Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: RATE OF CONVERGENCE OF THE CENTRAL LIMIT THEOREM FOR THE MARTINGALE EXPRESSION OF DEVIATIONS OF TRIANGLE-FREE SUBGRAPH COUNTS IN G(N,M) RANDOM GRAPHS
Autor: VICTOR D ANGELO COLACINO
Colaborador(es): SIMON RICHARD GRIFFITHS - Orientador
Catalogação: 27/MAI/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52970&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52970&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.52970
Resumo:
In this dissertation we shall introduce, elaborate and combine ideas from martingale Theory, random graph Theory and the Central Limit Theorem. In particular, we will see how martingales can be used to represent deviations of subgraph counts. Using this representation and the Central Limit Theorem for martingales, we will be able to demonstrate a Central Limit Theorem for the triangle-free subgraph count in the Erdos-Rényi G(n,m) random graph. Furthermore, our proof also gives us information about the rate of convergence, showing that the distribution of deviations converges rapidly to the normal distribution.
Descrição: Arquivo:   
COMPLETE PDF