Título: | BREAKUP DYNAMICS OF THIN LIQUID SHEETS WITH VISCOUS INTERFACES | ||||||||||||
Autor: |
VITOR HEITOR CARDOSO CUNHA |
||||||||||||
Colaborador(es): |
MARCIO DA SILVEIRA CARVALHO - Orientador SERGIO SANTIAGO RIBEIRO - Coorientador |
||||||||||||
Catalogação: | 22/NOV/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56059&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56059&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.56059 | ||||||||||||
Resumo: | |||||||||||||
Thin liquid films play a big role in many real-life applications and are of
indisputable interest to scientific and industrial researchers. Evidence of thin
films are observed in nature in large scales such as snow avalanches in the
mountains, lava flows on volcanoes and landslides, and in small scales such as
the pulmonary airways and the eye surface. They are also widespread in many
industrial applications, ranging from high-resistance thin film resistors, atomization,
soft-lithography methods and several coating techniques such as dip,
roll, slot, spin and curtain coating. Understanding the physical mechanisms
contributing to the stability of thin liquid films is a challenging problem, as
thin films flows present a fluid-fluid interface which is free to deform. The interface
is bounded between two liquids or a liquid and a gas, typically having its
own dynamic properties from which interfacial tension effects and complex interfacial
rheological behavior arises. Instability is usually driven by long-range
intermolecular forces, also known as van der Waals attractions, and may result
in the rupture of the layer. Numerical investigation is often used to understand
the breakup dynamics of thin liquid sheets by addressing the evolution of the
film thickness using either asymptotic derivations of the lubrication theory or
interface tracking techniques. In this work, a computational investigation of
the breakup dynamics of a stationary thin liquid sheet bounded by a passive
gas with a viscous interface is presented. The Arbitrary Lagrangian-Eulerian
method (ALE) is used to track the interface position. The rheological behavior
of the viscous interface is modeled by the Boussinesq-Scriven constitutive law,
and the numerical solution is obtained through finite element approximation.
The results show that thin liquid film stability is influenced both by surface
rheology and disjoining effects and that the viscous character of the interface
delays the sheet breakup, leading to more stable films.
|
|||||||||||||
|