Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: HX: A PROPOSAL OF A NEW STREAM CIPHER BASED ON COLLISION RESISTANT HASH FUNCTIONS
Autor: MARCIO RICARDO ROSEMBERG
Colaborador(es): MARCUS VINICIUS SOLEDADE POGGI DE ARAGAO - Orientador
Catalogação: 25/MAR/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51982&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51982&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.51982
Resumo:
In the near future, we will live in smart cities. Our house, our car and most of our appliances will be interconnected. If the infrastructure of the smart cities fails to provide privacy and security, citizens will be reluctant to participate and the main advantages of a smart city will dissolve. Several encryption algorithms have been broken recently or significantly weakened and key lengths are increasing as computing power availability grows. In addition to the ever growing computing power a recent study discovered that 93 percent from 20,000 Android applications had violated one or more cryptographic rules. Those violations either weaken the encryption or render them useless. Another problem is authentication. A single compromised private key from any intermediate certificate authority can compromise every smart city which will use digital certificates for authentication. In this work, we investigate why such violations occur and we propose: HX, a modular encryption algorithm based on Collision Resistant Hash Functions that automatically mitigates cryptographic rules violations and HXAuth, a symmetric key authentication protocol to work in tandem with Secure RDF Authentication Protocol (SRAP) or independently with a pre-shared secret. Our experiments points in the direction that most developers do not have the necessary background in cryptography to correctly use encryption algorithms, even those who believed they had. Our experiments also prove HX is safe, modular and is stronger, more effective and more efficient than AES, Salsa20 and HC-256.
Descrição: Arquivo:   
COMPLETE PDF