τ2 \ σ2 can be written as τ1 > τ2. The

lemma ensures that along the V-path Jσ1τ1σ2τ2I, either the σ′s or the τ ′s

decreases at each step. For longer V-paths, we can state the following theorem.

Theorem 5.5 (Decreasing V-paths). Let Jσ1τ1σ2τ2 . . . σsτsI be a V-path,

and denote wk = τk \ σk, and vk = τk \ σk+1. If σ1 is the minimal simplex

of the V-path for the lexicographic order, then ∀k ∈ {2, . . . , d}, there exists

ρk ∈ ∆ such that σ1 = {v1, v2, . . . , vk−1} ∪ ρk, σk = {w1, w2, . . . , wk−1} ∪ ρk,

and w1 > v1 > w2 > . . . > wk−1 > vk−1 > wk.

Proof by induction. With the notation of the theorem, Lemma 5.4 ensures

that vk > wk or vk > wk+1 (see Figure 5.2). Since weight π is tie-free,

τk \σk 6= τk \σk+1, and in particular wk 6= vk. We will now check the existence

of ρk and the ordering of the v′s and the w′s by induction.

Base case. Let k = 2 and ρ2 = σ1 \ v1. Then σ1 = v1 ∪ ρ2 and σ2 = τ1 \ v1 =

(σ1 ∪ w1) \ v1 = ρ2 ∪ w1. Since σ1 is minimal, σ2 > σ1. Therefore
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ρ2∪w1 > ρ2∪v1, and thus w1 > v1. The first alternative of Lemma 5.4 is

false: v1 6> w1 (recall that v1 6= w1). Then the other one is true: v1 > w2.

All together, we have w1 > v1 > w2.

Induction step. Suppose that there exists ρk satisfying the theorem for a given k ≥ 2

with w1 > v1 > w2 > . . . > wk−1 > vk−1 > wk.

First assume as a contradiction hypothesis that vk ∈ {w1, . . . , wk−1}.
Since σ1 is minimal, σk+1 = ρk ∪ ({w1, . . . , wk−1} \ vk) ∪ wk > σ1 =

ρk∪{v1, v2, . . . , vk−1}. This would imply that ({w1, . . . , wk−1}\vk)∪wk >

{v1, v2, . . . , vk−1}, but this contradicts the induction hypothesis w1 >

v1 > w2 > . . . > wk−1 > vk−1 > wk. Therefore vk /∈ {w1, . . . , wk−1}.

Since vk ∈ σk, then vk ∈ σk\{w1, . . . , wk−1} = ρk and we can define ρk+1

as ρk+1 = ρk\vk. We check σ1 = {v1, . . . , vk−1}∪ρk = {v1, . . . , vk}∪ρk+1

and σk+1 = ρk ∪ {w1, . . . , wk} \ vk = ρk+1 ∪ {w1, . . . , wk}.

Now we check the ordering of vk and wk. Since σ1 is minimal,

ρk+1 ∪ {w1, . . . , wk} = σk+1 > σ1 = {v1, . . . , vk} ∪ ρk+1. Therefore

{w1, . . . , wk} > {v1, . . . , vk}, and the first comparison of the lexico-

graphic order implies

min{w1, . . . , wk} ≥ min{v1, . . . , vk} .

From the induction hypothesis w1 > v1 > . . . > wk−1 > vk−1 > wk, so

wk = min{w1, . . . , wk} < min{v1, . . . , vk−1} = vk−1 .

As observed at the beginning of the proof, wk 6= vk, thus wk > vk. Since

vk 6= wk, using Lemma 5.4, vk 6> wk implies that vk > wk+1. All together

wk > vk > wk+1.

Figure 5.3: Paradox in Waterval, M. C. Escher (1961).
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Since in a stable discrete vector field, any V-path is decreasing in the

sense of the previous theorem, the field admits no closed V-path (it would be

a paradox analogous the one in Figure 5.3).

Theorem 5.6. The discrete vector field V associated to the stable matching

M is a discrete gradient vector field.

Proof by contradiction. Assume V is not a discrete gradient vector field. Then,

by Definition 2.8, there exists a non-trivial closed V-path Jσ1τ1σ2τ2 . . . σsI

where s ≥ 2 and σ1 = σs. Since it is a closed V-path, we can assume without

loss of generality that the minimal simplex is σ1. Then, Theorem 5.5 leads to

a contradiction, since we have, for any k ≥ 2, σ1 = {v1, v2, . . . , vk−1} ∪ ρk,

σk = {w1, w2, . . . , wk−1} ∪ ρk, with vertices v′s and w′s all distinct. Therefore

σ1 6= σk for any k ≥ 2.

The Gale-Shapley algorithm [28] used to compute stable matching is then

equivalent to the greedy constructions of geometric discrete Morse function [33,

41], provided the weight is tie-free. However, the stable matching formulation

provides effective tools to analyze the generated function and to optimize the

algorithm.

5.3
Local dynamics of stable Morse matchings

In this section, we analyze the local behavior of the discrete gradient vector

field obtained by stable matching. We show that the discrete gradient vector

field “points to the steepest descent”. The main elements of this analysis rely

on the following definitions and some immediate facts about them.

Definition 5.7. The vertex link of σ denoted by lk0(σ) = {v ∈ V | σ ∪ v ∈ ∆}
is the set of vertices that are adjacent to σ. If lk0(σ) 6= ∅, let vlk(σ) =

min lk0(σ) be the smallest vertex in the vertex link of σ. Also let vm(σ) = min σ,

the smallest vertex in σ.

The following lemma states direct relations between the definitions above.

Lemma 5.8. For all v ∈ σ, with dim(σ) > 0 and lk0(σ) 6= ∅:

(i) lk0(σ) ∪ v ⊆ lk0(σ \ v),

(ii) vlk(σ) ≥ vlk(σ \ v),

(iii) v ≥ vlk(σ \ v),

(iv) vm(σ \ v) ≥ vm(σ),

(v) vm(σ \ v) > vm(σ)⇔ v = vm(σ).
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Proof. Item (i) follows from the definition of simplex as subset of vertices:

if w ∈ lk0(σ), then σ ∪ w is a simplex and so is its face (σ \ v) ∪ w. Also

(σ \ v) ∪ v = σ ∈ ∆, so v ∈ lk0(σ \ v).

Item (ii) follows from item (i), since the minimum of subset lk0(σ) is larger

that the minimum of the larger set lk0(σ \ v).

Item (iii) follows from v ∈ lk0(σ \ v), so it is larger than the minimum of

lk0(σ \ v).

Item (iv) follows similarly from σ \ v ⊂ σ: the minimum of the subset σ \ v is

larger than the minimum of the larger set σ.

Finally, item (v) follows from item (iv), observing that the minima of the two

set differ if the vertex removed from σ is indeed the minimum of σ.

Now we can state and prove the Steepest Descent theorem which essentially

says that if the smallest vertex in the vertex link of σ is smaller then every

vertex in σ, then the stable Morse matching points in that direction.

Theorem 5.9 (Steepest Descent). Let M be a stable matching. If lk0(σ) 6= ∅
and vm(σ) > vlk(σ), then σ → σ ∪ vlk(σ).

Figure 5.4: Instabilities around σ → σ ∪ vlk(σ) in Theorem 5.9.

Proof by contradiction. Let τ = σ ∪ vlk(σ). Assuming by contradiction that

(σ, τ) /∈ M , we show that (σ, τ) is unstable in M . Let’s check Condition 1

of Definition 2.2: “τ is unmatched or ∃ w ∈ N , such that (τ, w) ∈ M and

π(τ, w) > π(σ, τ)”.

Case 1a. τ is critical in M . Then Condition 1 is true.

Case 1b. τ matched above inM . ∃ v′ ∈ lk0(τ), v′ 6= vlk(σ) such that (τ, τ∪v′) ∈M .

It follows that v′ ≥ vlk(τ) ≥ vlk(σ). Since v′ 6= vlk(σ), v′ > vlk(σ).

Therefore π(τ, τ ∪ v′) = v′ > vlk(σ) = π(σ, τ). Condition 1 holds.

Case 1c. τ matched below in M . ∃ v′ ∈ τ, v′ 6= vlk(σ) such that (τ \ v′, τ) ∈ M .
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Therefore v′ ∈ τ \ vlk(σ) = σ. It follows that v′ ≥ vm(σ) > vlk(σ).

Therefore π(τ, τ ∪ v′) = v′ > vlk(σ) = π(σ, τ). Condition 1 is true.

Therefore, if (σ, τ) /∈ M , then Condition 1 of Definition 2.2 is always true.

Similarly, let’s check Condition 2 of Definition 2.2: “σ is unmatched or

∃ w ∈ N , such that (σ,w) ∈M and π(σ,w) > π(σ, τ)”.

Case 2a. σ is critical in M . Then Condition 2 is true.

Case 2b. σ matched above in M . ∃ v′ ∈ lk0(σ), v′ 6= vlk(σ) such that (σ, σ∪v′)∈M .

It follows that v′ ≥ vlk(σ). Since v′ 6= vlk(σ), v′ > vlk(σ). Therefore

π(σ, σ ∪ v′) = v′ > vlk(σ) = π(σ, τ). Condition 2 holds.

Case 2c. σ matched below in M . ∃ v′ ∈ σ, v′ 6= vlk(σ) such that (σ \ v′, σ) ∈M . It

follows that v′ ≥ vm(σ) > vlk(σ). Therefore π(τ, τ ∪ v′) = v′ > vlk(σ) =

π(σ, τ). Condition 2 is true.

Therefore, if (σ, τ) /∈M , then Condition 2 of Definition 2.2 is always true.

Since both Conditions 1 and 2 are true, then (σ, τ) is unstable. This contradicts

the hypothesis that M is a stable matching, therefore (σ, τ) ∈M .

The Steepest Descent theorem gives a sufficient condition for a simplex σ to

match above with τ = σ ∪ vlk(σ). It can be re-formulated from the point of

view of τ : every τ \ vm(τ) ∈ ∆ is matched above.

Lemma 5.10. For every τ ∈ ∆ with dim τ > 0, τ \ vm(τ) → (τ \ vm(τ)) ∪
vlk(τ \ vm(τ)).

Proof. Using σ = τ \ vm(τ) in the Steepest Descent theorem, we only need

to check that vm(σ) > vlk(σ). From items (iv) and (iii) of Lemma 5.8,

vm(τ \ vm(τ)) > vm(τ) and vm(τ) ≥ vlk(τ \ vm(τ)). Therefore vm(σ) =

vm(τ \ vm(τ)) > vlk(τ \ vm(τ)) = vlk(σ), and Theorem 5.9 applies to σ.

The next corollary, which gives sufficient conditions for σ to be matched below,

follows directly from the previous lemma.

Corollary 5.11. If vm(σ) = vlk(σ \ vm(σ)), then σ \ vm(σ)→ σ.

The Steepest Descent theorem gives some sufficient conditions for a simplex to

be matched above and Corollary 5.11 gives sufficient condition for a simplex

to be matched below. The results of this section can be summarized in the

following table.

Function ⇒ Matching Matched Result

vm(σ) > vlk(σ) σ → σ ∪ vlk(σ) Above Steepest Descent theorem

vm(σ) = vlk(σ \ vm(σ)) σ \ vm(σ)→ σ Below Corollary 5.11
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When we combine the contrapositive of both results, we obtain necessary

conditions for a critical simplex.

Lemma 5.12. If σ is critical, then vlk(σ) > vm(σ) > vlk(σ \ vm(σ)).

The proof is direct since vm(σ) 6= vlk(σ) and vm(σ) ≥ vlk(σ \ vm(σ))

The Steepest Descent theorem gives sufficient conditions for pairs in

stable Morse matchings, and a natural question is whether its converse is true.

However the example of Figure 5.5 shows that the converse is not always true.

Let ∆ = {a, b, c, d, ab, bc, cd} and a > b > c > d. The stable Morse matching is

b→ ab, c→ bc, and d→ cd. We have b > vm(c) = c but c→ bc (not steepest

descent!).

Figure 5.5: One-dimensional counterexample for the converse of the Steepest
Descent theorem: matching M = {(b, ab) , (c, bc) , (d, cd)} is stable and the
conclusion of Theorem 5.9 c → c ∪ b is true, but its premise is false:
vm(c) = c 6> vlk(c) = b.

If the converse of the Steepest Descent theorem were true, we would have

a full characterization of the pairs of stable Morse matchings. In particular,

we would locally define the critical simplices which is fundamental in compu-

tational applications [4,61]. The next chapter studies properties of simplicial

complexes and functions f where the converse is true.
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6
Discrete smoothness and stable Morse matchings

In this chapter, we introduce a concept of discrete smoothness for functions

on a simplicial complex and then prove that for discrete smooth functions, the

converse of the Steepest Descent theorem holds (Section 6.1). In that case,

we have a full characterization of the stable Morse matching and its critical

simplices. In Section 6.2, we show that the dynamics around critical simplices

are similar to their counterparts from the smooth theory. In Section 6.3, we

relate them to critical points of piecewise-linear interpolation of function f , as

defined by Banchoff [5]. Our results on discrete smoothness generalize several

results stated with barycentric subdivision [4,41,42], and we prove at the end

of the chapter that any function defined on a simplicial complex is discrete

smooth after one barycentric subdivision.

6.1
Discrete smoothness

As in the previous part of this thesis, function f is defined on the vertices of a

simplicial complex ∆, and is used to define an ordering of those.

Definition 6.1 (Discrete smoothness). A function f is discrete smooth on

simplicial complex ∆ if for every σ ∈ ∆ with lk0(σ) 6= ∅, the following holds:

if vlk(σ) > vm(σ), then ∀v ∈ lk0(σ), vlk(σ \ vm(σ) ∪ v) = vm(σ) .

Note that this definition depends on the function as well as the structure of

the simplicial complex, and we write that the simplicial complex ∆ is discrete

smooth when the function defined on ∆ is discrete smooth. In this entire section

we assume that ∆ is discrete smooth. Observe that the simplicial complexes

in the right of Figure 6.1 are not discrete smooth.

With this definition, we can obtain necessary conditions for a simplex

to be matched above, showing that if a simplicial complex is discrete smooth,

then the converse of Steepest Descent theorem holds.

Lemma 6.2 (Converse of the steepest descent theorem). Consider a discrete

smooth complex ∆. If σ → σ ∪ v, then vm(σ) > vlk(σ) = v.
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Figure 6.1: Examples of a smooth vertex v (top left), a non-smooth vertex v
(bottom left), a smooth edge σ (top right), and non-smooth edge σ (bottom
right). The function f is the height.

This is indeed the converse of Theorem 5.9 since vm(σ) /∈ lk0(σ), therefore

vm(σ) 6= vlk(σ).

Proof by contradiction. Assume by contradiction that either vlk(σ) > vm(σ)

or v 6= vlk(σ). We separate the proof in two cases, depending on the order of

vm(σ) and vlk(σ):

Case 1: vm(σ) > vlk(σ). It follows that v 6= vlk(σ). Therefore, by Theorem 5.9,

we have that σ is matched to σ ∪ vlk(σ) and not σ ∪ v as stated in the

hypothesis.

Case 2: vlk(σ) > vm(σ). Since σ → σ ∪ v, we have v ∈ lk0(σ). Therefore

v ≥ vlk(σ) > vm(σ). Let σ′ = σ \ vm(σ) ∪ v the simplex appearing

in the definition of discrete smoothness. Since v > vm(σ), it follows that

vm(σ′) > vm(σ). The discrete smoothness implies that vlk(σ′) = vm(σ)

(Definition 6.1). Therefore vm(σ′) > vm(σ) = vlk(σ′). It follows from

Theorem 5.9, that σ′ → σ′∪vlk(σ′). However σ′∪vlk(σ′) = σ′∪vm(σ) =

σ∪ v. Therefore σ′ → σ∪ v. This is a contradiction since σ∪ v is already

matched with σ by hypothesis.

We now combine the previous lemma with the Steepest Descent theorem to

give the full characterization of the stable Morse matching.

Corollary 6.3. Consider a discrete smooth complex ∆. Then:

σ → σ ∪ v ⇔ vm(σ) > vlk(σ) = v .

This characterization gives an important and extremely fast, linear and nat-

urally parallel algorithm to compute stable Morse matching (in the discrete

smooth case): the algorithm only needs to check every σ ∈ ∆ and lk0(σ) to see

if σ is matched above.
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With the converse of the steepest descent theorem, we can now prove the

converse of Corollary 5.11, which is essentially applying the converse of the

steepest descent theorem from the dimension below.

Corollary 6.4. Consider a discrete smooth complex ∆ and v ∈ τ ∈ ∆. Then:

τ \ v → τ ⇔ vlk(τ \ vm(τ)) = vm(τ) = v .

Proof. (⇒) Using Lemma 6.2 on σ = τ \ v, we get vm(σ) > vlk(σ) = v.

Therefore vm(τ \ v) > vlk(τ \ v) = v. Then it follows that v = vm(τ) by

Lemma 5.8.

(⇐) Corollary 5.11.

We summarize the results when ∆ is discrete smooth in the following table. It

is exactly corresponds to the table of Section 5.3.

Matching ⇔ Function Matched Result

σ \ v → σ vlk(σ \ vm(σ)) = vm(σ) = v Below Corollary 6.4

σ → σ ∪ v vm(σ) > vlk(σ) = v Above Lemma 6.2

Since σ is critical if and only if σ is neither matched above nor below, critical

simplices are characterized by the following corollary.

Corollary 6.5. σ is critical if and only if both conditions hold:

(i) (unmatched below) dim(σ) = 0 or vlk(σ) > vm(σ) ,

(ii) (unmatched above) lk0(σ) = ∅ or vm(σ) > vlk(σ \ vm(σ)) .

Figure 6.2: Critical (singular) points in a continuous gradient vector field: a
sink (left), a saddle (middle), and a source (right).
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6.2
Nice-looking critical simplices

Now that we have characterized the critical simplices, we want to understand

the behavior of the stable Morse matching in their neighborhood. We show that

this behavior is similar to the local dynamics around the continuous critical

points (see Figure 6.2). In this entire section we assume that ∆ is discrete

smooth.

Lemma 6.6 (Critical Above). If τ is a critical simplex, then all facets are

matched above: ∀v ∈ τ , τ \ v is matched above. Moreover, vm(τ) > vlk(τ \ v).

Figure 6.3: Notation used in Lemma 6.6: σk = τ \ vk.

Proof. Let’s write the vertices of τ = (v0, v1, . . . , vk) in decreasing order:

vk > vk−1 > . . . > v0, and let σk = τ \ vk be the facet of τ opposed to

vk (see Figure 6.3). Since two adjacent unmatched nodes (critical simplices)

is an unstable pair (Definition 2.2), none of the facets of τ is critical.

To prove the lemma, it remains to show that the facets are not matched

below. Since τ = σ0 ∪ v0 is critical then σ0 6→ σ0 ∪ v0. By Corollary 6.3,

either vm(σ0) 6> vlk(σ0) or vlk(σ0) 6= v0. Since vm(σ0) = v1 > v0, it follows

that v0 > vlk(σ0), and thus σ0 is matched above from the Steepest Descent

theorem.

Now let l ≥ 1. Observe that vlk(σ0) ∈ lk0(σ0) = lk0(τ \ v0) ⊆ lk0(σl \ v0) and

v0 ∈ lk0(σl \ v0). Therefore, v0 > vlk(σ0) and thus v0 6= vlk(σl \ v0). It follows,

from Corollary 6.3, that σl \ v0 6→ σl.

Now let k ≥ 1, k 6= l. It follows from vk > vk−1 > . . . > v0, that

vm(σl \ vk) = v0. Since vk > v0 = vm(σl \ vk), then, by Corollary 6.3,

σl \ vk 6→ σl: σl is not matched with any of its facets.

Therefore no facet σl of τ is matched below: they are all matched above. It

follows, from Corollary 6.3, that ∀l, vm(σl) > vlk(σl). Thus vm(τ) > vlk(σl).
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Figure 6.4: Results of Lemmata 6.6 and 6.7 on a critical vertex (left), a critical
edge (center), and a critical triangle (right). In a smooth complex, they are
similar to minima (sinks), saddles, and maxima (sources).

Lemma 6.7 (Critical Below). Let σ be a critical simplex. If σ is a facet of τ ,

then τ \ vm(σ)→ τ .

Proof. Let σ be critical, so vlk(σ) > vm(σ) by Corollary 6.3. Let v ∈ lk0(σ)

and τ = σ ∪ v. We have v ≥ vlk(σ) > vm(σ), so vm(τ) = vm(σ). The

smoothness of ∆ (Definition 6.1) implies that vlk(τ \ vm(σ)) = vm(σ). All

together, vm(τ \ vm(σ)) > vm(σ) = vlk(τ \ vm(σ)). Then the Steepest Descent

theorem applies: τ \ vm(σ)→ τ \ vm(σ) ∪ vlk(τ \ vm(σ)) = τ .

Figure 6.4 shows the combined result of both previous lemmata on surfaces

(2-manifolds). In particular, Lemma 6.7 states that all edges adjacent to a

minimum points towards the minimum, and Lemma 6.6 states that all facets

of a maximum points outwards that maximum.

6.3
Relation to Banchoff’s critical points

In this entire section, assuming that ∆ is a discrete smooth triangulated

manifold, we relate Banchoff’s critical points for embedded polyhedra theory

and to critical simplices of our stable Morse matchings. More precisely, we show

that Banchoff’s piecewise linear critical vertices are faces of critical simplices

of the stable Morse matchings. Banchoff’s critical points can be defined using

the notions of star of a vertex.

Definition 6.8 (Stars). The star of a vertex v denoted St(v) is the set of

simplices in ∆ that contain v: St(v) = {σ ∈ ∆|v ∈ σ}.
The lower star of v is the set of simplices of St(v) whose maximal vertex is v:

St−(v) = {σ ∈ St(v)|v′ ∈ σ ⇒ f(v) ≥ f(v′)}.
The upper star of v is the complement: St+(v) = St(v) \ St−(v).
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Figure 6.5: The green area is the star of yellow vertex

Now we can define Banchoff’s critical points [5] for triangulated manifolds in

any dimension (see Figure 6.6 for the two-dimensional case).

Definition 6.9 (Banchoff’s classification). Let v be a vertex of ∆.

(i) v is a regular vertex if St−(v) is a disk.

(ii) v is a Banchoff minimum if St−(v) = ∅.

(iii) v is a Banchoff maximum if St−(v) = St(v).

(iv) v is a Banchoff 1-saddle of multiplicity m (m ≥ 1) if St−(v) has m + 1

connected components.

Figure 6.6: Definition of Banchoff’s minimum (left), saddle (center), and
maximum (right), with the critical simplex of stable Morse matching in red.

The first result in this section proves equivalence between Banchoff’s

minima and critical vertices in stable Morse matching on discrete smooth

triangulated manifolds.

Lemma 6.10 (Minimum). Vertex v is a Banchoff minimum for f ⇔ v is a

critical vertex of the stable Morse matching.
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Proof. Vertex v is a minimum ⇔ St−(v) = ∅ ⇔ vlk(v) > v = vm(v)⇔ vertex

v is critical, by Corollary 6.5.

The second result relating Banchoff’s 1-saddles and critical edges is weaker,

since it is not an equivalence. However, it says that not only there is always an

adjacent critical edge to each Banchoff’s 1-saddle but the number of adjacent

critical edges is equal to the multiplicity of the saddle: Morse matchings split

1-saddles of multiplicity m into (m− 1) simple saddles (see Figure 6.7).

Lemma 6.11 (Saddle). If vertex v is a Banchoff 1-saddle of multiplicity m,

then ∃σ1, σ2, . . . , σm ∈ St(v) such that σ1, σ2, . . . , σm are critical edges.

Proof. We know from the definition of a Banchoff’s 1-saddle, that St−(v)

has m + 1 connected components C0, . . . , Cm: St−v = C0 t C1 t . . . t Cm.

Let vi = minCi and σi = (v, vi) for i = 1, . . . ,m, and assume without

loss of generality that vm > vm−1 > . . . > v0. Since vi ∈ St−(v), then

v > vm > vm−1 > . . . > v0, and v0 = vlk(v).

Since the components are disjoint, lk0(σi) ⊆ (Ci \ vi)∪St+(v). Now, Ci \ vi ⊂
St−(v), and thus min(Ci \ vi) ∪ St+(v) = min(Ci \ vi). It follows that

vlk(σi) ≥ min(Ci \vi)∪St+(v) = min(Ci \vi) > vi > v0 = vlk(v) = vlk(σi \vi).
Since vm(σi) = vi, then vlk(σi) > vm(σi) > vlk(σi \ vm(σi)). It follows from

Corollary 6.5, that edge σi is critical.

We can also show that all Banchoff’s maximum vertices are faces of a top

dimensional critical simplex. This holds when the maximum occurs in the

interior of the triangulated manifold ∆, i.e.∀v ∈ σ, | lk0(σ \ v)| > 1.

Lemma 6.12 (Maximum). If vertex v0 is a Banchoff maximum from the

interior of ∆, then ∃σ ∈ St(v0) such that σ is a critical and dim(σ) = d =

dim ∆.

Proof. Consider the following d vertices in lk0(v0), all adjacent to each other:

vk = max lk0({v0, v1, . . . , vk−1}) for k = 1, . . . , d, in particular v1 > . . . > vd.

Since St−(v) = St(v), then v0 > v1 > . . . > vd. Now let σ = {v0, v1, . . . , vd)}.
Since v0 is in the interior of ∆, then | lk0(σ \ vd)| > 1. It follows that

vm(σ) = vd = max lk0(σ \ vd) > min lk0(σ \ vd) = vlk(σ \ vd). Therefore σ

is critical by Corollary 6.5.

Observe that, in the last lemma, v0 may be on the boundary if | lk0(σ\vd)| > 1.

Note that the definition of k-saddle, the generalization of 1-saddle, was

not included in Definition 6.9 since we do not prove any result about them in

relation to the stable Morse matching. However, we conjecture that there is a

relationship between the critical simplices and the k-saddle in every dimension.
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Figure 6.7: Money saddles (saddles of multiplicity 2) in dimensions 2 and 3:
the saddle is split into two simple saddles.

6.4
Smoothness of the barycentric subdivision

The goal of this section is to prove that, for any function f defined on a

simplicial complex ∆, the function induced by f on the barycentric subdivision

of ∆ is discrete smooth. This proves that the results of the previous sections

apply to barycentric subdivision, generalizing previous results on similar greedy

constructions of Morse matchings [4,41,42].

Let f be a function defined on the vertices of ∆. This function induces an

ordering on the simplices of ∆ using the reverse lexicographic ordering of their

vertices. More precisely, let σ = {v0, . . . , vp} ∈ ∆ and σ′ = {v′0, . . . , v′p′} ∈ ∆,

where the vertices are ordered by decreasing f -values: f(v0) > f(v1) > . . . f(vp)

and f(v′0) > f(v′1) > . . . > f(v′p′).

Definition 6.13 (Reverse lexicographic ordering). With the notation above,

σ >revlex σ
′ if one of the following statement is true:

(i) ∃ i < min(p, p′),∀j < i, f(vj) = f(v′j) and f(vi) > f(v′i),

(ii) p < p′ and ∀j ≤ p, f(vj) = f(v′j).

Observe that this definition is similar to Definition 5.3 except that f -values are

taken in the decreasing order and there is a tie-breaking rule when comparing

simplices of different dimensions (in case of tie, the lower dimension has a

greater position in the ordering). We also have σ =revlex σ
′ ⇔ σ = σ′.

To illustrate the ordering, consider ∆ as a single triangle abc and its faces,

with f(a) > f(b) > f(c). The reverse lexicographic ordering orders the faces

of ∆ as: a >revlex ab >revlex abc >revlex ac >revlex b >revlex bc >revlex c. The

comparisons in boldface (>revlex) are the one resulting from the tie-breaking

rule. The notation >revlex is dropped for the remainder of the section.
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Lemma 6.14. The reverse-lexicographic ordering relates to the set operations

on simplices as follows:

(i) If σ ⊂ τ , then τ > σ ⇔ max τ > maxσ.

(ii) If σ 6⊂ τ , then τ > σ ⇔ max {τ \ (σ ∩ τ)} > max {σ \ (σ ∩ τ)}.

(iii) σ > σ ∪ v ⇔ minσ > v ⇔ v = min(σ ∪ v).

The reverse-lexicographic ordering allows to extend the ordering given by f on

∆ to its barycentric subdivision ∆′ (see Figure 6.8).

Definition 6.15 (Barycentric subdivision). The barycentric subdivision ∆′ of

a simplicial complex ∆ is a simplicial complex constructed as follows:

– for every simplex σ ∈ ∆, there is a vertex b(σ) ∈ ∆′,

– for every sequence {σ0, . . . , σp} ⊂ ∆, such that σ0 ⊂ σ1 ⊂ . . . ⊂ σp, there

is a p-simplex Σ = {b(σ0), . . . , b(σp)} ∈ ∆′.

Figure 6.8: Barycentric subdivision of simplex abc, indicating the pairs that
are always stable in the stable Morse matching.

Since each vertex b(σ)of the subdivision corresponds to an original

simplex σ of ∆, we extend function f to the vertices in ∆′ ordering vertex

b(σ) according to the reverse-lexicographic ordering of the vertices of σ:

Definition 6.16 (Extension of f). The extension f ′ of function f on the

vertices of ∆′ is defined by f ′(b(σ)) = σ. The values of f ′ are totally ordered

using the reverse lexicographic ordering.

In order to prove the smoothness of f ′ on ∆′, we need to write the vertex

link lk0(Σ) of a simplex Σ in the barycentric subdivision explicitly. Looking at

Figure 6.8, we observe that the vertex link of edge {a, abc} are vertices ab and

ac, which are exactly the only two possibilities to insert between a and abc.

The vertex link of vertex {ab} is composed of vertices a, b, and abc. The two

first are the possible insertion before ab that form a simplex of ∆′, and the

last one is a possible insertion after ab. This is the general situation, as stated

below.
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Lemma 6.17 (lk0 in the subdivision). Let Σ = {b(σ0), . . . , b(σp)} ∈ ∆′. Then

lk0(Σ) = {b(τ), τ ∈ ∆, σ0 ⊂ σ1 ⊂ . . . ⊂ σi ⊂ τ ⊂ σi+1 ⊂ . . . ⊂ σp or σp ⊂ τ}

Proof. This follows directly from Definitions 5.7 and 6.15: lk0(Σ) =

{b(τ),Σ ∪ b(τ) ∈ ∆′} and Σ ∪ b(τ) ∈ ∆′ if and only if {τ, σ0, . . . , σp} can be

totally arranged in a sequence of inclusions, that is σ0 ⊂ σ1 ⊂ . . . ⊂ σi ⊂ τ ⊂
σi+1 ⊂ . . . ⊂ σp or σp ⊂ τ .

With an abuse of notation, we write Σ = {b(σ0), . . . , b(σp)} as a sequence

Σ = (σ0, . . . , σp), omitting the b().

The vertex link of any simplex can be defined from the (simpler) vertex

link of some edges, drawing attention to the case where Σ = (σ′, σ) is an

edge of the subdivision. We denote by L(σ′, σ) the set of simplices involved in

lk0((σ′, σ)) not contained in σ′. On the example of Figure 6.8, for edge {a, abc},
L(a, abc) is exactly lk0({a, abc}) = {ab, ac}, and its minimum is l(a, abc) = ac.

In case the triangle of Figure 6.8 is the base of a tetrahedron {a, b, c, d},
the vertex link of {ab, abc} is {a, b, abcd}, while L(ab, abc) = {abcd} since

it discards the faces of ab.

Definition 6.18. Let L(σ′, σ) = {τ |σ′ ⊂ τ ⊆ σ} ∪ {τ |σ ⊂ τ}. If σ′ ⊂ σ, we

denote by l(σ′, σ) its minimal simplex: l(σ′, σ) = minL(σ′, σ).

Observe that, if σ′, σ ∈ Σ, then L(σ′, σ) ⊆ Σ ∪ lk0(Σ). If σ′ ⊂ σ, l(σ′, σ) can

be explicitly computed.

Lemma 6.19. If σ′ ⊂ σ, then l(σ′, σ) = σ′ ∪min (σ \ σ′).

Proof. Let v = minσ \ σ′. First observe that σ′ ⊂ σ′ ∪ v ⊆ σ, therefore

σ′ ∪ v ∈ {τ | σ′ ⊂ τ ⊆ σ}.

In order to check the minimality of σ′ ∪ v, we compare with the elements τ in

each set defining L(σ′, σ):

σ′ ⊂ τ ⊆ σ. Then τ \ σ′ ⊆ σ \ σ′, and thus max τ \ σ′ ≥ min τ \ σ′ ≥ minσ \ σ′ = v.

Item (i) of Lemma 6.14 then implies τ \ σ′ ≥ v. It follows that

τ = σ′ ∪ (τ \ σ′) ≥ σ′ ∪ v.

σ ⊆ τ . Then σ \ σ′ ⊆ τ \ σ′, and thus max τ \ σ′ ≥ maxσ \ σ′ ≥ v. Using again

Lemma 6.14, τ = σ′ ∪ (τ \ σ′) ≥ σ′ ∪ v.

It follows that σ′ ∪ v = l(σ′, σ).

In the example of the tetrahedron, we had L(ab, abc) = {abcd}, so l(ab, abc) =

abcd > ab. The definition of smoothness involves the vertex link of ab\min ab =

ab \ b = a. In that case, l(ab \ b, abc) = l(a, abc) = ab as exemplified above.

This is indeed the general case, as stated below.
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Lemma 6.20. If σ′ ⊂ σ and l(σ′, σ) > σ′, then l(σ′ \min(σ′), σ) = σ′.

Proof. Let v = minσ \σ′. From Lemma 6.19, l(σ′, σ) = σ′ ∪ v. The hypothesis

then writes σ′ ∪ v > σ′, and Item (iii) of Lemma 6.14 guarantees that

v > min(σ′). Then min(σ \ σ′ ∪ min(σ′)) = min(min(σ \ σ′),min(σ′)) =

min(v,min(σ′)) = min(σ′).

Using Lemma 6.19 again, l(σ′ \ v, σ) = σ′ \ v ∪ min(σ \ (σ′ \ v)) = σ′ \ v ∪
min(σ \ σ′ ∪ v) = σ′ \ v ∪ v = σ′.

In the next lemma, we identify some subdivided simplices where the Steepest

Descent theorem apply directly (so that they also respect Definition 6.1). The

idea of the statement relies on the position of the minimum vm(Σ) of Σ and

the position where vertices of the link can be inserted. If the minimum appears

after a “hole in the dimension sequence of Σ” where a vertex of the link can

be inserted, then Lemma 6.19 ensures there will be a vertex of the link vlk(Σ)

smaller than vm(Σ), and the Steepest Descent theorem applies.

Lemma 6.21. If ∃ τ ∈ lk0(Σ) such that τ ⊂ vm(Σ), then vm(Σ) > vlk(Σ).

Proof. Let σm = vm(Σ) and write Σ = (σ1, σ2, . . . , σp). If ∃ τ ∈ lk0(Σ) such

that τ ⊂ σm, then, by Lemma 6.17, ∃σj−1, σj ∈ Σ such that σj−1 ⊂ τ ⊂ σj .

Let ρ = σj−1 ∪minσj \ σj−1 = l(σj−1, σj) by Lemma 6.19. Since σj−1 ⊂ τ ⊂
σj ⊆ σm, we have σm ∈ L(σj−1, σj), and thus σm ≥ ρ = l(σj−1, σj).

Since σj−1 ⊂ ρ ⊂ σj , then ρ ∈ lk0(Σ) by Lemma 6.17. Therefore ρ ≥ vlk(Σ).

All together, vm(Σ) = σm ≥ ρ ≥ vlk(Σ).

Now we can prove that the extension of f on the barycentric subdivision is

discrete smooth, the main result of the section. To do so, check that every

simplex in the subdivision respects the smoothness definition (Definition 6.1).

The previous lemma handles the cases where the minimum vm(Σ) appears after

a “hole in the dimension sequence of Σ”, so we are left with the case where

vm(Σ) appears in the first vertices of Σ, where the dimensions of the sequence

are exactly 0, 1, . . . . In that case, the “hole” left by vm(Σ) in Σ \ vm(Σ) ∪ v is

exactly where vlk (Σ \ vm(Σ) ∪ v) must be inserted, and we state below that

vlk (Σ \ vm(Σ) ∪ v) = vm(Σ), which is the smoothness condition.

We can check on the example of Figure 6.8 with Σ = {a, abc}: we have

vm(Σ) = abc and lk0(Σ) = {ab, ac}. For all v ∈ lk0(Σ), Σ \ vm(Σ) ∪ v is either

{a, ab} or {a, ac}, and vlk({a, ab} = vlk({a, ac} = abc.

Theorem 6.22. The extension of f is discrete smooth on the subdivided

complex ∆′.
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Proof. The smoothness definition states that if vlk(Σ) > vm(Σ), then we must

have ∀σ ∈ lk0(Σ), vlk(Σ \ vm(Σ) ∪ σ) = vm(Σ).

Let σm = vm(Σ). By Lemma 6.21, since vlk(Σ) > vm(Σ), @ τ ∈ lk0(Σ) such

that τ ⊂ σm. In particular, ∃ vm ∈ σm, σm = σm−1 ∪ vm (with the convention

that σ−1 = ∅). Since σm−1 > vm(Σ) = σm, then Item (iii) of Lemma 6.14

implies that vm = minσm.

Moreover, ∀τ ∈ lk0(Σ \ σm), τ 6⊂ σm−1. Otherwise ∃ k ≤ m, such that

σk ⊂ τ ⊂ σk+1 ⊆ σm−1, so τ ∈ lk0(Σ) which contradicts the fact that

@ τ ∈ lk0(Σ), τ ⊂ σm.

We first separate the case where σm 6= σp.

σm ⊂ σm+1. Since L(σm, σm+1) ⊆ Σ∪lk0(Σ), as previously observed, and vlk(Σ) > σm

by hypothesis, we have l(σm, σm+1) ≥ min Σ ∪ lk0(Σ) = σm. Since

σm /∈ L(σm, σm+1), then the inequality is strict: l(σm, σm+1) > σm. We

can then use Lemma 6.20: l(σm−1, σm+1) = l(σm \minσm, σm+1) = σm.

As stated above, lk0(Σ\σm) does not contain any face of σm−1. Therefore

lk0(Σ \ σm) ⊆ L(σm−1, σm+1), and vlk(Σ \ σm) ≥ l(σm−1, σm+1) = σm.

Now, for any σ ∈ lk0(Σ), vlk(Σ \ σm ∪ σ) ≥ vlk(Σ \ σm) (Item (ii) of

Lemma 5.8). Therefore vlk(Σ \ σm ∪ σ) ≥ σm, but σm ∈ lk0(Σ \ σm ∪ σ).

We conclude that vlk(Σ \ σm ∪ σ) = σm.

σm = σp. Since lk0(Σ) does not contain any face of σm, ∀σ ∈ lk0(Σ), σm = σp ⊂ σ.

Then lk0(Σ) = {τ, σm ⊂ τ} = L(σm, σ). Therefore l(σm, σ) = vlk(Σ) >

σm.

We can now apply Lemma 6.20, since min(σm) = vm. Therefore

l(σm−1, σ) = l(σm \ vm, σ) = l(σm \min(σm), σ) = σm.

Also we know that lk0(Σ \ σm ∪ σ) = {τ, σm−1 ⊂ τ ⊂ σ} ∪ {τ, σ ⊂ τ} ⊂
{τ, σm−1 ⊂ τ ⊆ σ} ∪ {τ, σ ⊆ τ} = l(σm−1, σ).

Therefore vlk (Σ \ σm ∪ σ) ≥ l(σm−1, σ) = σm. Since σm ∈ lk0(Σ\σm∪σ),

then σm = vlk(Σ \ σm ∪ σ).
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7
Conclusions and future work

This thesis introduced new results in the construction and analysis of algo-

rithms in discrete Morse theory. First we analyzed how hard it is to find an

optimal Morse matching, which gives a succinct topological representation of

a discrete object. We studied the problem through the lenses of parameter-

ized complexity, a refined complexity analysis categorization. The result is

very bleak, Erasability, a problem closely related to finding optimal Morse

matching turns out to be in the worst possible complexity class: W [P ]. The

result is interesting because there are not many problems in this class and

Morse matching is, to our knowledge, the first geometrical / topological

problem in it.

Since the problem is extremely difficult, we turned our attention to

finding a category of simplicial complexes where the problem becomes easy.

In Chapter 4, we designed a polynomial time algorithm to find optimal Morse

matching in 2-dmensional simplicial complexes and 3-manifolds whose adjacent

graph has bounded tree-width. Very recently Burton and Downey [13] were able

to generalize our result for 3-manifolds from Chapter 4 in very encompassing

way.

Both of these results start to pinpoint where the topological difficulty

of the problem lies. However, we are left with the question if there could be

a larger category, where the problem is still easy. Computational topology

problems tend to shift rapidly from easy to very hard (even sometimes not

computable). This opens fundamental questions like what topological property

on what class of objects lies at the limit between easy and hard problems?

To further analyze this question, instead of looking for specific categories

where Morse Matching is easy, we can ask a related but simpler question:

Is the simplicial complex ∆ collapsible? The problem can be written as:

Problem 7.1 (Collapsibility).

Instance: A simplicial complex ∆.
Question: Is there a Morse matching M with only one critical vertex and no

other critical simplices?
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This problem turns out to be NP -complete if dim(∆) = 3 [67] and can be

solved in polynomial time if dim(∆) = 2 [43]. Therefore is natural to ask: “on

which side of the fence does the problem sit on” if ∆ is a 3-manifold or even if

∆ is a 3-ball.

Figure 7.1: A vase model with a random height function defined on its vertices
(function values increase from blue to red color).

In the second part of thesis, we focused to a more geometric side

of discrete Morse theory. Instead of finding optimal Morse matchings, we

constructed Morse matchings from stable matchings, which have to be related

to some given geometric information. With the simple and local definition of a

stable matching, we were able to prove various relationships in a concise and

simple manner and more surprisingly we were able to do it in any dimension.

With these simple proofs, the behavior of the stable Morse matching was

succinctly understood and we were motivated to ask if there were types of

functions where deeper connections to the given geometric information could

be established. A natural definition of a smooth discrete function emerged

and provided a full characterization of the stable Morse matching. Then we

were able to characterize the critical simplices, connect them to Banchoff’s

piecewise-linear discretization, and show that their neighborhood looks similar

to their continuous counterparts. At the end, we showed that this discrete

smooth definition complies with our intuition when we showed that a function

can be “smoothed” on a simplicial complex through a barycentric subdivision

of the complex.

This definition of smoothness for simplicial complexes raises many inter-

esting questions, to be explore in the near future:

– Does every simplicial complex admit a discrete smooth function?

– Are the actual models (2-manifolds) used in practice, such as the Vase

model with a height function (see Figure 7.1), discrete smooth?
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– Can we make a non-smooth function smooth if we apply a standard

Gaussian filter on it? Or another specific filter?

– Given a planar point set with a function defined on vertices, is there a

discrete smooth planar triangulation of these vertices?

– Is the Morse Smale complex simpler to construct for smooth functions?

– There are many results in topology and geometry which are true in the

barycentric subdivision of a simplicial complex. Which of these results

also hold if the complex is smooth?

We hope our work has shed new light in discrete Morse theory, a theory that

we believed is not even close to reaching its full potential and hope that our

techniques can be used in other fields such as complexity theory, combinatorics,

and graph theory.
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[30] GÜNTHER, D.; REININGHAUS, J.; WAGNER, H. ; HOTZ, I. Efficient

computation of 3D Morse-Smale complexes and persistent homology using

discrete Morse theory, The Visual Computer, v.28, p. 959–969, 2012.
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A
Proof of Joswig and Pfetsch’s lemma

The proof of Lemma 3.8 actually follows directly from Joswig and Pfetsch’s

proof of the following lemma.

Their proof builds a Morse matching from a spanning tree of the primal

graph, i.e. the graph obtained considering only the vertices and edges of ∆. For

a 3-manifold ∆, the proof of the previous lemma can be applied exactly the

same way on the dual graph, i.e. the graph whose nodes represent tetrahedra

of ∆, and whose arcs represent common triangles of ∆ joined together (see

Definition 4.7), to obtain the following result.

Here, we simply reproduce the proof of Joswig and Pfetsch [38] verbatim

applying it to 3-manifold complexes, using Poincaré’s duality.

First consider a Morse matching M for a connected 3-manifold ∆. Let

γ(M) be obtained from the primal graph of ∆ by removing all arcs (edges of

∆) matched with triangles and let γ∗(M) be derived from the dual graph of

∆ by removing all arcs corresponding to triangles matched with tetrahedra of

∆. Note that γ(M) contains all vertices (0-simplices) and γ∗(M) contains all

tetrahedra of ∆ as nodes.

Lemma A.1. The graphs γ(M) and γ∗(M) are connected.

Proof. Suppose that γ(M) is disconnected. Let N be the set of nodes in a

connected component of γ(M), and let C be the set of cut edges, that is,

edges of ∆ with one vertex in N and one vertex in its complement. Since ∆ is

connected, C is not empty. By definition of γ(M), each edge in C is matched

to a unique 2-simplex.

Consider the directed subgraph D of the Hasse diagram consisting of the edges

in C and their matching 2-simplices. The standard direction of arcs in the

Hasse diagram (from the higher to the lower dimensional simplices) is reversed

for each matching pair of M , i.e.D is a subgraph of H(M). We construct a

directed path in D as follows. Start with any node of D corresponding to a

cut edge e1 and consider the node of D determined by the unique 2-simplex

τ1 matched with e1. Then τ1 contains at least one other cut edge e2, otherwise

e1 cannot be a cut edge. Now iteratively go to e2, then to its unique matching

2-simplex τ2, choose another cut edge e3, and so on. We observe that we obtain
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Appendix A. Proof of Joswig and Pfetsch’s lemma 86

a directed path e1, τ1, e2, τ2, . . . in D, i.e. the arcs are directed in the correct

direction. Since we have a finite graph at some point the path must arrive

at a node of D which we have visited already. Hence, D (and therefore also

H) contains a directed cycle, which is a contradiction since M is a Morse

matching.

To prove that γ∗(M) is connected, we repeat the proof above on the dual

graph.

Proof of Lemma 3.8. Since γ(M) and γ∗(M) are connected, they both admit

spanning trees, and we will use them to build the Morse matching. First pick

an arbitrary node r1 and any spanning tree of γ(M) and direct all arcs away

from r1. Then pick an arbitrary tetrahedron (node in the dual graph) r2 and

any spanning tree of γ∗(M) and direct all triangles (arcs in dual graph) away

from r2. This yields a maximum Morse matching on γ(M) and γ∗(M). Now,

replacing the part of M on γ(M) and γ∗(M) with this matching yields a

Morse matching. This Morse matching has only one critical vertex (the root

r1) and one critical tetrahedron (the root r2). Note that Morse inequalities

imply that every Morse matching in a triangulated 3-manifold contains at

least one critical vertex and at least one critical tetrahedron. Furthermore,

the total number of critical simplices can only decrease, since we computed

an optimal Morse matching on γ(M) and γ∗(M).
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