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Abstract

Cunha, V. H. C.; Carvalho, M. S. (Advisor); Ribeiro, S. S. (Co-Advisor).
Breakup dynamics of thin liquid sheets with viscous interfaces.
Rio de Janeiro, 2021. 84p. Dissertação de Mestrado – Departamento
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

Thin liquid films play a big role in many real-life applications and are of
indisputable interest to scientific and industrial researchers. Evidence of thin
films are observed in nature in large scales such as snow avalanches in the
mountains, lava flows on volcanoes and landslides, and in small scales such as
the pulmonary airways and the eye surface. They are also widespread in many
industrial applications, ranging from high-resistance thin film resistors, atom-
ization, soft-lithography methods and several coating techniques such as dip,
roll, slot, spin and curtain coating. Understanding the physical mechanisms
contributing to the stability of thin liquid films is a challenging problem, as
thin films’ flows present a fluid-fluid interface which is free to deform. The in-
terface is bounded between two liquids or a liquid and a gas, typically having its
own dynamic properties from which interfacial tension effects and complex in-
terfacial rheological behavior arises. Instability is usually driven by long-range
intermolecular forces, also known as van der Waals attractions, and may result
in the rupture of the layer. Numerical investigation is often used to understand
the breakup dynamics of thin liquid sheets by addressing the evolution of the
film thickness using either asymptotic derivations of the lubrication theory or
interface tracking techniques. In this work, a computational investigation of
the breakup dynamics of a stationary thin liquid sheet bounded by a passive
gas with a viscous interface is presented. The Arbitrary Lagrangian-Eulerian
method (ALE) is used to track the interface position. The rheological behavior
of the viscous interface is modeled by the Boussinesq-Scriven constitutive law,
and the numerical solution is obtained through finite element approximation.
The results show that thin liquid film stability is influenced both by surface
rheology and disjoining effects and that the viscous character of the interface
delays the sheet breakup, leading to more stable films.
Keywords

Thin liquid films; Interfacial rheology; Viscous interfaces; Boussinesq-
Scriven.
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Resumo

Cunha, V. H. C.; Carvalho, M. S.; Ribeiro, S. S.. Ruptura de filmes
finos líquidos com interfaces viscosas. Rio de Janeiro, 2021. 84p.
Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pon-
tifícia Universidade Católica do Rio de Janeiro.

Filmes finos líquidos desempenham um grande papel em diversas apli-
cações cotidianas e são de interesse indiscutível para pesquisadores científicos
e industriais. Evidências de filmes finos são observadas na natureza em gran-
des escalas, como avalanches de neve nas montanhas, escoamento de lava em
vulcões e deslizamentos de terra, e em pequenas escalas, como nas vias respi-
ratórias pulmonares e na superfície dos olhos. Eles também são estão presentes
em muitas aplicações industriais, variando de resistores de filme fino de alta re-
sistência, atomização, métodos de litografia e várias técnicas de revestimento.
Entender os mecanismos que contribuem para a estabilidade de filmes finos
líquidos é um problema desafiador, pois o escoamento de filmes finos apresenta
uma interface fluido-fluido livre para deformar. A instabilidade de um filme
fino é geralmente impulsionada por forças intermoleculares de longo alcance,
também conhecidas como atrações de van der Waals, e resultam na ruptura do
filme. Investigações numéricas são frequentemente usadas para entender a di-
nâmica de ruptura de filmes líquidos finos, abordando a evolução da espessura
do filme usando derivações assintóticas da teoria da lubrificação ou técnicas
de rastreamento de interface. Neste trabalho, uma investigação computacional
da dinâmica de ruptura de um filme fino líquido estacionário com uma inter-
face viscosa é apresentada. O método Arbitrary Lagrangian-Eulerian (ALE)
é usado para rastrear a posição da interface. O comportamento reológico da
interface viscosa é modelado pela lei constitutiva de Boussinesq-Scriven, e a
solução numérica é obtida através da aproximação de elementos finitos. Os re-
sultados mostram que a estabilidade do filme líquido fino é influenciada tanto
pela reologia da superfície quanto pela atração intermolecular e que o caráter
viscoso da interface retarda a quebra da folha, levando a filmes mais estáveis.

Palavras-chave
Filmes finos; Reologia Interfacial; Interfaces Viscosas; Boussinesq-

Scriven.
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"Hat man sein warum des Lebens, so verträgt
man sich fast mit jedem wie."

(If you have your why of life, you get along
with almost every how.)

Friedrich Nietzsche, Götzen-Dämmerung; oder, Wie man mit dem
Hammer philosophirt.
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1
Introduction

1.1
Motivation

The dynamics of thin liquid films have fascinated scientists over many
decades, presenting several interesting multiphysics aspects [1, 2]. They are
central to the study of numerous areas of engineering, geophysics, and bio-
physics, and can occur over a wide range of length scales in nature, such as
lava flows and snow avalanches [3], tear-film thinning and tear breakup [4] and
the liquid lining protecting the pulmonary airways [5]. Many industrial pro-
cesses also show a thin film configuration, such as solid state thin film lithium-
ion battery systems [6], atomic layer deposition techniques [7], high-resistance
thin film resistors, atomization, soft-lithography methods, and several coating
techniques such as dip, roll, slot, spin and curtain coating [8, 9]. Thin liquid
films can generate a host of fascinating behaviors, as they present a fluid-fluid
interface that is free to deform. The interface is bounded between two liquids
or a liquid and a gas, where each particular interface typically presents its own
dynamic properties from which surface tension effects and complex interfacial
rheological behavior may arise. Figure 1.1a (image from [10]) and 1.1b (image
from [11]) illustrate the presence of naturally occurring thin film phenomena,
by means of a liquid film covering the human eye and lava flow, respectively,
whereas Figure 1.1c (image from [12]) pictures a printed organic circuit for
low voltage applications of slender aspect ratio.

Figure 1.1: (a) Close look at the human eye; (b) Lava flow in Hawaii; Ultrathin
printed organic logic circuit for low-voltage wearable sensor applications.

In nature, the rupture of thin liquid films bounded by a solid substrate
and a free surface is one of the core mechanisms in common health conditions,
such as the dry eye syndrome (DES), in which instabilities lead the tear film
to quickly breakup, leading to a poor coat of the eye surface. The tear film
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Chapter 1. Introduction 14

is typically considered a three-layered film with a very thin lipid layer on
its free surface, a relatively thick aqueous layer and a bound mucin layer on
the bottom, as depicted in Figure 1.2a (adapted from [13]). DES is widely
accepted to be caused by hyperosmolarity and tear film instability [4]. Another
occurrence of pathologies due to thin film instability is the respiratory distress
syndrome, where the lungs of prematurely born infants are not sufficiently
mature to produce adequate quantities of pulmonary surfactant, giving rise
to respiratory difficulties associated with airway closure, pulmonary edema
and mechanical damage of the airway linings [5]. Lung surfactants flow up
the terminal airways through a thin aqueous protective layer and reduces
the formation of liquid plugs that can obstruct terminal airways at end-
expiration, thus supporting clearance of inhaled particulates and pathogens.
These surfactant monolayers are illustrated in Figure 1.2b (adapted from
[14]). The mechanisms through which lung surfactants lower the surface
tension inside our lungs increase the pulmonary compliance, thus facilitating
the breathing process [15]. In the absence of naturally occurring surfactants,
artificial surfactant replacements can be introduced as a clinical treatment.
In such flows, the decrease of the film thickness followed by the breakup is
a phenomenon known as dewetting [16]. Understanding the stability of the
thin surfactant films through fluid mechanical processes may lead to a better
understanding of the proper mechanisms of which clinical interventions rely.
The role of interfacial rheology in these pathologies has been suggested to be
of great importance, along with adsorption/desorption dynamics [17].

Figure 1.2: Sketches of surface phenomena: (a) the composition of the pre-
corneal tear film and of (b) naturally occurring surfactant film covering the
lung surfaces.

Thin aqueous sheets are also used to access biochemical insights of liquid
environments with photon spectroscopy techniques. Microfluidic gas-dynamic
nozzles with small orifice diameter enables the generation of a chain of multiple
mutually orthogonal ultrathin liquid sheets in a vacuum chamber, which are
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then used in time-dependent experiments of soft-x-ray spectroscopy [18]. The
inferred information obtained from analysis of spectroscopy techniques may
showcase key insights into the local molecular interactions in liquids solutions,
but the necessary probe samples often rely on a limited thickness from sub
micrometer to a few micrometers due to infrared and soft x-ray spectroscopy
detection scheme and strong absorption of the aqueous phase.

The use of gas-dynamic forces from focused gas flow through microfluidic
nozzles to generate sub-micron thick free liquid sheets allow the reduction of
the liquid flow rate by an order of magnitude relative to other techniques such
as the colliding liquid jets. This results in much thinner sheets that can readily
transmit infrared radiation and soft x-rays. In these microfluidic configurations,
the liquid flow is kept constant and the gas flow is increased incrementally,
and a gradual spread of the liquid into a sheet is achieved as the speed of the
colliding gas jet is increased. The gas also protects the ultrathin free liquid
sheet from freezing near the nozzle in the case of vacuum operation due to
evaporative cooling, as the progressive reduction of the sheet thickness occur.
The use of ultrathin liquid sheets is thus an attractive alternative for soft-x-
ray absorption spectroscopy. Koralek et al. [19] demonstrated the generation of
ultrathin free liquid sheets of de-ionized water with thickness tunable down to
10’s of nanometers that can operate stably in vacuum for days with microfluidic
nozzles. Such ultrathin free liquid sheets correspond to fewer than 100 water
molecules thick, and are potentially transformative for infrared, soft x-ray and
electron spectroscopies.

Industrial applications such as aerosol droplet generation [20], inkjet
printing [21] and monodisperse emulsions fabrication [22] rely on the rupture
of thin liquid sheets in their procedure. However, the breakup process of
thin films can be undesirable in applications such as slot die and curtain
coating [23]. Figure 1.3 (adapted from [24, 25]) portrays an atomization
procedure on the left and a curtain coating process on the right. The sheet
rupture is required to produce dispersed fluid droplets, whereas in curtain
coating, the breakup of the liquid sheet ruins the process. Hence, thin films
are key elements in the manufacturing of several electronic devices, such as
nanoscale lubricant coating of head-disc interfaces in hard disk drives and next-
generation ultrathin electronics [26, 12]. Regarding the latter (Figure 1.1c), the
fabrication of organic thin film transistor (OTFT) technology lead to several
performance enhancements enabled its use in applications such as practical
wearable devices, flexible displays [27] and radio frequency identification
(RFID) wireless tags [28]. These organic electronic solutions enable thin film
organic photovoltaic cells (OPCs) as a potential technology in the generation
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of electric energy, driving the scientific community to research for fast and
inexpensive solutions for the manufacturing of OPCs [23].

Figure 1.3: Portraits of liquid atomization process and curtain coating, from
left to right.

Recently, perovskite solar cells (PSCs) are being accepted as auspicious
candidates to supply electricity by the scientific and industrial community,
despite the challenges in scaling their fabrication to meet current energy
demands. PSCs have a thin electron transport layer attached directly to a
perovskite layer, which can be arranged in ways to reduce photocurrent voltage
hysteresis phenomenon and thus resulting in high-efficiency performance solar
cells [29]. The use of methylammonium lead trihalides (MAPbX3) perovskites
as inorganic sensitizers in solar cells was introduced by Kojima et al. [30] and
improved by Im et al. [31], reaching an overall power conversion efficiency
(PCE) of 6.5%. Further developments of PSCs relied on the replacement of
liquid electrolytes by a solid hole-conducting material such as titanium dioxide
films with thickness ranging from 2 to 0.2 µm, leading to an overall PCE of
25.2% on a laboratory scale [32]. Moreover, there are several challenges in
upscaling the assembly of PSCs to larger areas, as the manufacturing of these
solar cells is done using spin coating techniques.

The thin film configuration is also presented in all-solid-state thin-
film batteries, which are part of the next generation of batteries due to
their high power and energy densities and long battery lifetimes [33]. The
development of preliminary studies of all-solid-state thin-film batteries is
driven by the simplification on the battery assembly, size reduction and
performance requirements of electronic devices [6]. Each thin film battery
component is deposited by a coating process in which previously deposited
layers are stable for subsequent film depositions and thermal treatments, with
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an assembled battery ranging from 100 µm down to 5 µm of thickness. In
addition, the use of ultrathin layer-by-layer assembly has become a versatile
nanocoating on polypropylene separator to suppress deterioration of lithium-
sulfur batteries from polysulfides dissolution [34]. Applications such as thin-
film photovoltaic cells or all-solid-state thin film batteries rely on smooth
and uniform films, which on a solid substrate can become unstable due to
intermolecular forces and lead to malfunction of such applications.

Liquid–liquid and liquid-gas interfacial forces play a key role in the
stability of thin liquid sheets. Depending on the problem scale, different
behavior must be considered. As examples are interfacial viscosity, long-
range intermolecular attraction between the interface molecules and diffusive
transport of materials across the interface [35, 36, 37]. In most practical
applications, the instability of a thin liquid sheet is driven by long-range
molecular forces due to van der Waals attractions, whereas capillary and
viscous forces have a stabilizing effect [38, 9]. A liquid film rupture occurs
when it is sufficiently thin, in which the long-range intermolecular forces
become dominant [1]. Also, the rupture of free films driven by van der Waals
attractions is closely related mathematically to the problem of surface-tension-
driven pinch-off of an axisymmetric fluid thread, in which the dynamics of
rupture in both phenomena are often described by two set of differential
equations governing mass and momentum conservation, with the geometry
of the phenomena affecting the form of these equations [39].

Considering the rupture dynamics, the ultimate lifetime of liquid films is
determined by two processes: thinning and growth of surface fluctuations, and
the rupture gives rise to a finite time singularity in the governing equations.
For both films supported by a substrate and free films, the thinning process
is produced by drainage of the film phase under the influence of gravity and
capillary suction, and the action of the long-range attractive forces increases
as the film thickness decreases [40, 41].

In both nature and industry, these surface fluctuations are often stabilized
by the presence of surface-active agents (surfactants) that can extend the life
span of thin films in a considerable manner. The response of the interface
in these cases is strongly dependent on the chemical composition of the
surfactants, which may reduce the drainage rate of the thin films according
to the mechanisms by which the surface-active agents operate [42]. The
interaction within the interface due to a significant microstructure lead to extra
and deviatoric interfacial stresses and possibly rheologically complex behavior
of the interface [37]. These complex interfaces can yield viscous and viscoelastic
responses to deformations and may reduce the mobility of the interface.
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1.2
Research objectives

The study of thin film dynamics may lead to insights for many techno-
logical breakthroughs in areas such as photovoltaic systems, thin sheet solid
state batteries, lithography, additive manufacturing and ultrathin polymeric
coating. The underlying rupture mechanisms of these flows are encompassed in
a complex interplay between capillarity, hydrodynamics and interfacial stresses
and are of utmost importance for quality control, reliability and reproducibil-
ity of industrial processes. Therefore, in this work, the influence of interface
rheology on the dynamics of stationary free thin liquid films is studied. We aim
at understanding the mechanisms by which interfacial stresses of a viscous in-
terface delay the breakup time of a stationary free thin liquid sheet. The main
objective of this dissertation is to analyze and compare the rupture dynamics
of free liquid films with inviscid and viscous surfaces.

1.3
Outline

This dissertation is organized in the following chapters: Chapter 2
presents a literature review of thin liquid sheets with complex interfaces and
interface tracking methods. We provide a multidisciplinar overview of the
literature to account for foundations of thin film studies.

In Chapter 3, we describe the complete mathematical formulation of both
simple and viscous cases. We review the physical aspects of the problem and
state the assumptions used in this manuscript.

Chapter 4 presents the numerical methods used in this investigation.
More specifically, we present a theoretical introduction on the tools used herein.
Chapter 5 illustrates the results of our investigation along with a discussion.
Lastly, Chapter 6 provides some thoughts on future works.
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2
Literature review and background

2.1
Thin liquid films and complex interfaces

As previously mentioned, the growth of surface fluctuations can be spon-
taneous or induced, driven by long range intermolecular attractions. Derjaguin
and Obuchov [43] introduced the concept of a disjoining pressure, which is
defined as the sum of the equilibrium intermolecular forces acting between
two opposing surfaces of a liquid sheet. The stability of thin liquid films is
strongly influenced by the magnitude of the film’s disjoining pressure, whose
first experimental determinations about its molecular components confirmed
its attractive nature, as published by Derjaguin and Abrikosova [44]. These in-
termolecular forces arise from fluctuations in the electromagnetic field present
in the medium, thus resulting in changes on intensive thermodynamic prop-
erties. In view of the above, Lifshitz [45] developed a rigorous macroscopic
theory for the interaction of bodies whose surfaces are brought within a small
distance.

Such intermolecular forces are often referred as van der Waals forces
due to their resemblance with the van der Waals forces of attraction between
molecules at large distances. Thus, assuming that the interaction between the
material molecules obey the van der Waals law, an arbitrarily thick material
will present small contributions of the long wave fluctuations relative to the
free energy of the body. However, in thin films, the chemical potential µ of
the same material will express a dependence on the film thickness h of 1/h3,
leading the appearance of van der Waals forces of mutual attraction between
surfaces [46]. Later on, Dzyaloshinskii et al. [47] derived a general formulation
for the thermodynamic quantities such as chemical potential of thin liquid
films under the action of van der Waals forces.

The stability of free liquid sheets is strongly influenced by the inter-
play between capillary, intermolecular forces and interfacial stresses. Pressure
gradients caused by capillary forces lead to flows that may yield additional
hydrodynamic forces that can influence the movement of the interface. Con-
cerning flows of high interface area, the interfaces between the liquid and its
surroundings were first characterized by their surface energies, in which sur-
face energy represents the minimum amount of work required to create that
interface.
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Thus, the interfacial tension between two phases is determined by the
measure of the interfacial free energy per unit area. The capillary number Ca
is commonly defined to describe the action of capillarity and hydrodynamics
on the system, which is taken as the ratio between viscous forces and interfacial
tension forces

Ca = µU

σαβ
.

Where µ is the dynamic viscosity, U is a characteristic flow velocity and σαβ
is the constant interfacial tension between the phases.

Taylor [48] was the first to analyze the stability of free liquid sheets,
aiming to understand the wave propagation on the surface of free films. In
his work, he identified that the surface of the free liquid sheet can exhibit two
distinct dynamical modes: an antisymmetric or stretching mode where the free
liquid film buckles; and a symmetric or squeezing mode, in which the opposite
surfaces move towards each other, urging the possibility of film rupture, as
depicted in Figure 2.1.

Figure 2.1: Adapted schematic of Taylor’s surface dynamical modes. (a)
Antisymmetric mode, characterized by the buckling of the thin liquid film;
(b) Symmetric mode, in which opposite surfaces attract each other.

Later on, Brown [49] carried out an investigation to understand the
behavior of a thin liquid sheet falling on a moving surface, which occurs in
curtain coating process. He stated that a continuum film could be uniformly
laid down on a rapidly moving surface and be industrially employed if certain
conditions regarding the curtain length, flow rate and impingement velocity
are respected.

Sheludko [40] observed that the amplification of spontaneous fluctuations
in free liquid films are operative for sheet thickness ranging between 10 ηm
and 100 ηm, and that nonlinearities arise due to long range intermolecular
effects. The understanding of thin film rupture was extended theoretically by
the derivation of a nonlinear evolution equation for the thickness of a thin film
on a solid substrate by Williams and Davis [50]. In their study, a nonlinear
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partial differential equation is solved by numerical methods, which resulted
in a characteristic rupture time calculation 10 times smaller than rupture
time obtained from previous linear approaches. They also proposed a nonlinear
stability theory based on the long-wave nature of the thin film perturbation.

Prévost and Gallez [41] took a similar approach and investigated the
nonlinear effects on the stability of free film rupture, and showed that the
squeezing mode firstly reported by Taylor is the more appropriate mode to de-
scribe the mechanism of rupture of a free liquid film. Through approximations
of long wavelengths, they concluded that the effect of hydrodynamic nonlin-
earities accelerates the rupture process due to the increase of the action of
long-range attractive forces as the film thickness diminishes. Moreover, Lin
et al. [51] performed a linear stability analysis of a viscous liquid sheet and
showed that there are two independent modes of instability, namely sinuous
and varicose modes, in the presence of ambient gas.

The long wavelength approximation was later exploited by Erneux and
Davis [38], who considered the Navier-Stokes equations with an extra term
comprehending the van der Waals attraction to derive asymptotically a system
of governing nonlinear evolution equations for longitudinal velocity and film
thickness. They applied stability analysis on the set of equations and derived
a weakly non-linear stability criterion for a Newtonian fluid based on the ratio
between surface tension and van der Waals forces. Ida and Miksis [52] then
solved numerically the set of equations proposed by Erneux and Davis [38] and
examined the dominant balances in the evolution equations using similarity-
times solutions in the temporal and spatial vicinity of rupture.

The influence of the chemical composition of a free surface has long
been recognized to change its dynamics, thus asserting the importance of
interfacial rheology for the understanding of complex surface phenomena
[53]. These complex fluid interfaces are often characterized by the presence
of amphiphilic molecules such as surfactants, proteins and particles that
may induce microstructures with significant mechanical strength, along with
possible thermodynamic complexities. A sketch of a microstructure formation
in a liquid interface is depicted in Figure 2.2.
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Figure 2.2: Sketch of microstructure formation in both bulk and interface
regions. The presence of surfactants adsorbed on the surface yields additional
mechanical resistance of the surface, thus influencing the system dynamics.

Amphiphilic molecules are often added as stabilisers to liquid mixtures
and are required in the processing and functioning of many industrial applica-
tions [37]. These molecules adsorb at the interface and the process depends on
the Ca number and the thickness of the liquid film. However, nonhomogeneous
surfactant concentration and temperature differences over the interface cause
a surface tension gradient ∆σαβ, and the unbalanced force along the inter-
face lead to the appearance of interfacial stresses known as Marangoni stresses
[53, 54].

Thus, the presence of molecular assemblies along interfaces may influ-
ence how hydrodynamic stresses are transmitted in the system, as viscous,
viscoelastic and Marangoni stresses arise from the interaction between the
fluid molecules and the complex microstructures [55]. Interface diffusion and
Marangoni convection opposes to surfactant concentration variations over the
interface, whereas surface viscous stresses reduce the surface velocity gradients
[56].

Interfacial rheology describes the functional relationship between the
deformation of a complex interface, the stresses along it and the resulting flows
in the adjacent fluid phases [57]. The response of these complex interfaces
against deformations depends on their composition and are characterized
by different rheological properties, measured during dilatation and shear
deformation [58, 59].

Given an interfacial film, interfacial rheometry, which is the measurement
of rheological properties of an interface, can be performed by both dilatational
and shearing deformation of the interfaces, which are studied by dilatational
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rheology and shear rheology, respectively [60]. In dilatational rheology, one
measures the variation of area while maintaining a constant shape, whereas
shear rheology deals with changes in shape at constant area while considering
that the interface is in thermodynamic equilibrium with the bulk solution.
Distinct dynamic properties of interfaces arise for each type of deformation,
such as interfacial dilatational viscosity, κs, and interfacial shear viscosity, µs.
In order to assure that the stress measured in interfacial rheology tests comes
mainly from the interfacial behavior and not from the bulk, it is important to
quantify the ratio between interfacial and bulk forces. The Boussinesq (Bo)
number is defined as the ratio between the viscous forces at the interface to
viscous forces in a fluid bulk of thickness H.

Bo = κs + µs
µH

A rheologically complex interface is often modeled through interfacial
constitutive models that account the extra and deviatoric contributions to the
interfacial stress from the interfacial microstructure. A general expression for
the interfacial stress σs of a complex interface is given by Eq 2-1 [61, 55].

σs = σ(Γc, T )Is + σe (2-1)

The term σ(Γ, T ) is the interfacial tension that depends on the surfactant
concentration Γc and temperature T , Is is a the surface unit tensor and σe is
the surface extra stress. The aforementioned approach takes into consideration
the sharp-interface to account for the interfacial stress, where a zero-thickness
dividing interface is positioned in between the fluid phases, yielding a quasi-2D
interface. As a result of that, the bulk properties of the fluids are homogeneous
up until the dividing surface and excess quantities are assigned to the dividing
surface to account for any energy or mass that is not accounted for by the
homogeneous bulk phases.

A general form of an equation to describe a linear dependence of extra
stress σe on rate of strain at the interface was first introduced by Boussinesq [62]
and later generalized by Scriven [53] to account for the evolution of Newtonian
fluids in the interfacial state, which is nowadays known as the Boussinesq-
Scriven model:

σe = (κs − µs)(∇s · u)Is + 2µsDs (2-2)
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Here ∇s = Is ·∇ is the surface gradient operator, u is the velocity vector
along the interface and Ds = 0.5 (∇su · Is + Is · (∇su)T ) is the surface rate-
of-deformation tensor. The Boussinesq-Scriven model is a Newtonian model
for viscous interfaces derived from a differential geometry approach in tensor
form. Hence, interfacial shear and dilatational viscosities can have a significant
effect on the flow behavior, and effects caused by these properties can strongly
influence the dynamics of thin liquid films and other high interface materials
[63]. In most practical applications, thin film stabilisation is caused by a blend
of surface-active components of different sizes that yield extra viscous and
viscoelastic stresses that are strongly coupled with the steric intermolecular
interactions [55].

Jensen and Grotberg [64] used lubrication theory to study the spreading
rate of a localized monolayer of insoluble surfactant on the surface of a thin
viscous film, in the limit of weak capillary and weak surface diffusion. In their
work, they describe the mechanism by which surfactant stabilizes the rupture
process, and states that a non-uniform surfactant distribution along the free
surface creates a surface tension gradient which then induces a shear stress at
the surface of the underlying liquid, and thus a Marangoni flow in the substrate
spread the surfactants across the domain. They also indicate that the presence
of insoluble surfactants decreases the growth rate of the instability, but do not
affect critical wavelengths, and the stabilizing influence of surfactants remains
relatively weak. De Wit and Gallez [65] performed an analogous study, in which
they analyzed the dynamics of free liquid films with insoluble surfactants.
They derived a system of nonlinear evolution equations asymptotically from
the full Navier-Stokes equations for free films and incorporated the effect of van
der Waals attraction, capillary forces and Marangoni forces due to gradients
of surface tension. They showed that surfactant monolayer has a stabilizing
effect on the growth of the instability, and observed that the physical role of
the surfactant alters the time of rupture of the free film.

Vaynblat et al [39] extended the studies on the rupture dynamics of
thin liquid films by introducing two main rupture geometries, line rupture
and point rupture, as portrayed in Figure 2.3. They considered a free viscous
film exhibiting both simple Newtonian and more complex power-law rheology
and a simple interface with vanishing viscous and elastic stresses. Moreover,
they show that both line and point rupture of a free liquid film under van der
Waals forces asymptote toward a self-similar regime in which the film thins
according to a power law, and that the scaling exponent of film thickness has
the same value in both line and point rupture. In order to further understand
how the rheological properties of the liquid influence a free liquid sheet stability,
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Becerra and Carvalho [8] proceeded with an examination regarding the flow
of free viscoelastic liquid sheets occurring in curtain coating processes. They
showed that high extensional viscosity due to rheological behavior of polymer
solutions on the flow create more stable curtains. Additionally, they pointed out
that the apparent extensional viscosity of the liquids raised with the polymer
concentration lead to the presence of higher normal stress that resists the
growth of a hole in the curtain, which De Wit and Gallez [65] also presented
in their investigation.

Figure 2.3: Line and point rupture geometries.

More recently, Thete et al. [66] examined the self-similar evolution of
free liquid films of power law fluids towards the rupture spatial and temporal
location through numerical methods. They identified two regimes of thinning
depending on the power-law index 0 < n ≤ 1 of the fluid, in which for
6/7 ≤ n ≤ 1, the sheet thins and ruptures under the competition between
inertial, viscous and van der Waals forces, and for n < 6/7, the dominant
balance of forces changes and viscous force becomes asymptotically negligible
and the sheet thins and ruptures under inertial, van der Waals and surface
tension forces. Later on, Thete et al. [67] have also revealed that the scaling
exponents for film thickness in any power-law index have the same value
regardless of whether the film undergoes line or point rupture, complementing
the findings of Vaynblat et al. [39].

Furthermore, Bazzi and Carvalho [9] addressed the effect of viscoelastic
properties of polymer solutions of the breakup process of a free liquid sheet
with a simple interface. They studied the response of stationary Newtonian
and viscoelastic thin liquid sheets to planar and axisymmetric disturbances by
extending the stability criterion proposed by Erneux and Davis [38] for ax-
isymmetric perturbations and Oldroyd-B liquids, and showed through numer-
ical solutions that the effect of rheology slows down the perturbation growth
drastically and thus slowing the sheet rupture.

The additional stresses associated with the viscoelastic behavior con-
tribute to the decrease of the growth rate of the perturbation in a free thin
liquid film, leading to substantial changes in the dynamics with respect to
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Newtonian fluids. Underhill et al. [68] presented a model to describe inter-
facial hydrodynamics that allows for shear-thinning response of the interface
and that can be decoupled from the bulk flow in the limit of highly viscous
interfaces. They also compared the results obtained with experimental mea-
surements of dipalmitoylphosphatidylcholine (DPPC) monolayers, which is the
primary constituent of lung surfactants.

Concerning tear films, Bhamla et al. [69] proposed an experimental plat-
form to replicate the human tear film on a contact lens to investigate the
influence of interfacial viscosity against the breakup and dewetting phenom-
ena. They concluded that tear film stabilized by surface rheology and evap-
oration of the liquid layer result in dewetting via nucleation. Bhamla et al.
[42] analyzed the drainage dynamics of surfactant-laden aqueous films with
both insoluble and soluble surfactants, resulting in viscoelastic and inviscid
interfaces, respectively. They showed that films are stabilized through interfa-
cial rheology at high surface pressures and through Marangoni stresses at low
surface pressures.

Moreover, aqueous films with soluble surfactants are stabilized purely
through Marangoni effects and interfacial viscosity. Dey et al. [13] also analyzed
the stability of tear films, as the rupture of the film that shields the ocular
surface from harmful environmental factors may lead to health conditions.
The tear film contains a mixture of several proteins and other biomolecules in
an aqueous solution subject to the action of van der Waals forces that lead the
sheet to rupture. The authors proposed a framework for modeling tear-film
breakup carried out by the thin-film approximation and raised several possible
mechanisms to account for the occurrence of eye diseases.

Experimental analyses also show that the rheologic characteristics of
liquids strongly influence their behavior in industrial applications. Karim et
al. [25] studied the effect of viscoelastic forces on the hole growth speed in
a liquid curtain by high-speed visualization and showed that elastic stresses
stabilize the liquid curtain by both the reduction on the retraction rim speed
observed with viscoelastic solutions and by the delay on the growth rate of any
disturbance that may lead a hole in the curtain. Karim et al. [70] performed a
thorough analysis on the rheological behavior of dilute xanthan gum solutions
and reveal that the dynamics of curtain breakup is governed by the shear
viscosity at a characteristic deformation rate. They also showed that for
Newtonian liquids, the stability increases as the characteristic viscosity rises.
Additionally, Karim et al. [71] proposed the use of a two-layer configuration
with a shear-thinning liquid as the bottom layer and a viscoelastic liquid
as the top layer to delay the breakup of the liquid sheet and to reduce the
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minimum film thickness. They stated that the thickness reduction is a function
of the viscoelastic stress of the top layer liquid, and reported a film thickness
reduction of 60% for an aqueous solution of polyethylene oxide with 0.1 wt%
as the viscoelastic fluid.

A growing number of emerging technologies involving the manipulation
of liquid metals from millimeter to sub-micron scales, such as additive manu-
facturing, electronics, solar cells, plasmonic-related applications, among others,
in which inertial effects play a big role on the thin film dynamics and lubrica-
tion theory cannot be used to describe the local flow close to rupture [72, 73].
In this sense, González et al. [74] put in evidence the effects of inertia and the
two-dimensional aspects of a flat liquid film extended over a solid plane and
performed numerical simulations of the nonlinear Navier-Stokes equations and
analyze to which extent the linear predictions can be applied for cases involving
inertial and different aspect rations of the film. They found that inertia does
not lead to new regions of instability, but their results show that the growth
rates of the instability decrease as inertial effects are stronger.

There are few works available in the literature that discuss the effect of
interfacial rheology on the rupture of thin films. Furthermore, the few works
that address the topic are almost all experimental.

2.2
Interface tracking methods

The flow of free thin liquid sheets is an intrinsic example of a multiphase
flow. The temporal evolution of fluid phases distribution in a multiphase
flow is often a very difficult task to predict due to their dependence on
several parameters such as geometry, fluid properties and flow regime, and
are commonly characterized in dispersed flows and separated flows [75]. To
tackle the temporal evolution of multiphase systems in continuum mechanics,
a computational mesh that covers the physical domain is often required, such as
in finite elements simulations. From a computational perspective, an accurate
model of multiphase flow requires proper treatment of the interaction between
the phases and the liquid interface between them, along with reliable methods
to track the evolution of the interface position with time.

Continuum-based fluid mechanics studies of free boundary problems
involving the motion of fluid interfaces rely mainly on two approaches: a diffuse
interface method with a virtual finite thickness and a sharp interface of zero
thickness. A diffuse interface representation is based on a phenomenological
model due to Cahn and Hilliard theory [76], in which a phase-field variable
φ is defined such that the concentrations of the two phases in the interfacial
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region are (1±φ)/2 and the functional for the free energy of the "mixing" phase
is trucated at a square-gradient dependence |∇φ|2. However, this approach can
only represent "weakly" nonlocal interactions, and does not properly capture
the long-range intermolecular van der Waals attraction across a thin film [77].

The sharp interface approach treats interfaces between two macroscopic
phases as mathematical surfaces of zero thickness and zero mass, across which
the values of fluids’ physical properties of the fluid such as viscosity and den-
sity jump discontinuously from one phase to another. This approach takes into
consideration the local values of properties of interfacial tension and long-range
interaction potentials to account for the differences in local molecular inter-
actions. Navier-Stokes equations are solved along with appropriate boundary
conditions to address the evolution of a multiphase system.

The computation of a sharp interface approach can be performed by in-
terface capturing methods or interface tracking methods. The computation
of an interface capturing method is based on a fixed spatial domain, where
an interface function marking the interface position is computed. In interface
tracking methods, the mesh needs to be updated as the flow evolves [78]. An
interface capturing method is commonly implemented through an Eulerian ref-
erence frame, whereas interface tracking methods rely mostly on a Lagrangian
representation of the coordinate system. Furthermore, both interface captur-
ing methods and interface tracking methods can be derived based on stabilized
formulations to prevent numerical oscillations and other instabilities with com-
plex problems.

There are several methods to track an interface of a free surface problem
discussed in the literature, which can represent the interface explicitly or
implicitly and proceed with the tracking though Lagrangian or Eulerian
approaches. The Front-Tracking method [79] and the Marker and Cell (MAC)
method [80, 81] are examples of tracking strategies employed through a
Lagrangian reference system and track and follow the interface according to
the local velocity explicitly and implicitly, respectively. Both methods require
a dynamic deletion or addition of particles when stretching or shrinking of
the interface occur, and the MAC method requires a large number of particles
to track the interface, which may scale the computational cost to solve such
systems into unfeasible values.

Another important Lagrangian method for free surface analysis is the
Smooth Particle Hydrodynamics (SPH) method, which relies on a meshless
approach to numerically address the system dynamics. However, the use of
artificial constants such as smoothing factors in the SPH method may induce
spurious oscillations, in which additional steps may be required to obtain
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accurate solutions [82]. Particle finite element methods also adopt a purely
Lagrangian framework, in which each node of the finite element mesh is tracked
through time, along with element addition/removal strategies (Nguyen et al.,
2008).

Nonetheless, the high computational cost of the tracking of large number
of particles in a Lagrangian reference system led to the development of methods
that use different strategies to capture the free surface position. The use of a
marker (color) function in an Eulerian reference system instead of Lagrangian
particles led to the development of interface capturing approaches such as
the Level-Set (LS) method and the Volume of Fluid (VOF) method. The LS
method (Osher and Sethian, 1988) identifies the interface through a smooth
signed distance function γ, in which the interface lies in the zeroth level and
its evolution is performed by advecting γ at each time step. However, the
magnitude of ∇γ can become too large or too small close to the interface,
leading to inaccurate calculations of variables dependent of the interface
position such as the normal vector and mean curvatures. Moreover, the method
may also not conserve mas in flows with significant vorticity or with high
deformation of the interface. To mitigate these problems, the distance function
γ must be reinitialized in every time step after the interface evolution process.

The VOF method [83] tracks the interface indirectly using a scalar marker
α that denotes the volume fraction of the reference phase in each discrete
element, taking α = 1 in regions fully occupied by the reference phase and
α = 0 otherwise. The scalar marker function α is also known as the volume
fraction function, and cells with 0 ≤ α ≤ 1 yields the interface position which
is advected in time in an Eulerian manner. The VOF is one of the most
widely used interface tracking methods and one of its advantages is that it
presents good mass conservation properties due to its formulation. However,
the accuracy on computation of curvature is still a key issue in the method,
albeit several works aimed at overcoming the issue [84, 85]. The VOF and LS
methods track the interface implicitly and have similar ways to advect their
respective marker function, and the main difference between the methods is
that the LS marker function γ is smooth, in contrast with the VOF step-like
marker function α. Moreover, both methods can lead to inaccurate curvature
computations, which are known to generate spurious currents that result in
non-physical pressure fields [86].

In short, Lagrangian descriptions allow an easy tracking of free surfaces
and facilitates the treatment of materials with time-dependent constitutive
relations but are unable to follow large distortions of the computational
domain, whereas Eulerian descriptions can handle large distortions in the
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continuum motion with relative ease, but generally at the expense of precise
interface definition and resolution of flow details [87]. A straightforward
approach to tackle excessive mesh deformations consists in computing a new
mesh that covers the deformed domain and then project the results from
the deformed mesh to the new mesh, in a procedure often referred as mesh
re-generation or remeshing. However, problems undergoing very large and
quick deformations require repeated mesh re-generation and can thus become
expensive in terms of computational time [88].

The shortcomings of purely Lagrangian and Eulerian descriptions lead to
the development of an alternative technique that combines the best features of
both descriptions in a mixed manner. Such techniques are known as arbitrary
Lagrangian-Eulerian descriptions, and were first introduced by Hirt et al. [89]
using a finite difference method. A formulation of the method using the finite
element method was later introduced by Hughes et al. [90] to solve free surface
flows and by Donea et al. [87] for transient dynamic Fluid-Structure Interaction
(FSI) problems. An Arbitrary Lagrangian-Eulerian (ALE) description is very
appealing for free surface problems due to its freedom in moving the mesh and
its capability for an automatic reasoning that conserves the regularity of the
computational mesh [91].

The ALE reference frame is identified by its instantaneous position vector
ξ, which is a priori arbitrary and consequently independent of the motion of
the mesh grid points. The position vector ξ is linked to the material variables
indirectly through the material coordinates in the initial configuration of the
computational mesh. Thus, the ALE description is taken as a mapping of the
initial configuration of the computational mesh into the current configuration
of the reference frame. Figure 2.4 (adapted from [92]) portrays a schematic
of free surface evolution for the aforementioned reference frames, in which
the dashed line represent the initial configuration of the moving boundary,
whereas the continuous line isits updated position. The left sketch in Figure
2.4 represents the Lagrangian approach to convect the free surface, in which
the surface particles move along the direction of the solid red arrows that
represent the material velocity.

Figure 2.4: Comparative between Lagrangian, Eulerian and ALE methods to
move the interface.
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The material velocity of the surface particles are represented in transpar-
ent red arrows on the middle and right sketches of Figure 2.4, concerning the
Eulerian and ALE frames, respectively. The Eulerian approach moves the mesh
on a previously defined, fixed mesh lines. In the example of Figure 2.4, this
direction is taken to be orthogonal to the boundary, depicted as solid green
arrows. The Eulerian reference frame provides regularity on the movement
of surface particles in large in-plane flows, but may also squeeze the surface
coordinates together in certain cases.

The ALE description treats the computational mesh as a reference frame
which may be moving with an arbitrary velocity β. If β = 0, the reference
frame is fixed in space and corresponds to the Eulerian coordinate system,
whereas β = v indicates that the reference frame moves in space at the same
velocity as the grid points, corresponding to the Lagrangian reference system.
For the case β 6= v 6= 0, the reference system is called ALE frame and moves in
space at a velocity β. The right sketch of Figure 2.4 shows the ALE method,
where the surface points are arbitrarily displaced in the direction of the mesh
velocity β, displaced as solid blue arrows. The mesh velocity β is often linked
to the normal component of the material velocity in the ALE method.

The choice of an appropriate description of the interface between fluid
phases is therefore a fundamentally important consideration when developing
numerical analyses of multiphase problems, as an ill-conditioned relation
between the deforming continuum surface and its finite grid representation
may yield unnacurate results or the inability to deal with large distortions.
Tanaka and Kashiyama [93] introduced a robust ALE finite element method
for FSI problems with a free surface using a mesh re-generation algorithm based
on a background mesh that captures the position of the interfaces. The mesh
re-generation is thus performed from the background mesh to the updated
finite element mesh.

Later on, Ganesan and Tobiska [94] developed a coupled ALE-Lagrangian
finite element method to compute the dynamics of insoluble surfactant on a
free surface flow, in which the ALE method is used to track the surface and the
surfactant concentration transport equation is approximated in a Lagrangian
manner. You and Bathe [82] developed an improved numerical method that
accurately describe transient solutions of 3D free surface flows using large time
steps through the ALE method. The authors used the ALE method with a
special focus on the condition of mass conservation during long-time response
and introduce specific 3D elements for the free surface flow conditions evaluated
therein.

Baiges et al. [88] presented an ALE method for numerical analyses of
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free surface flows using an adaptive finite element mesh covering a background
domain that is capable of performing adaptative mesh refinement procedure
on distributed memory environments. Stabilization terms were implemented
to ensure a smooth solution for both velocity and pressure fields, which were
in good agreement with experimental data. Then, Fumagalli et al. [95] used
the ALE method to analyze the motion of a free surface in contact with a
solid wall. In their study, surface tension, capillary effects and wall friction are
accounted for both the determination of the contact angle between the free
surface and the solid wall and the evolution of the surface dynamics.

Furthermore, Wang et al. [96] studied the bubble rising progress using
a diffuse interface method to represent the interface and an ALE method
to address the morphological changes of the bubble alongside an adaptative
mesh refinement algorithm. More recently, Sahu et al. [92] developed an
isoparametric ALE finite element method for incompressible fluid films with
arbitrarily curved and deforming 2D interfaces that is independent of the in-
plane material flow. A finite element formulation to model the dynamics of
lipid membranes with elastic behavior was also presented in the study.

In this work, we implement the ALE reference frame to track the motion
of the interface. The details of the method are further discussed in Chapter 4.
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3
Problem formulation

The problem analyzed here concerns the interplay between capillarity,
interfacial rheology and long-range intermolecular van der Waals forces in the
rupture of stationary free thin liquid sheets. Therefore, we aim at performing
a numerical analysis of the problem dynamics towards the sheet rupture and
analyze the effects of capillarity and interfacial viscosity on the rupture delay.

We employ a two-dimensional model of the problem and implement the
One-Fluid model to numerically analyze the breakup dynamics of stationary
free thin liquid sheet in a gaseous environment, considering the effects of
surface tension, interfacial viscosity and van der Waals forces. The dynamics
is evaluated under a symmetric long wave perturbation, concerning Taylor’s
findings. A symmetry plane on the x axis is taken into account to ease the
computational cost of the simulation. The modeling of the bulk hydrodynamics
is done through the continuum approach, by means of conservation of mass
and linear momentum along with proper boundary conditions.

The free surface is thought of as a sharp interface to account for the
disjoining pressure in the system. The extra interface stress term to represent
the viscous behavior of the interface is described using the Boussinesq-Scriven
constitutive law. The system of differential equations is solved using the
Finite Element Method and the free surface is tracked using the Arbitrary
Lagrangian-Eulerian method. Moreover, we state that the surrounding gaseous
phase is inert and therefore does not interact with the thin liquid sheet.

Figure 3.1 represents the initial configuration of the domain, in which
HC is the undisturbed film thickness, LC is the perturbation wavelength and
Γ = 1⋃ 3⋃ 2⋃ 3 is the domain boundary. The free surface is marked with the
tag 1, the symmetry boundary is marked with 2 and left and right boundaries
are marked with the tag 3. The interface position is denoted as h(x, t) ⊂ 1, the
initial conditions used are u(x, y, t = 0) = 0 and h(x, t = 0) = HC/2−εcos(πx),
where ε is the perturbation amplitude. The plane of minimum thickness is
located at x = 0.
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Figure 3.1: Initial configuration of the stationary free thin liquid sheet.

The numerical solution is based on the finite element method and
is implemented in Python through the FEniCs open-source library. The
simulation ends when the film minimum thickness achieves h(x = 0, t) ≤ 0.1Hc.

3.1
Governing equations

3.1.1
Bulk dynamics

We consider the continuity equation (Eq. 3-1) for the conservation of
mass and the Navier-Stokes equations (Eq. 3-2) for the conservation of linear
momentum. Also, the fluid is considered incompressible and the system is
isothermal. With these hypothesis, the conservation of mass is written as

∇ · u = 0, (3-1)

and the conservation of linear momentum is written as

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · T (u, p), (3-2)

in which T (u, p) = −pI + 2µD(u) is the Cauchy stress tensor and D(u) =
[∇u + (∇u)T ] is the rate-of-deformation tensor. ρ and µ are the bulk density
and viscosity, respectively.
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3.1.2
Interface dynamics

Marangoni advection and thermal effects are neglected in our study, thus
the term σ(Γc, T ) from the interfacial stress tensor σs presented in Eq. 2-1 is
a constant in our model.

σs = σαβIs + σe (3-3)

The viscous behavior of the interface is described by the Boussinesq-
Scriven law presented in Eq. 2-2. However, the expression for the extra
interfacial stress can be substantially simplified in a 2D flow, as the free surface
is a one-dimensional subdomain. The surface velocity divergence is defined as
∇s · u = tr(Ds), in which tr(Ds) = Is : Ds is the trace of the surface rate-of-
deformation tensor. To that extent, the deviatoric part of Ds can be written
as D∗

s = Ds − 1/2(∇s · u)Is.
The surface gradient operator can be written as ∇s = t̂ d/ds, in which s

is the interface arclength coordinate and t̂ is the unit vector tangent to the free
surface. The previous simplification is taken due to the fact that the projection
tensor Is = t̂t̂ + k̂k̂ is reduced to Is = t̂t̂ as k̂ is a constant unit vector in the
z-direction. At last, we simplify the surface divergence as ∇s · u = dut/ds and
the surface rate-of-deformation tensor as Ds = dut/ds t̂t̂, which yields that
D∗
s = 1/2(dut/ds)(t̂t̂− k̂k̂). The term ut = t̂ · u is the velocity tangent to the

interface. The simplification of the Boussinesq-Scriven law for a 1D viscous
interface is reduced to

σe =
[
(κs + µs)

dut
ds

]
t̂ t̂ +

[
(κs − µs)

dut
ds

]
k̂ k̂ (3-4)

Thus, the total interfacial stress tensor σs in 2D flows is a contribution of
curvature-dependent stress term and the viscous extra stress term.

σs = σαβIS +
[
(κs + µs)

dut
ds

]
t̂ t̂ +

[
(κs − µs)

dut
ds

]
k̂ k̂ (3-5)

The surface divergence of the interfacial stress is

∇s · σs =
(
dηs
ds

dut
ds

+ ηs
d2ut
ds2

)
t̂ +

(
σαβ + ηs

dut
ds

)
dt̂
ds

(3-6)
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where ηs = κs + µs is the total interfacial viscosity. The simple interface is
recovered by setting ηs = 0, as the extra viscous stress σe is reduced to zero.

3.1.3
Boundary conditions

The solution of the drainage flow of the thin liquid film must satisfy the
additional constrains along the boundaries of the domain. A first boundary
condition at the liquid interface 1, as referred in Figure 3.1, is to assume that
there is no mass transfer across the interface

n̂ · dx
dt

= n̂ · u. (3-7)

A second boundary condition is given from the conservation of linear momen-
tum across the interface, which yields a traction jump. The stress balance
across the free surface is imposed as follows

n̂ · T (u, p) = ∇s · σs − (pg + Φ)Is (3-8)

where pg is the pressure of the gaseous phase and Φ is the long-range inter-
molecular van der Waals potential. To account for the long-range intermolec-
ular attraction, the potential Φ is given as

Φ = Ã

2πh3
(3-9)

in which Ã is the Hamaker constant and h is the thickness of the liquid film.
The disjoining pressure is often modelled by assuming equilibrium van der
Waals attraction between two unbounded parallel interfaces, albeit the free
interfaces generally not being flat [55, 9].

The bottom boundary 2, as in Figure 3.1, is a symmetry line, where there
is no flux across it and the tangential stress is null. In terms of the velocity
field, these conditions can be written as

uy = 0, (3-10)

∂ux
∂y

= 0. (3-11)
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Moreover, the fluid is considered free to flow across left and right
boundaries 3, which is a fictitious boundary of the domain, as depicted in
Figure 3.1. We consider a zero pressure gradient in the y along the left and
right boundaries, which means that the pressure along the boundaries is given
by the pressure at the point of intersection between left/right boundary and
the free surface (xlr, ylr). Since the interfacial stress acts on the tangential
direction of the interface, when the interface is flat the boundary condition is
taken as the normal-directed van der Waals force acting on the surface point
of each left and right boundaries, respectively. Thus, the boundary condition
for the lateral boundaries 3 is given as

∂u
∂x

= 0, (3-12)

plr = Ã

2πy3
lr

. (3-13)

3.2
Dimensionless parameters

The scales on the x and y directions of the domain are taken as
the perturbation wavelength LC and the undisturbed film thickness HC ,
respectively. We introduce dimensionless variables using the following scales
for time, velocity and pressure as

T = ρL2
C

µ
, U = µ

ρLC
, P = µ2

ρH2
C

.

Thus, the dimensionless variables are defined as follows

x∗ = x

LC
, y∗ = y

HC

, t∗ = t

T
, u∗ = u

U
, p∗ = p

P
.
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We redefine the capillary number Ca and the Boussinesq number Bo in
terms of the scales used in this work. As mentioned in section 2, the capillary
number Ca is defined as the ratio between bulk viscous forces and interface
tension forces, whereas the Boussinesq number measures the ratio between
interface viscous forces and bulk viscous forces.

Ca = µU

σαβ
, Bo = ηs

µHC

The ratio HC/LC indicates the slenderness of the domain in terms of the
undisturbed film thickness HC and the perturbation wavelength LC . Consid-
ering a perturbation of amplitude ε, A long wavelength yields HC/LC << 1,
meaning that the curvature of the free surface is smooth. On the other hand,
the surface curvature becomes more pronounced asHC/LC approximates unity.

We take into consideration the linear stability criterion proposed by
Erneux and Davis [38] to evaluate the stability of thin liquid films with simple
interfaces in our work. The authors consider the balance between interface
tension forces and van der Waals forces to predict the sign of the rate of
perturbation near t = 0. A positive sign of the rate of perturbation indicates
that the perturbation grows and the system undergoes rupture. A negative
sign of the rate of perturbation indicates a retraction of the perturbation and
the thin film is expected to recover a homogeneous thickness.

The predictions of the linear stability criterion are obtained in terms of
the ratio between capillary forces and van der Waals forces. To that extent,
the dimensionless parameters S and A are introduced. The parameter S is
the ratio between capillary forces and bulk viscous forces and is taken as the
inverse of the capillary number:

S = 1
3

1
Ca

HC

LC
= ρσαβHC

3µ2

The parameter A is defined as the ratio between van der Waals forces
and bulk viscous forces as below.

A = ρLCÃ

6πH3
Cµ

2
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The linear stability criterion takes into consideration a long wavelength
perturbation such that HC/LC << 1. To that extent, a thin liquid film with
a simple interface is stable when

S

A
>

2
π2

(3-14)

in which S/A = 2σαβH4
C/LCÃ.
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4
Numerical implementation

The numerical solution of the problem is obtained through the finite
element method. The computational domain is discretized by an unstructured
mesh composed of triangular elements, in which the top boundary represents
the free surface, bottom boundary is a symmetry line and left and right
boundaries are outflow sections.

We use the FEniCS platform to compute the numerical solution of the
problem. FEniCS is a collaborative project for the development of innovative
concepts and tools for automated scientific computing and consists of a collec-
tion of interoperable components [97]. The framework is available in Python
and C++ programming languages and aims at providing high performance
computation of finite element code generation while relieving the programmer
of time-consuming and error-prone tasks in the creation of specialized codes.
The FEniCS module is also equipped with parallel computing tools that allows
process-wise degree-of-freedom indexing, full support for problems with over
232 degrees of freedom for 64-bit indices and parallel mesh refinement strategy.
We use the Python language [98] to implement the algorithms required to solve
the system in the FEniCS platform. We use the built-in functions of FEniCS
for the implementation of the finite element formulation and mesh generation
and update.

This section describes the formulation of the finite element problem
and the strategy used to employ computation of the system in the FEniCS
platform. We provide a brief introduction to the finite element method and
the derivation of the variational problem. We suggest the read of Gresho and
Sani [99] and Carvalho and Valério [100] for a thorough overview of the basis
and fundamentals of the finite element method and also Alnaes et al. [97] and
Daversin-Catty et al. [101] for a more detailed introduction to the employment
of automated solutions in the FEniCs platform.
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4.1
The finite element method

The finite element method is a numerical technique to obtain an adequate
approximate solution of continuous problems using a finite number of well-
defined basis functions. Elements ei associated with a specified number of
nodes and vertices are organized in a common coordinate system (x, y) as an
assembly of finite elements that represent a domain of interest. Furthermore,
the assembly of elements describing the domain of interest is referred as a
mesh.

In this thesis we decompose the domain into triangular unstructured
elements and use P2-P1 element pairs, also referred as Lagrange or Taylor-
Hood elements, depicted in Figure 4.1. These type of elements yield a stable
finite element discretization and high-order accuracy of approximations for the
solution of the Navier-Stokes equations.

Figure 4.1: Quadratic (left) and linear (right) Taylor-Hood conforming ele-
ments.

For continuous problems described by a system of governing equations
along with boundary and initial conditions, an accurate approximate solution
can be achieved by a linear combination of appropriate basis functions ψi(x).
The approximated solution u(x) is the combination of element-wise basis
functions. The approximation u(x) is written as

u(x) =
N∑
i=1

ci ψi(x)

where c0, . . . , cN are unknown expansion coefficients to be determined in a way
that approximates the solution of the system. We may also approximate the
spatial derivatives of u(x) by differentiating the basis function such that

∂u(x)
∂x

=
N∑
i=1

ci
∂ψi(x)
∂x

DBD
PUC-Rio - Certificação Digital Nº 1920936/CA



Chapter 4. Numerical implementation 42

An integral formulation of the system of partial differential equations
is performed to ensure the obtention of N linearly independent algebraic
equations that approximate the system dynamics, in which N is the number
of discrete basis functions used to describe the approximate solution.

Thus, a set of algebraic equations is obtained by replacing u(x) in
the integral formulation of the original system of differential equations. The
integral formulation of the problem is often performed by introducing weight
functions vi(x) ∈ V , where V is a finite dimension function space that collects
the weight functions.

The Weighted Residual method is often used to obtain an error measure
for the approximate solution. It relies on defining a measure R(x) such that
u(x) becomes the exact solution of the integral formulation of the problem if
R(x) = 0. The integration of the residual R(x) along with the weight function
v(x) enforces that the weighted average of R(x) is null, thus resulting in the
weak form of the residual.

The Weighted Residual formulation is then rearranged in matrix form,
which yields a matrix product in the form Ac = b, in which A is sometimes
called stiffness matrix, b is a vector of known values and c is the vector of
expansion coefficients of the formulation. An approximated solution of the
system dynamics is achieved by solving the aformentioned system to obtain
the collection of expansion coefficients.

There are many techniques from which the approximations may be
assumed, such as the point collocation method [102], subdomain collocation
method [103] and theGalerkinmethod [104]. Our work is based on the Galerkin
method , which takes vi = Ψi.

The use of different kinds of finite element spaces for each function space
is a normal approach among practitioners, wherein the selection of suitable
function space properties may yield stable solution in multiphysics problems.
Time-dependent probems require a time-stepping procedure that results in a
system of partial differential equations at each time step.
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4.2
Weak form and residual equation

The weak form of a set of equations obtained by multiplying each
differential equation by an appropriate arbitrary function and then integrate
the product over the domain of the problem. Then, integration by parts may
be used to reduce the order of derivatives to a minimum, followed by the
introduction of boundary conditions if possible. Thus, considering q(x) ∈ Q

as an arbitrary weight function and Q being a finite dimension scalar function
space, the weak form of Eq. 3-1 is obtained as follows:

∫
Ω

(∇ · u)q dx = 0 (4-1)

The weak form of the Navier-Stokes equations is obtained analogously.
We introduce an arbitrary weight function v(x) ∈ V , where V denotes the
space of vector functions, and multiply Eq. 3-2 by v(x) and integrate over the
domain. It goes as follows

∫
Ω
v ·
[
ρ

(
∂u
∂t

+ u · ∇u
)]

dx =
∫

Ω
v ·
[
∇ · T (u, p)

]
dx (4-2)

Integration by parts on the right-hand term reduces the order of derivatives

∫
Ω
v ·
[
∇ · T (u, p)

]
dx = −

∫
Ω
T (u, p) : ∇v dx+

∫
Γ
(n̂ · T (u, p)) · v ds (4-3)

As mentioned in Figure 3.1, we split the boundary Γ in the respective tags
1 for the free surface, 2 for the symmetry line and 3 for the outflow boundaries,
so that the boundary conditions are introduced in the weak formulation. Hence,
the surface stress condition presented in Eq. 3-8 in weak form is

∫
(1)

(n̂ · T (u, p))v ds = −
∫

(1)
n̂ · (ps + Φ) · v ds+

∫
(1)

(∇s · σs) · v ds (4-4)
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The term ∇s · σs is the second-order interface traction and requires an
order reduction, since it contains a second derivative of the velocity along the
interface. Therefore, we integrate the viscous contribution of the stress traction
by parts. It goes as follows:

∫
(1)

(n̂ · T (u, p)))v ds = −
∫

(1)
n̂ · (ps + Φ) · v ds+

∫
(1)

(
σαβ κ n̂

)
· v ds

+ηs
[ ∫

(1)

(
du · t̂
ds

dv
ds

)
t̂ ds− du · t̂

ds
v t̂
∣∣∣∣∣
sf

si

] (4-5)

in which the mean curvature of the free surface is κ = −∇s · n̂/||n̂||. We
introduced ηs = κs + µs as a total interfacial viscosity, which is the only
interfacial material property the model relies in 2D flows. Also, si and sf
denotes the extremities of the surface. Taking ηs = 0 yields the behavior
of a simple interface with no interfacial material properties. The kinematic
condition presented in Eq. 3-7 is implemented by the ALE method and is
discussed in the next section. Moreover, we naturally impose the boundary
condition presented in Eq.3-13 for the boundaries marked with 3 as

∫
(3)

(n̂ · T (u, p)) · v ds = −
∫

(3)
plrn̂ · v ds (4-6)

As mentioned earlier, the boundary condition in Eq. 3-11 expresses the
absence of shear stress on 2. This condition of a Neumann type, and is
automatically satisfied if it remains homogeneous. The boundary condition
presented in Eq. 3-10 enforces that there is no flow across the symmetry
line. Thus, the y component of the solution of the system is known and this
implicates that the y component of the weight function is zero. The weak form
can be organized in terms of a residual R as below.

R =
∫

Ω
v ·
[
ρ

(
∂u
∂t

+ u · ∇u
)]

dx+
∫

Ω
T (u, p) : ∇v dx

+
∫

(1)
n̂ · (ps + Φ) · v ds−

∫
(1)

(
σαβ κn̂

)
· v ds

− ηs

[ ∫
(1)

(
du · t̂
ds

dv

ds

)
t̂ ds− du · t̂

ds
v t̂
∣∣∣∣∣
sf

si

]

+
∫

(3)
plrn̂ · v ds+

∫
Ω

(∇ · u)q dx

= 0

(4-7)

Furthermore, a time-marching scheme is required to forward the simula-
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tion in time. We consider the backward Euler method to evolve the system in
time, with prescribed initial conditions. The backward Euler method is based
on a truncated Taylor series expansion of an arbitrary solution in the neigh-
borhood of t = tn as yn = yn−1 + ∆t dy/dt|tn + O(∆t2), in which the local
truncation error is O(∆t2) yields a first order method. Thus, provided an ini-
tial condition of the system, the term ∂u/∂t can be obtained as

∂u

∂t
≈= un − un−1

∆t

We consider an implicit time discretization and the solution of the
nonlinear system of algebraic equations at each time step is done by the
Newton-Raphson method. Considering the set (unk , pnk) as the solution of Eq.
4-7 at time n and iteration k, the Newton-Raphson method is derived by
representing unk as the sum of the initial guess unk−1 and the correction term
δu. We may rewrite the residual equation in terms of the iteration scheme
unk = unk−1 + δu:

R =
∫

Ω
v ·
[
ρ

(
unk−1 + δu− un−1

∆t + (unk−1 + δu) · ∇(unk−1 + δu)
)]

dx

+
∫

Ω
T (unk−1 + δu, pnk) : ∇v dx

+
∫

(1)
n̂ · (ps + Φ) · v ds−

∫
(1)

(
σαβ κn̂

)
· v ds

−ηs
[ ∫

(1)

(
d(unk−1 + δu) · t̂

ds

dv
ds

)
t̂ ds− d(unk−1 + δu) · t̂

ds
v t̂
∣∣∣∣∣
sf

si

]

+
∫

(3)
plrn̂ · v ds+

∫
Ω

(∇ · (unk−1 + δu))q dx

= 0

(4-8)

The algorithm for the Newton-Raphson method is obtained by rearranging
Eq. 4-8 such that the left hand side of the equation accounts only for items
evaluated at the k-th iteration. The Cauchy stress tensor in terms of the
primitive variables is as below

T (unk−1 + δu, pnk) = −pnkI + 2µ [∇unk−1 + (∇unk−1)T +∇δu+ (∇δu)T ]
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Thus, the rearragement of Eq. 4-8 yields

ρ

 ∫
Ω

δu

∆t · vdx+
∫

Ω

(
δu · ∇δu+ unk−1 · ∇δu+ δu · ∇unk−1

)
· v dx


+
∫

Ω
2µ
(
∇(δu) + (∇(δu))T

)
: ∇v dx+

∫
Ω

(∇ · δu) q dx−
∫

Ω
pnkI · ∇v dx

+ηs

 ∫
(1)

(
d(δu · t̂)
ds

dv
ds

)
t̂ ds − d(δu · t̂)

ds
vt̂
∣∣∣∣∣
sf

si


=

ρ

 ∫
Ω

un−1 − unk−1
∆t · v dx−

∫
Ω

(unk−1 · ∇unk−1) · v dx
− ∫

Ω
(∇ · unk−1) q dx

−
∫

(1)
n̂ · (ps + Φ) · v ds+

∫
(1)

(σαβ κn̂) · v ds−
∫

(3)
plrn̂ · vds

+ηs

 ∫
(1)

(
d(unk−1 · t̂)

ds

dv
ds

)
t̂ ds − d(unk−1 · t̂)

ds
vt̂
∣∣∣∣∣
sf

si


(4-9)

The equation above may be rewritten in matrix form as Kδu = b, in
which K is often referred as the stiffness matrix and b is a vector composed of
known terms evaluated at iteration k−1. Analogously, Eq. 4-8 can be linearized
in terms of a correction term δu, resulting in R(u) = R(uk−1 + δu) = 0. This
procedure yields

R(uk−1) + ∂R

∂uk−1

∣∣∣∣∣
uk−1

δu = 0.

Rearranging the equation above leads to

∂R

∂uk−1

∣∣∣∣∣
uk−1

δu = −R(uk−1). (4-10)

The expressions portrayed by Eq. 4-9 and Eq. 4-10 are equivalent. The
selection of appropriate finite function spaces U for the basis functions and
V and Q for the weight functions is required for the assembly of the system
in matrix form and solution of the system for time tn. Then, the solution of
the system is obtained by solving Eq. 4-9 for the correction term δu and a
updating unk iteratively until a set of criteria is achieved. This leads to the
algorithm below:

The definition of the convergence criteria and iteration tolerance is
further discussed in Section 4.4 along with the implementation of the system
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Algorithm 1 Newton-Raphson method
Choose initial guess (u0, p);
Set maximum number of iterations kmax;
Set tolerance tol;

for n = 1, 2, ... do
// time step //

set un0 = un−1 and pn0 = pn−1

for k = 1, 2, ..., kmax do
// iteration step //

solve Eq. 4-9 for variables (δu, pnk);
set unk = unk−1 + δu;

if
∣∣∣∣∣∣unk − unn−1

∣∣∣∣∣∣ and ∣∣∣∣∣∣pnk − pnn−1

∣∣∣∣∣∣ < tol then
exit;

end

end
end

in FEniCS.

4.3
Arbitrary Lagrangian-Eulerian method

As previously mentioned, an arbitrary Lagrangian-Eulerian approach has
features of both Lagrangian and Eulerian methods and allows independent
movement of the grid points in a time increment ∆t with a grid velocity β. To
that extent, the ALE description of movement aims at providing a generalized
description capable of combining at best the interesting aspects of the material
and spatial descriptions while minimizing their drawbacks as far as possible
[105].

The Lagrangian viewpoint consist on a material domain RXXX composed of
material particles XXX, whereas the Eulerian description yields a spatial domain
Rxxx composed by a set of spatial points xxx. The mapping between Lagrangian
and Eulerian reference frames is such that the spatial coordinates xxx depend on
the material particle XXX and the physical time measured by the same variable
t in both material and space reference frames.

As the material points coincide with the grid points during the motion,
there are no convective effects in this frame of reference. In an Eulerian
reference frame, the finite element mesh is fixed and the continuum moves and
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deforms with respect to the computational grid. Thus, an Eulerial description
of motion involves only variables and functions having an instantaneous
significance in a fixed region of space. In this case, the material velocity v

corresponds to the velocity of the material point and is expressed with respect
to the fixed-element mesh without any reference to the initial configuration of
the continuum.

The dissociation of the mesh nodes from the mesh particles lead to the
occurrence of convective effects, which are due to the relative motion between
the deforming material and the fixed mesh. The ALE method takes place in a
referential configuration Rξ, where ξ is the reference coordinate that identifies
the grid points. Concerning Donea et al. [105], the Lagrangian and Eulerian
formulations may be obtained as particular cases according to an appropriate
choice of mappings between the reference systems.

The most challenging problem in an ALE algorithm is allocating an ap-
propriate value for β, as there is no general way to determine the mesh velocity.
A practical implementation of the ALE description can be overshadowed by the
burden of specifying grid velocities well suited to the particular problem under
consideration and most likely requires that an automatic mesh displacement
prescription algorithm is supplied.

The update of the mesh in the ALE formulation is performed mainly
by two basic strategies, namely mesh regularization and mesh adaptation.
Mesh regularization is often referred as rezoning, and it consists in keeping the
computational mesh as regular as possible during the whole calculation, thus
avoiding excessive distortions and squeezing while maintaining an accurate
representation of the physical problem. This approach requires that the nodal
coordinates are updated at each iteration, either through step displacements
or from the computed velocities of the problem.

There are several algorithms to regularize the mesh, such as the
transfinite mapping method [106], the Laplacian smoothing [107] and the
simple interpolation scheme [87, 108]. These algoritmhs interpolate the mo-
tion of the mesh throughout the domain according to a specific procedure,
such as in the Laplace smoothing procedure, where the Laplace equation is
solved for each component of the node velocity or position so that on a logi-
cally regular region the mesh forms lines of equal potential. In fact, the ALE
method allows the use of any mesh-smoothing algorithm designed to improve
the shape of the elements once the topology is fixed.

In the mesh adaptation scheme, the objective of the ALE description
is to optimize the computational mesh to achieve an improved accuracy at
possibly low computing cost, as the number of mesh elements may remain
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unchanged througout the computation. Thus, the ALE method includes an
indicator of error and the mesh is modified to obtain an equi-distribution of
the error over the entire computational mesh. The ALE method can also be
coupled with traditional mesh refinement procedures such as h−adaptivity to
further enhance accuracy of the computation [109].

In this work, the ALE method tracks the motion of the free surface by
employing the kinematic boundary condition presented in Eq. 3-7 to update
the position of the free boundary over the computation. More specifically,
we use the normal component of the velocity field to update free surface
position at each interation. Then, the algorithm performs a mesh regularization
procedure on the bulk elements. The update of the surface motion is performed
by the built-in packages of the FEniCs library, which by default rezones the
computational domain by the Laplacian smoothing technique.

The Laplacian smoothing technique relies on the solution of the Laplace
equation for each coordinate direction to compute new coordinates for all
vertices, provided new boundary coordinates. Therefore, our method to dis-
place the boundary updates the coordinates of the free surfaces with the ALE
method according to the normal velocity of the boundary and then solves the
the equation ∇2δs = 0 to update the coordinates of the bulk vertices with the
displacement vector δs.

4.4
Numerical procedure

The procedure to obtain the numerical solution of the problem concerns
mesh creation, finite element formulation and the solution of the system. Then,
we solve the system using an iterative method to obtain a numerical solution
associated with a predefined set of liquid properties and flow conditions.

The mesh generation functionality of FEniCS is accounted by the mshr
function, which allows simple generation of meshes from a combination of Con-
structive Solid Geometry descriptions and Boolean operations. The creation of
the computational mesh is a straightforward operation performed by the mshr
module. The boundaries of the mesh are marked with a respective tag for each
boundary and are stored in an auxiliary function. Figure 4.2 shows a coarse
computational mesh of triangular finite elements created by the mshr library.

Figure 4.2: Computational mesh obtained using the mshr package.
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The assembly of linear and nonlinear systems in the FEniCS is auto-
mated by the DOLFIN module. As previously mentioned, we adopt Lagrange
elements, which are unstructured triangular finite elements composed of a P2-
P1 element pair, namely a pair of quadratic and linear polynomial basis func-
tions, respectively. Then, we take the Galerkin method into consideration to
define the appropriate function spaces.

Once the mesh and the function spaces are defined, we declare the
material properties of the system, such as bulk viscosity and density, interface
viscosity, interfacial tension and Hamaker constant. Afterwards, we employ the
Newton-Raphson method to solve Eq. 4-9 iteratively at each time step. The
absolute and relative tolerances used in the iterative procedure is 10−14 and
10−16, respectively.

The velocity field obtained in the iterative procedure is then used to
update the free surface movement, by means of the kinematic condition
presented by Eq. 3-7. The ALE method then moves the nodes of the free
boundary into a new position in a Lagrangian manner, meaning that the
free boundary displacement is obtained directly from xs = us ∆t. After,
the computational mesh is reorganized according to the Laplacian smoothing
technique.

We initiate the simulation with ∆t = 10−7 s and employ an adaptative
time step scheme inspired by the Courant-Friedrichs-Lewy (CFL) condition.
The CFL condition states that the distance in which physical information
travels during one time step within the mesh must be lower than the distance
between mesh elements [110]. It is a necessary condition for convergence while
solving certain partial differential equations with explicit time integration
schemes [111]. The use of an implicit solver usually alleviates numerical
instabilities that arise from the CFL condition. Thus, we define an artificial
Courant number Co = ||umax||∆t/∆x to update of the time step as

∆t = Co∆x
||umax||

Therefore, the time step decreases as the magnitude of the maximum ve-
locity increases for a given mesh resolution ∆x. We enforce the aforementioned
relation between the velocity and time step mainly because as the thin liquid
sheet evolves towards rupture, van der Waals forces become more dominant
and the thinning of the film accelerates. More briefly, we increase the time res-
olution near the rupture of the thin liquid sheet by maintaining a fixed value
for Co in the update procedure.
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Furthermore, Algorithm 2 shows the solution procedure implemented in
this work. The results discussed in the next section are saved in general formats
such as .pvd and .npy to ease the post-processing task. Moreover, the post-
process of the results obtained from the solution procedure is performed in
Paraview and Python.

Algorithm 2 Solution procedure
Create mesh;
Declare material properties;
Declare solver properties;
Declare simulation properties;
Create function spaces;
Assign initial values u0 and p0;
Initialize save variable to save results

for n = 1, 2, ... do
Build system and assemble Eq. 4-9;
Solve Newton-Raphson method for the variables (un, pn);

if save == true then
Save results in .pvd and .npy;

end

Calculate free surface displacement with un;
Update mesh displacement with the ALE method;

Update ∆t;

Update function spaces;
Set u0 = un and p0 = pn for next time step;

end
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5
Results and discussion

In this chapter, we present and discuss the results obtained for the
rupture dynamics of thin free liquid sheets. The dynamics of the system is
numerically addressed using the system of equations in dimensional form,
considering an aqueous solution for reference values of bulk density and
viscosity and null initial conditions for the velocity and pressure. Moreover,
the domain is configured for HC = 10µm and LC = 10HC , and the results
presented in this chapter are scaled according to the dimensionless variables
presented in Section 3.2.

We take into consideration the stability criterion of free thin liquid sheets
introduced in Section 3.2 to account for the balance between capillarity and
intermolecular attraction. The numerical solutions discussed in this chapter
is obtained by fixing the capillary number at Ca = 2. The analysis of the
dynamics of thin liquid films with viscous interfaces is performed for values
of the Boussinesq number in the range Bo ∈ [0, 75]. As previously mentioned,
the simulations end when the minimum thickness of the liquid sheet reaches
the critical value hf = 0.2HC , which is the criterion considered in this work to
address the rupture event that occurs in a finite time.

The simple case taken at Ca = 2 and Bo = 0 is used to assess
convergence issues regarding the mesh resolution, which is further discussed
in Section 5.2. We evaluate the results obtained for the rupture dynamics of
thin liquid sheets with a simple interface (Bo = 0) in Section 5.2. Then, we
introduce the results that concern to the effects of interfacial viscosity in the
rupture dynamics of the thin film in Section 5.3.

5.1
Mesh convergence test

We analyze the influence of the mesh resolution on the convergence of
the numerical method by comparing the time that each simulation reaches the
minimum thickness criterion of hf = 0.2HC . The parameters are such that
S/A = 1/π2 and an initial perturbation of ε = 0.1HC is imposed. At this value
of S/A, the flow is unstable and the rupture of the free liquid film occurs. We
test if the simulation converges for a given number of elements that compose
the computational domain, according to an appropriate time step.

The update of the time step is obtained by varying the artificial Courant
number Co between 100 and 1000, as defined in Section 4.4. The results
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obtained for the range Co ∈ [100, 1000] indicate similar rupture times for a
fixed mesh resolution. Thus, we kept Co = 500 fixed for the results presented
herein.

The thickness evolution at x = 0 for different mesh resolution is presented
in Figure 5.1. The computational domain is discretized with N number of
elements such that N ∈ [4500, 12000, 32000, 37000, 44000] to account for both
coarse and refined grids.

Figure 5.1: Breakup dynamics for different mesh resolutions.

Figure 5.2 depicts a close-up view of the rupture times for each discretiza-
tion. These results indicate that the simulations converge for rupture times of
the same order of magnitude, regardless of the coarse and refined meshes ana-
lyzed. However, as we increase the mesh resolution, the breakup time converges
to t∗

f ≈ 4.3.

Figure 5.2: Closer look on the thickness profile at rupture neighbouring.
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Furthermore, the trade-off between a highly refined domain and the time
of computation associated with the system must be addressed. Therefore, we
consider a mesh with N = 37000 in our study, which yields a computation
time of T ≈ 12h for the simulation of the results presented hereby.

5.2
Simple interface

Capillary effects due to the surface curvature introduce a pressure
gradient acting on the tangential direction of the free surface, which drives the
liquid towards the minimum thickness plane. Long-range intermolecular van
der Waals forces act on the normal direction of the free surface, yielding an
attraction between the free surfaces of the film and leading the sheet to rupture.
Hence, capillary effects are expected to oppose the long range intermolecular
attraction between the surfaces of the free thin liquid film. For S/A ≥ 2/π2,
the capillary forces are strong enough to stabilize the flow.

The results of the simple interface case are presented in this section. We
investigate the behavior of stationary thin liquid films for 1/π2 ≤ S/A ≤ 3/π2.
The ratio S/A provides insights about the behavior of the system under certain
flow conditions, in which the critical value of S/A = 2/π2 is a bifurcation point.
According to the linear stability criterion, the system is stable and the film does
not rupture for S/A > 2/π2, whereas the system is unstable for S/A ≤ 2/π2

and the film undergoes rupture.
As defined in Chapter 4, an artificial Courant number is used to obtain

an adaptive time step for the temporal evolution of the system. We apply
Co = 500 for the cases of S/A < 2/π2, as the rupture dynamics under this
configuration speeds up as we decrease the stability ratio S/A. Analogously, we
implement Co = 1000 to march in time with larger time steps for S/A ≥ 2/π2.

5.2.1
Literature comparison

We validate our numerical implementation by comparing our results with
the predictions obtained by the linear stability criterion proposed by Erneux
and Davis [38]. To that extent, we analyze the temporal evolution of the film
thickness. Therefore, concerning the symmetry of our domain, we introduce the
following variable to represent the dynamics of thin sheets under perturbations:

ω(t) = HC

2 − h(x = 0, t).
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The investigation of the stability criterion proceeds by considering an
initial perturbation of amplitude ε0 = 0.02HC , yielding ω0 = 0.02HC . Then,
we change the values of S/A and evaluate the accuracy of the linear stability
analysis in predicting the behavior of the dynamical system. Furthermore, we
may evaluate the temporal evolution of the perturbation with respect to the
initial perturbation as:

ε(t) = ω(t)− ω0. (5-1)

ε(t) > 0 indicates that the perturbation grows with time and that the
liquid sheet is unstable. On the other hand, negative values of ε(t) indicate that
the perturbation is damped and the sheet is stable. Linear stability analysis
predicts that the liquid sheet is unstable for S/A less than the critical value
of S/A = 2/π2. Figure 5.3 presents the evolution of the perturbation ε(t) for
1/π2 < S/A < 3/π2.

Figure 5.3: Perturbation evolution in time for 1/π2 ≤ S/A ≤ 3/π2.

Figure 5.4 presents a zoom of the perturbation evolution near t = 0,
which is related to linear stability response, valid at small perturbations.
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Figure 5.4: Close-up on the early stages of the perturbation evolution for
1/π2 ≤ S/A ≤ 3/π2.

At small values of S/A, i.e. S/A ≤ 6/5π2, ε(t) > 0 for all values of t. The
perturbation grows until the sheet breakup. At intermediate values of S/A, i.e.
3/2π2 ≤ S/A ≤ 11/5π2, the perturbation presents a non-monotonic behavior,
it first decays but then it starts to grow after some time. At large values of
S/A, i.e. S/A > 5/2π2, the perturbation always decay (ε(t) < 0 for all t) and
a film with uniform thickness is recovered.

It is important to note that the linear stability analysis cannot predict
this non-monotonic behavior. It only determines the sign of the growth rate at
vanishingly small perturbations, close to t = 0. The non-monotonic behavior
is associated with nonlinear effects neglected by the linear stability analysis.

From the predictions of the sign of dε/dt(t → 0) from the nonlinear
flow solution, which can be determined from Figure 5.4, the sheet is stable for
S/A > 3/2π2. Figure 5.5 depicts a comparison between our results concerning
the perturbation ε at t∗ = 1 and similar predictions of Bazzi and Carvalho [9].
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Figure 5.5: Comparison of the results obtained perturbation amplitude at
t∗ = 1 with the literature.

These results also indicate that the perturbation retracts for S/A > 3/2π2

and grows otherwise. We also notice that the way at which the perturbation
growth varies with S/A differs from the results presented by Bazzi and
Carvalho [9]. This behavior may be due to the differences in our modeling.
They used lubrication theory to derive a set of nonlinear equations, whereas
our model solves the complete Navier-Stokes equations at which inertial forces
are not neglected.

We present the perturbation ε as function of S/A at t∗ = 2.1 and t∗ = 4
in Figure 5.6. According to our results presented in Figures 5.3 and 5.4, the
growth of the perturbation for S/A = 2/π2 stops retracting at t∗ = 2.1.
The perturbation amplitude at t∗ = 4 indicates that system evolves towards
rupture.
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Figure 5.6: Perturbation growth for 1/π2 ≤ S/A ≤ 3/π2 at t∗ = 2.1 and t∗ = 4.

Thus, the critical stability ratio S/A = 2/π2 results in a retraction of the
perturbation up until t∗ = 2.1, and then the liquid sheet undergoes a finite
time rupture. This behavior is also observed for 2/π2 ≤ S/A ≤ 3/π2, where
the balance between capillarity and intermolecular van der Waals forces are
no longer accurately predicted by the stability criterion after a given time.

We remark that the predictions proposed by the the stability criterion
are obtained by neglecting nonlinear effects on the system dynamics, which
may lead to innacurate forecasts. Moreover, the evolution of the liquid film
thickness under a perturbation amplitude of ε = 0.1HC and stability ratios
of S/A = 1/π2 and S/A = 3/π2 is depicted in Figure 5.7. According to the
findings of Bazzi and Carvalho [9], the aforementioned configuration should
still yield a retraction of the perturbation for S/A = 3/π2 and a perturbation
growth for S/A = 1/π2, albeit the larger initial perturbation.
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Figure 5.7: Evolution of the film thickness h∗ at x = 0 for S/A = 1/π2 and
S/A = 3/π2.

We introduce the term pinch velocity to refer to the velocity of which
the free surfaces moves towards each other to facilitate the analysis. To
that extent, the profile of the film thickness h∗ portrayed in Figure 5.7 for
S/A = 1/π2 indicates that the pinch velocity increases as the film rupture
becomes imminent. Concerning S/A = 3/π2, the perturbation amplitude of
the thin film for the stability ratio S/A = 3/π2 retracts up until t∗ = 5.26.
Therefore, the case S/A = 3/π2 portrays the behavior predicted by the linear
stability criterion. On the other hand, the stability ratio S/A = 1/π2 yields
a rupture time of t∗f = 4.3 and behaves according to the prediction of the
stability criterion.
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5.2.2
Thin film rupture

The rupture process is addressed under a perturbation of amplitude
ε = 0.1HC and ratio S/A = 1/π2. At these conditions, the liquid sheet is
unstable and ruptures in a finite time. As the film thins, nonlinear effects
become more prominent and the drainage of the film increases. Figure 5.8
illustrates the temporal evolution of the free surface under the aforementined
configuration.

Figure 5.8: Temporal evolution of the free thin liquid film near the perturbed
region.

The action of intermolecular van der Waals forces on the interfaces of the
liquid film lead to a pressure gradient from the region of minimum thickness
towards the sheet extremities. Figure 5.9 shows the dimensionless pressure
distribution inside the domain of the thin liquid film at t∗ = 0.1. Initially,
the pressure difference from x∗ = 0 to x∗ = 1 is around δp∗ = 0.33. Also, a
local pressure gradient below the perturbed region of the free surface become
apparent in the beginning of the temporal evolution.

Figure 5.9: Bulk pressure distribution at t∗ = 0.1.

The stronger pressure gradient occurs from x∗ = 0.4 towards x∗ = 1
and it is symmetric with respect to x∗ = 0. This occurrence portrays the
effects of capillarity and as expected, reaches its peaks in the maximum surface
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curvature points. However, as the curvature of the free surface decreases, these
local variations in the pressure field become weak and no longer contribute to
the system dynamics. Then, the bulk pressure at x∗ = 0 increases with time
until the thin film reaches the critical value hf , leading to a pressure difference
of approximately δp∗ = 12 towards the outflow direction. The pressure field
at t∗ = 0, 1, 2, 3.5 and 4.3 is presented in Figure 5.10, respectively from top to
bottom.

Figure 5.10: Bulk pressure field at t∗ = 0, 1, 2, 3.5 and 4.3.

The drainage of the thin liquid film is better analyzed by examining
the x component of the velocity field, shown in Figure 5.11. The flow occurs
symmetrically in terms of x∗ = 0, which is an assumption used in the
theoretical findings of Ida and Miksis [52]. As the film thins and the pressure
gradient becomes stronger, the drainage velocity rises, as expected.

Figure 5.11: Temporal evolution of the x component of the velocity field at
t∗ = 0, 1, 2, 3.5 and 4.3.
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Figure 5.12 represents the evolution of the y component of the velocity
field. It is noticeable that the y component of the velocity is mostly null across
the domain, except near the region of minimum thickness. As discussed earlier,
the nonlinear evolution of the sheet thickness may be due to an increase in the
surface velocity, which are driven by the long range intermolecular attractions.

Figure 5.12: Time evolution of the y component of the velocity field at
t∗ = 0, 1, 2, 3.5 and 4.3

As the thin liquid film undergoes rupture, the velocity of attraction
between the free surfaces is maximum at x∗ = 0. Consequently, the free surfaces
moving towards one another, squeezing the liquid film at (x∗, y∗) = (0, 0). The
displacement of fluid away from the rupture causes an increase in the film
thickness immediately near x = 0, which may be related to the physical
phenomenon of capillary ridges. Also at x∗ = 0, the x component of the
velocity field is equal to zero because of the flow symmetry and y component is
maximum, which resembles the behavior of a saddle point. Figure 5.13 portrays
the velocity magnitude ||u∗|| =

√
(u∗

x)2 + (u∗
y)2 in the spatial vicinity of the

rupture region at t∗ = 0.1.

Figure 5.13: Velocity magnitude in the spatial vicinity of the rupture point at
t∗ = 0.1.
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The behavior of the velocity magnitude depicted by Figure 5.13 continues
as the rupture of the film evolves in time. The region present an analogous
dynamic behavior throughout the entire rupture event. Figure 5.14 shows the
velocity magnitude near the rupture region at rupture time t∗r = 4.3.

Figure 5.14: Velocity magnitude near the rupture point at t∗ = 4.3.

The x and y components of the velocity field along the free surface at
t∗ = 4.3 is presented in Figure 5.15. The x component of the surface velocity
reaches its maximum value u∗

x = 0.52 at x∗ = 0.15 and minimum value
u∗
x = − 0.52 at x∗ = − 0.15. Analogously, the y component of the velocity

field reaches the maximum value u∗
y = 0.018 respectively at x∗ = ±0.275 and

minimum value u∗
y = − 0.076 at x∗ = 0.

Figure 5.15: Surface x and y velocity components at t∗ = 4.3.

5.3
Viscous interface

The results presented in this section refer to the dynamics of thin liquid
films with viscous interfaces. As discussed earlier, the Boussinesq number is
the dimensionless number which measures the ratio of surface viscous forces
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to bulk viscous forces. We evaluate the action of interfacial viscosity on the
rupture process sistematically for a fixed stability ratio of S/A = 1/π2 and
0 ≤ Bo ≤ 75.

We aim at analyzing the effects interfacial rheology near the rupture,
wherein the results obtained for 0 ≤ Bo ≤ 75 are used to provide a broad view
on the system dynamics. Also, we implement an adaptative time step using
Co = 5000 to evolve the system in time, as in the simple case.

5.3.1
Amplitude growth

Interfacial viscosity leads to extra interfacial stresses along the tangential
direction of the interface, which affect the dynamics of thin liquid sheets.
Interfacial viscosity introduces an additional resistance to the movement of the
free surface, which is due to the presence of complex interfacial structures on
the microscopic scale. The interfacial stresses oppose the interface deformation
and delay the perturbation growth.

Figure 5.16 presents the evolution of the perturbation ε(t) at S/A = 1/π2

for 0 ≤ Bo ≤ 75. Bo = 0 corresponds to the simple interface case, shown
before. At this value of S/A, the perturbation grows rapidly until breakup.
For Bo ≥ 15, the growth of the perturbation decreases drastically, albeit still
being nonzero.

Figure 5.16: Evolution of the amplitude of the perturbation for 0 ≤ Bo ≤ 75.

The evolution of the film thickness at x∗ = 0 under the influence of
interfacial viscosity is presented in Figure 5.17. The results indicate that the
rupture process is slowed down as Bo increases. The sheet breakup time
increases as Bo rises.
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Figure 5.17: Film thickness evolution for 0 ≤ Bo ≤ 75.

Furthermore, Figure 5.18 presents the rupture time as a function of the
Boussinesq number, for 0 ≤ Bo,≤ 5.

Figure 5.18: Rupture time as a function of the Boussinesq Number.
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5.3.2
Velocity and pressure fields

The configuration of the free surface near the perturbed region at the
rupture time for 0 ≤ Bo ≤ 5 is illustrated in Figure 5.19. It is interesting to
note that as the interfacial viscosity rises, the surface area at the breakup time
becomes smaller.

Figure 5.19: Configuration of the free surface at rupture time for 0 ≤ Bo ≤ 5.

Figure 5.20 portrays the pressure distribution over the domain at t∗ = 1
for Bo = 0, 5, 15, 25, 50 and 75. We notice that the pressure distribution in the
bulk at t∗ = 1 is similar for all the values of Bo, as the system hasn’t reached
the temporal vicinity of rupture. However, the thickness evolution slows down
as we increase Bo, as previously reported in Figures 5.16, 5.17 and 5.18.

Figure 5.20: Pressure distribution at t∗ = 1 for Bo ∈ [0, 75].

Moreover, the velocity field in the domain is clearly influenced by the
effects of surface viscosity. Figures 5.21 and 5.22 show the x and y components
of the velocity field at t∗ = 1 for Bo = 0, 5, 15, 25, 50 and 75. The effects of
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interfacial rheology in the early dynamics of the system result in a reduction
of the velocity gradient along the interface, which leads to a reduction on the
bulk velocity.

Figure 5.21: x component of the velocity field at t∗ = 1 for Bo ∈ [0, 75].

The reduction of the x component of the velocity occurs close to the
surface and near x∗ = 0.5 and x∗ = − 0.5. Furthermore, Figure 5.22 indicates
that the increment of interfacial viscosity reduces the value of the y component
of the velocity field at x∗ = 0.

Figure 5.22: y component of the velocity field at t∗ = 1 for Bo ∈ [0, 75].

The results presented in Figures 5.21 and 5.22 also indicate that the
additional effects of interfacial rheology reduces the drainage rate of the film.
As the long-range intermolecular attraction between the free surface occurs, the
effects of interfacial viscosity slow down the surface movement. Figures 5.23,
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5.24 and 5.25 illustrate the behavior of the pressure and x and y components
of the velocity field at t∗ = 4.3, respectively. All these cases are presented using
the same scale to ease the comparison.

Figure 5.23: Pressure distribution at t∗ = 4.3 for Bo ∈ [0, 75].

The evolution of the pressure field occur analogously to the simple case.
The results portrayed in Figure 5.24 also indicate the reduction of the drainage
rate, which may be accounted for the delay on the rupture process. Likewise,
the result presented in Figure 5.25 indicates a strong reduction of the y

component of the velocity field.

Figure 5.24: x component of the velocity field at t∗ = 4.3 for Bo ∈ [0, 75].

As the additional effects of interfacial viscosity oppose the intermolecular
attraction between the free surface, the drainage of the film becomes slower.
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Also, the pinch velocity is reduced as the Boussinesq number increases.

Figure 5.25: y component of the velocity field at t∗ = 4.3 for Bo ∈ [0, 75].

Thus, the amount of fluid displaced from the perturbed region of the bulk
towards the extremities is consequently reduced. The x and y components of
the surface velocity at the rupture times presented in Figure 5.18 are illustrated
in Figure 5.26.

Figure 5.26: Surface x and y velocity components at rupture time for 0 ≤ Bo ≤
5.
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With the increment of the interfacial viscosity, the mobility of the
free surface is reduced in both x and y directions. Hence, the long-range
intermolecular van der Waals forces are strongly opposed by the extra viscous
stresses. The profile of the surface velocity presented in Figure 5.26 indicates
a reduction of surface mobility near x∗ ± 0.5.
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6
Conclusion

We presented a numerical investigation of the rupture dynamics of
stationary free thin liquid films with viscous interfaces. We employed a 2D
model of the domain with a symmetry line and used conservation of mass and
linear momentum to tackle the dynamics of thin liquid films. To account for the
extra viscous stress along the free surface of the film, the Boussinesq-Scriven
constitutive model was implemented.

The thin liquid film was taken out of the equilibrium position by an
initial perturbation shaped as a sine wave. The set of differential equations
was simulated using the Finite Element Method implemented in Python by
the FEniCS framework and the displacement of the interface was handled
with the ALE method.

The long-range intermolecular van der Waals forces play a dominant role
on the system dynamics, which is accounted by our modelling through a surface
force referred as disjoining pressure. The effects of capillarity and interfacial
viscosity oppose the action of the disjoining pressure, and according to the
stability criterion proposed by Erneux and Davis [38], the ratio S/A defines
whether the system recovers from the intermolecular attraction between the
free surfaces or undergoes a finite time rupture.

We evaluated the behavior of a simple interface under different conditions
of the stability ratio. Concerning our findings, the stability criterion succeeds
at predicting the early behavior of the system but fails to accurately describe
the temporal evolution of the free thin liquid film after a given time. This
occurrence may be due to the fact that the stability criterion does not account
for the nonlinear terms of the governing equations, which can lead to false
predictions when nonlinear effects become prominent on the system dynamics.
Nonetheless, the stability criterion provides thoughtful insights on the early
dynamics of the thin liquid film.

The numerical solution of the system also revealed that the effects of
interfacial rheology strongly opposes the action of the disjoining pressure. The
effects of interfacial rheology were analyzed by varying the Boussinesq Number
Bo while maintaining constant all other parameters. The results obtained show
that for the range 0 ≤ Bo ≤ 5, the rupture delay behaves almost linearly with
the surface viscosity. Also, the mobility of the free surface is highly affected
by surface viscosity, meaning that the increase of Bo reduces the magnitude
of the surface velocity.

DBD
PUC-Rio - Certificação Digital Nº 1920936/CA



Chapter 6. Conclusion 72

By including interfacial viscosity, the growth of perturbation decelerated
and the rupture slowed down with a flatter interface. Moreover, the effects of
rheology have been accounted for the delay of the growth of perturbations in
free thin liquid films in the literature. To that extent, the effect of interfacial
rheology may also be accounted for the rupture delay, as the interfacial state
of the fluid is modeled by an approach similar to that of rheollogically complex
fluids.

6.1
Future works

We studied the effects of interfacial viscosity on the breakup of thin
liquid films for S/A = 1/π2, which indicates that the reduction of surface
mobility reduces the drainage rate of the liquid film. However, one may ask
whether the action of interfacial viscosity could delay the evolution of out-of-
equilibrium thin liquid sheets represented by S/A ≥ 2/π2. The linear stability
criterion predicts a sheet recovery under these configuration, which may also
be deccelerated due to the reduction of surface mobility.

The effects of interfacial rheology were evaluated in a 2D configuration
under a symmetric perturbation and provided insights on the interplay between
surface forces and the hydrodynamics of a Newtonian bulk. This approach may
also be useful to numerically analyze the hydrodynamics of viscoelastic bulks.
Surfactant transport across the interface may also be included in the system
dynamics, provided a constitutive model for the temporal evolution of the
surfactant concentration. The latter could lead to interesting results regarding
the action of Marangoni convection on the interplay between interface forces
and the disjoining pressure. Furthermore, the implementation of a 3D model
using the FEniCS framework is straightforward and could showcase visual
insights on the dynamics of thin liquid films.

The evolution of asymmetric perturbations on the free surfaces of the
thin liquid film may also reveal several interesting behaviors. The absence of
a symmetry plane in the formulation could yield generalized results such as
the occurrence of both squeezing and buckling of the liquid film during the
rupture dynamics.

The latest developments of the FEniCS framework provided an update
approach to treat complex boundary conditions, namely the Meshview func-
tionality. The use of Meshview could improve the accuracy of the numerical
solutions while reducing the occurrence of spurious oscillations in the results, as
the tool provides a straightforward approach to deal with complex conditions
over boundaries.
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We emphasize the functionality of the FEniCS platform mainly due to
its open-source character and multi-purpose nature. The work developed in
this manuscript relies on the dynamics of stationary thin liquid films, which
could be extended for studies that account for more realistic descriptions of the
physical phenomena, such as moving liquid curtains and other well behaved
free surface phenomena. ×
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