Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MINIMAL DYNAMICS ON CANTOR SETS AND BRATTELI DIAGRAMS
Autor: CAMILA SOBRINHO CRISPIM
Colaborador(es): LORENZO JUSTINIANO DIAZ CASADO - Orientador
Catalogação: 16/JUN/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53289&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53289&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.53289
Resumo:
A Bratteli diagram B is a combinatorial object represented by a graph divided into infinite levels, each level with a finite number of vertices and edges between vertices of consecutive levels. Moreover, every vertex is connected to vertices of the preceding and successor levels. We study, from a topological point of view, the space of infinite paths formed by the edges of a Bratteli diagram, denoted by XB. We establish an equivalence relation on this space, called the AF relation. When it is possible to define a partial order in XB the Bratteli diagram is called ordered; in this case, we define a homeomorphism on XB called the Bratteli-Vershik function. We consider minimal dynamic systems defined on Cantor sets and associate to these systems ordered Bratteli diagrams. A paradigmatic example of a Cantor set is the space of the infinite sequences formed by 00s and 10s, equipped with an appropriate metric. In this space, are defined the odometer functions. We define the orbital equivalence relation, in which two elements of the Cantor set are equivalent if they are in the same orbit of the odometer, and the tail equivalence relation, where two sequences are equivalents if they differ in only finitely many entries. We study how these equivalence relations are related. We prove that the dyadic odometer is a minimal homeomorphism and, therefore, it can be associated to a ordered Bratteli diagram. An equivalence relation is called étale if it admits a topology generated by a local action. Two examples are the AF equivalence relation and the orbital equivalence relation above. Given an étale equivalence relation R on a space X, we define an algebraic invariant D(X,R). We construct the dimension group of a Bratteli diagram. Then, we prove that given a Bratteli diagram B, its dimension group is isomorphic to D(XB,RB), where RB is the AF equivalence relation of B. Finally, we study under which conditions an ordered abelian group is the dimension group for some Bratteli diagram. This master thesis is based on the book by Ian F. Putnam Cantor minimal systems, published in University Lecture Series, 70. American Mathematical Society, Providence, RI, 2018. [6].
Descrição: Arquivo:   
COMPLETE PDF