Título: | COMPLETE BOUNDED MINIMAL SURFACES IN R3 | ||||||||||||
Autor: |
YUNELSY NAPOLES ALVAREZ |
||||||||||||
Colaborador(es): |
RICARDO SA EARP - Orientador |
||||||||||||
Catalogação: | 09/NOV/2021 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55776&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55776&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.55776 | ||||||||||||
Resumo: | |||||||||||||
During some years we have seen great progress in solving old problems
in minimal surfaces theory. Among these problems are the Calabi-Yau s
conjectures, dating from the 60s of last century. The first one stated that there
were no complete minimal surfaces contained in a ball of R3, and the second one
that all complete minimal surface should have an unbounded projection in each
axes. In this work we pretend to review two examples that proof the falsity of
the second conjecture. The first one was given by L. P. Jorge e F. Xavier (1980)
and the second one by H. Rosenberg e E. Toubiana (1987). The first conjecture
is also false. The first counterexample was given by N. Nadirashvili (1996) and
it is also a counterexample to the conjecture of Hadamard, which stated that
there were no complete bounded surfaces with negative Gaussian curvature.
Development of Nadirashvilli s article is the main objective of this dissertation.
The technique used in these three works is the use of the Enneper-Weierstrass
Representation, combined with appropriate applications of Runge s theorem.
|
|||||||||||||
|