Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: COMPLETE BOUNDED MINIMAL SURFACES IN R3
Autor: YUNELSY NAPOLES ALVAREZ
Colaborador(es): RICARDO SA EARP - Orientador
Catalogação: 09/NOV/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55776&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55776&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55776
Resumo:
During some years we have seen great progress in solving old problems in minimal surfaces theory. Among these problems are the Calabi-Yau s conjectures, dating from the 60s of last century. The first one stated that there were no complete minimal surfaces contained in a ball of R3, and the second one that all complete minimal surface should have an unbounded projection in each axes. In this work we pretend to review two examples that proof the falsity of the second conjecture. The first one was given by L. P. Jorge e F. Xavier (1980) and the second one by H. Rosenberg e E. Toubiana (1987). The first conjecture is also false. The first counterexample was given by N. Nadirashvili (1996) and it is also a counterexample to the conjecture of Hadamard, which stated that there were no complete bounded surfaces with negative Gaussian curvature. Development of Nadirashvilli s article is the main objective of this dissertation. The technique used in these three works is the use of the Enneper-Weierstrass Representation, combined with appropriate applications of Runge s theorem.
Descrição: Arquivo:   
COMPLETE PDF