

Marcio Ricardo Rosemberg

HX: A Proposal of a New Stream Cipher Based on Collision
Resistant Hash Functions.

Tese de Doutorado

Thesis presented to the Programa de Pós–

graduação em Informática of PUC-Rio in partial

fulfillment of the requirements for the degree of

Doutor em Ciências - Informática.

Advisor: Prof. Marcus Vinícius Soledade Poggi de Aragão

Rio de Janeiro

April 2019

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Marcio Ricardo Rosemberg

HX: A Proposal of a New Stream Cipher Based on Collision
Resistant Hash Functions.

Thesis presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the
requirements for the degree of Doutor em Ciências -
Informática. Approved by the undersigned Examination
Committee.

Prof. Marcus Vinícius Soledade Poggi de Aragão
Advisor

Departamento de Informática – PUC-Rio

Prof. Júlio Cesar Sampaio do Prado Leite
Departamento de Informática – PUC-Rio

Anderson Oliveira da Silva
Departamento de Informática – PUC-Rio

Prof. Ricardo Dahab
UNICAMP

Prof. Anderson Fernandes Pereira dos Santos
IME

Rio de Janeiro, April 26th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

All rights reserverd

Marcio Ricardo Rosemberg

M.Sc. Informatics (PUC-Rio – 2014). BSc. Electrical Engineering (Universidade

Santa Úrsula – 1990). Managing partner and founder of SYSNET Sistemas e

Redes – 1994-2019, a company that specializes in networking, network security,

and development of customized software. The author has been asked several

times to provide consulting as an expert for judges on several lawsuits.

Rosemberg, Marcio Ricardo

 HX: A Proposal of a New Stream Cipher Based on Collision Resistant Hash
Functions. / Marcio Ricardo Rosemberg; advisor: Marcus Vinicius Soledade
Poggi de Aragão – 2019.
 173f : il. (color.) ; 30 cm

 Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro,
Departamento de Informática, 2019.
 Inclui bibliografia

 1. Informática – Teses. 2. Criptografia. 3. Autenticação. 4. Cifras de
Fluxo. 5. Negociação de Chaves Criptográficas. I. Aragão, Marcus Vinicius
Soledade Poggi de. II. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

This work is dedicated to my grandmother, Fany Bass Rosemberg Z’L.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Acknowledgments

To CNPq and PUC-Rio, for the scholarship, which made possible the realization

of this work.

To my advisor, Professor Marcus Poggi for his support, patience and teachings.

To Professor Daniel Schwabe for his teachings and encouragement.

To the other professors of the Departamento de Informática of PUC-Rio.

To my wife Adriana for her love and incentive.

To my daughter Nicole.

To my family.

To all my friends in PUC-Rio

To all other people who helped me directly or indirectly

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Abstract

Rosemberg, Marcio Ricadro; de Aragão , Marcus Vinicius Soledade Poggi

(advisor); HX: A Proposal of a New Stream Cipher Based on Collision

Resistant Hash Functions. Rio de Janeiro, 2019. 173p. Tese de Doutorado

– Departamento de Informática, Pontifícia Universidade Católica do Rio de

Janeiro.

In the near future, we will live in smart cities. Our house, our car and most

of our appliances will be interconnected. If the infrastructure of the smart cities

fails to provide privacy and security, citizens will be reluctant to participate and

the main advantages of a smart city will dissolve. Several encryption algorithms

have been broken recently or significantly weakened and key lengths are

increasing as computing power availability grows. In addition to the ever growing

computing power a recent study discovered that 93% from 20,000 Android

applications had violated one or more cryptographic rules. Those violations either

weaken the encryption or render them useless. Another problem is authentication.

A single compromised private key from any intermediate certificate authority can

compromise every smart city which will use digital certificates for authentication.

In this work, we investigate why such violations occur and we propose: HX, a

modular encryption algorithm based on Collision Resistant Hash Functions that

automatically mitigates cryptographic rules violations and HXAuth, a symmetric

key authentication protocol to work in tandem with Secure RDF Authentication

Protocol (SRAP) or independently with a pre-shared secret. Our experiments

points in the direction that most developers do not have the necessary background

in cryptography to correctly use encryption algorithms, even those who believed

they had. Our experiments also prove HX is safe, modular and is stronger, more

effective and more efficient than AES, Salsa20 and HC-256.

Keywords

Stream Ciphers; Cryptography; Authentication; Hash; Key Management.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Resumo

Rosemberg, Marcio Ricardo; de Aragão, Marcus Vinicius Soledade. HX:

Uma Proposta de Uma Nova Cifra de Fluxo Baseada em Funções de

Hash Resistentes à Colisão. Rio de Janeiro, 2019. 173p. Tese de

Doutorado – Departamento de Informática, Pontifícia Universidade Católica

do Rio de Janeiro.

No futuro próximo, viveremos em cidades inteligentes. Nossas casas, nossos

carros e a maioria dos nossos equipamentos estarão interconectados. Se a

infraestrutura das cidades inteligentes não fornecerem privacidade e segurança, os

cidadãos ficarão relutantes em participar e as principais vantagens de uma cidade

inteligente irão se dissolver. Vários algoritmos de criptografia recentemente foram

quebrados ou enfraquecidos e os comprimentos das chaves estão aumentando,

conforme cresce o poder computacional. Um estudo recente descobriu que 93%

de 20.000 aplicações Android tinham violado uma ou mais regras de criptografia.

Essas violações enfraquecem a criptografia ou as inutiliza. Outro problema é a

autenticação. Uma chave privada comprometida de única autoridade de

certificação intermediária pode comprometer toda cidade inteligente que utilizar

certificados digitais para autenticação. Neste trabalho, investigamos por que tais

violações ocorrem. Propomos o HX: um algoritmo de criptografia modular

baseado em funções de hash resistentes à colisão que reduz automaticamente as

violações de regras de criptografia e o HXAuth: um protocolo de autenticação de

chave simétrica para trabalhar em conjunto com o SRAP ou independentemente,

com um segredo previamente partilhado. Nossos experimentos apontam na

direção de que a maioria dos desenvolvedores não tem o conhecimento básico

necessário em criptografia para utilizar corretamente um algoritmo de

criptografia. Nossos experimentos também provam que o HX é seguro, modular e

é mais forte, mais eficaz e mais eficiente do que o AES, o Salsa20 e o HC-256.

Palavras-chave

Cifras de Fluxo; Criptografia; Autenticação; Resumos Criptográficos;

Gerência de Chaves.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Contents

1 Introduction 15
1.1 The Problem 15
1.2 Motivation 17
1.3 Goals and Contributions 19

1.4 Research Questions 20
1.5 Related Work 22
1.6 Outline of the Thesis 23

2 Background 25
2.1 The Kerckhoff’s Principles 25
2.2 Salts, Nonces and Initialization Vectors 26
2.3 The Vernam Cipher 26

2.4 Symmetric Key Encryption Algorithms 27
2.4.1 Stream Cipher Encryption Algorithms 28
2.4.2 Block Cipher Encryption Algorithms 29
2.4.3 Block Cipher Modes of Operation 31

2.4.4 Comparison of Symmetric Key Encryption Algorithms 37
2.5 Collision Resistant Hash Functions (CRHF) 46
2.5.1 Construction Structures of Collision Resistant Hash Functions 47

2.5.2 MD5 50

2.5.3 SHA-1 50
2.5.4 RIPEMD-160 51
2.5.5 SHA-256, SHA-384 and SHA-512 51

2.5.6 Whirlpool 52
2.5.7 SHA-3 53

2.5.8 Skein 53
2.5.9 Collision Resistant Hash Functions Summary 54
2.6 Message Authentication 55

2.6.1 Message Authentication Code (MAC) 56
2.6.2 Hash Based Message Authentication Code (HMAC) 56

2.6.3 ENVELOPE 57
2.6.4 CBC-MAC 57

2.7 Attacks on CRHF and Encryption Algorithms 58
2.7.1 The Birthday Attack 58
2.7.2 The Length Extension Attack 59
2.7.3 Known Plaintext and Chosen Plaintexts Attacks 59
2.7.4 Related-Key Attack 60

2.7.5 Differential Cryptanalysis 60
2.7.6 Linear cryptanalysis 60
2.7.7 Side Channel Attack 61
2.7.8 The Encryption Oracle 61
2.8 Post-Quantum Cryptography 62

2.9 Key Management 63
2.9.1 Session Keys 63

2.9.2 Long Term Keys 64
2.9.3 Master Keys 64

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

2.9.4 Passwords and Keys 64

2.10 Authentication Protocols 65
2.10.1 Strong Mutual Authentication with a Shared Symmetric Key 65

2.10.2 Strong Mutual Authentication with Public Keys 66
2.10.3 TLS – Transport Layer Security 67
2.10.4 SRAP – Secure RDF Authentication protocol 69

3 Hypothesis and Experiment Design 72
3.1 Hypothesis for the research questions 72

3.2 Experiment Methodology 73
3.3 Survey Design 75
3.3.1 Target Audience, Population and Sample 75

3.3.2 Subjects Characterization 75
3.3.3 Substantive Questions 76
3.3.4 Confounding Factors and Threats to Validity 80
3.4 Experiment to Reject H04 80
3.5 Controlled Experiment Empirical Study 80

3.5.1 GQM 81
3.5.2 Confounding Factors and Threats to Validity 81
3.5.3 Target Audience Identification 82

3.5.4 Participants Characterization 82
3.5.5 Participants Training and Leveling 82
3.5.6 Experiment Tasks 83

3.5.7 Feedback Form 84

4 The HX proposal 87
4.1 Formal Description 87
4.2 Analysis of the Encryption Scheme 88

4.3 Options for HX 92
4.4 Image Encryption Test 94

4.5 HX Authentication Protocol 97
4.6 Analysis of HX Authentication Protocol 99
4.6.1 Perfect Forward Secrecy 99
4.6.2 Resilience to Protocol Attacks 100

4.6.3 Advantages of HXAuth 102
4.7 HX Class Design 103

5 Experimental Results 105
5.1 Survey Results 105

5.1.1 Sample Size 105
5.1.2 Sample Qualification 105
5.1.3 Substantive Questions Answers 106

5.2 Keystream Generation Experiment 111
5.3 Controlled Experiment Empirical Study 113

5.3.1 Sample Qualification 113
5.3.2 Experiment Results 115
5.4 Performance Tests 128
5.4.1 Encryption and Decryption Tests 129

5.4.2 VPN Performance Tests 130

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

5.5 Comparison between HX and the State of the Art Algorithms 134

5.6 Post-Quantum Cryptography Comparison 135

6 Conclusions and Future Works 136

Glossary of Terms 138

Bibliographic References 139

Annex 1 Survey Participants Consent Form 154

Annex 2 Controlled Experiment Subject Characterization Form 155

Annex 3 Controlled Experiment Tasks 157

Annex 4 Controlled Experiment Feedback Form 160

List of Figures

Figure 1 - Key Length Recommendations for the Near Future (Giry &
Quisquater, 2017) .. 16

Figure 2 - Model of symmetric key cryptosystem 27
Figure 3 - Synchronous Stream Cipher .. 28
Figure 4 - Self-Synchronizing Stream Cipher 29
Figure 5 - A sketch of a substitution–permutation network with 3

rounds (Preneel, et al., 1998) .. 30
Figure 6 - Classical Feistel Network (Shahzad, 2012) 31
Figure 7 - ECB Mode of Operation .. 32
Figure 8 - Comparison between ECB and Other Modes (Huang, et al.,

2013) ... 32
Figure 9 - CBC Mode of Operation .. 33
Figure 10 - CFB Mode of Operation .. 34
Figure 11 - OFB Mode of Operation .. 35
Figure 12 - CTR Mode of Operation .. 37
Figure 13 - Initial States of Salsa20 and ChaCha 45
Figure 14 - The Merkle-Damgård Construction 48
Figure 15 - Miyaguchi–Preneel Construction 49
Figure 16 - The Sponge Construction (Bertoni, et al., 2011) 50
Figure 17 - Skein UBI Producing Larger Output Sizes (Ferguson, et

al., 2010) ... 54
Figure 18 - Skein – MAC... 54
Figure 19 - DigiNotar Revoked Certificates from Windows 7 68

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Figure 20 - TLS Handshake Protocol (Mitchell, et al., 1998) 68
Figure 21 - HX CTR-Mode .. 93
Figure 22 - HX SIC-Mode .. 94
Figure 23- Encryption an image with HX HMAC/CTR 95
Figure 24 - Encrypting a 24 bit Gradient... 96
Figure 25 - Encryption of a White Rectangle 97
Figure 26 - HX Class Main Attributes and Methods 103
Figure 27 - HXBlock Class Methods ... 104
Figure 28 - MAC Algorithms vs AES Throughput 128
Figure 29 - HX vs AES Performance ... 129
Figure 32 – VPN connection in transport mode 131
Figure 33 – VPN Test Environment ... 131
Figure 34 - HX vs AES VPN Throughput Comparison 133

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

List of Tables

Table 1 - Comparison of the Most Common Block Cipher Modes of
Operation ... 37

Table 2 - Best Attack Complexities for AES ... 42
Table 3 - Symmetric Key Algorithms Comparison 46
Table 4 - CRHF Comparison for Message Integrity and Digital

Signature .. 55
Table 5 - GQM Template of the Empirical Study 81
Table 6 - Salt Cost .. 89
Table 7 - HX Encryption Modes ... 94
Table 8 – Participants Years of Experience as a Software Developer

 .. 106
Table 9 - Participants past experience with cryptographic algorithms

 .. 106
Table 10 - Familiarization Level of the Participants with

Cryptographic Algorithms .. 106
Table 11 – Answers from question 5 .. 107
Table 12 – Answers from question 6 .. 107
Table 13 - Answers from question 7 ... 108
Table 14 - Answers for Question 8 .. 108
Table 15 - Answers for Question 9 .. 109
Table 16 - Answers for Question 10 .. 109
Table 17 - Answers for Question 11 .. 110
Table 18 - Sample Distribution of the Years of Experience as a

Software Developer ... 114
Table 19 - Previous Experience with Cryptographic Algorithms 114
Table 20 - Professional responsible for vulnerabilities in the code in

the organizations of the participants ... 115
Table 21 - Professional who should be responsible for encryption

rules violations .. 115
Table 22 - Free Choice Algorithm Test Results 117
Table 23 - AES-CTR Task results .. 118
Table 24 - HX Task Results .. 118
Table 25 - Total Cryptographic Rules Violations Comparison 119
Table 26 - Free Choice Algorithm Time Spent on Task 119
Table 27 - AES-CTR Time Spent on Task ... 120
Table 28 - HX Time Spent on Task .. 120
Table 29 - Efficiency Test Comparison ... 120
Table 30 - HX vs AES Performance Comparison (Cycles/Byte) 130
Table 31 - Encryption Algorithms Security and Usability Comparison

 .. 134
Table 32 - Post-Quantum Cryptography Algorithm Comparison 135

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Acronyms

3DES Triple DES

AES Advanced Encryption Standard

AMD Advanced Micro Devices

AP Authentication Partner

API Application Programming Interface

APLR Authentication Partner of Last Resort

ARX Add-Rotate-Xor

CA Certification Authorities

CBC Cipher Block Chaining

CFB Cipher Feedback Mode

CHAP Challenge Handshake Authentication Protocol

CPU Central Processing Unit

CRHF Collision Resistant Hash Function

CRYPTREC Cryptography Research and Evaluation Committees

CSV Comma Separated Values

CTR Counter Mode

CWI Centrum Wiskunde & Informatica

DDR Double Data Rate

DES Data Encryption Standard

DG Default Gateway

DoS Denial of Service

ECB Electronic Code Block

ESP Encapsulated Security Payload

FEAL Fast data Encipherment Algorithm

ESP Encapsulated Security Payload

GB Gigabyte

GPS Global Positioning System

GPU Graphics Processing Unit

H0 Null Hypothesis

HA Alternative Hypothesis

HMAC Hash Based Message Authentication Code

HX Hash and XOR

IBM International Business Machines

ICM Integer Counter Mode

ID Identity

IDEA International Data Encryption Algorithm

IEC International Electrotechnical Commission

IP Internet Protocol

ISO International Organization for Standardization

IV Initialization Vector or Initial Value

KB Kilobyte

LAN Local Area Network

MAC Message Authentication Code

MB Megabyte

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Mbps Magabits per second

MMS Multimedia Messaging Service

NAT Network Address Translation

NESSIE New European Schemes for Signatures, Integrity and Encryption

NIC Network Interface Card

NIST National Institute of Standards and Technology

Nonce Number Only Once

NSA National Security Agency

NTP Network Time Protocol

OFB Output Feedback

OS Operating System

OWL Web Ontology Language

PC Personal Computer

PIN Personal Identification Numbers

PKI Public Key Infrastructure

PRF Pseudorandom Function

PRP Pseudorandom Permutation
RACE Research and Development in Advanced Communications Technologies in

Europe

RAM Random Access Memory

RC4 Ron's Code 4 or Rivest Cipher 4

RDF Resource Description Framework

RDFK Hidden RDF

RIPEMD RACE Integrity Primitives Evaluation Message Digest

RQ Research Question

SHA Secure Hash Algorithm

SIC Segmented Integer Counter

SMS Short Message Service

SRAP Secure RDF Authentication Protocol

SSD Solid State Disk

SSL Secure Sockets Layer

TB Terabyte

TCP Transmission Control Protocol

TLS Transport Layer Security

UBI Unique Block Iteration

URI Uniform Resource Identifier

USD United States Dollar

VCPU Virtual CPU

VM Virtual Machine

VoIP Voice Over IP

VPN Virtual Private Network

WAN Wide Area Network

WEP Wired Equivalent Privacy

Wi-Fi Wireless Fidelity or Wireless Networking

WPA-TKIP Wi-Fi Protected Access - Temporal Key Integrity Protocol

XOR Exclusive Or

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

 Introduction 1

In this chapter, we discuss the challenges of privacy and security for smart

cities in the near future. We present the motivation of our research, its main

contributions and how the thesis is organized.

1.1 The Problem

In the near future, we will live in smart cities. Our houses, our cars and most

of our appliances will be interconnected. Our mobile devices will collect huge

amounts of data and will send them to clouds for real time processing (McLaren,

D; Agyeman, J, 2015) (Musa, 2016). Meanwhile, smart cities must ensure

individual privacy and security. If the infrastructure fails to provide privacy and

security, citizens will be reluctant to participate and the main advantages of a

smart city will dissolve (Braun, et al., 2018).

Currently the e-commerce share of the total global retail market is about 12%,

accounting for USD 161 billion at the end of 2016. It is projected to jump to USD

319 billion by 2020 (about 17.5%) (Lui, 2018). All of those transactions must be

secure. Users must be correctly authenticated and the communications between

endpoints must be encrypted, in order ensure confidentiality. However, several

encryption algorithms have been recently weakened or broken. The use of a

compromised encryption algorithm impacts on the confidentiality. As a result,

new and stronger cryptographic algorithms, with larger key sizes, are needed to

replace obsolete or weakened cryptographic algorithms.

The near future will require symmetric encryption keys with a minimum

length of 256 bits. The NSA (National Security Agency) is already recommending

256 bit key lengths for any material classified up to TOP-SECRET (NSA -

National Security Agency, 2016).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

16

Figure 1 - Key Length Recommendations for the Near Future (Giry & Quisquater,
2017)

Another problem, from the developer’s point of view, is that cryptographic

algorithms are not trivial to use or parameterize. Cryptographic algorithms are

based on complex mathematical equations. However, parameterizing such

equations in a friendly interface is not an easy task.

According to the 6
th

 principle of Kerckhoff [2.1], a cipher system must be

easy to use. Unfortunately, less importance has been given to this principle. Most

encryption algorithms have a considerable list of arguments or attributes. If those

attributes are not set correctly, the encryption method may either fail when

invoked or may produce a weak ciphertext. In order to avoid such mistakes, a set

of common rules or best-practices were compiled to support developers in the

correct use of cryptographic algorithms. The NIST (National Institute of

Standards and Technology) has several publications available for download about

key management, security and privacy control for organizations and others

(Barker, 2016). Developers do not need to implement the encryption algorithms.

They are available in most programming languages. Nevertheless, developers

must correctly use the encryption API by not making mistakes that may

compromise the encryption effectiveness.

Several tools have been proposed to detect violations of the best-practice

rules in privacy and security. In a case study published by Egele et al. (Egele, et

al., 2013), the authors developed a tool to detect cryptographic rules violated by

developers on Android applications. In their work, they chose six common rules

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

17

in cryptography and verified how many Android applications violated at least one

of those rules and how many had two distinct violations or more. Their study

revealed that, from almost 20,000 applications, only 7% of the applications have

not violated any of the rules. Nevertheless, the vast majority (93%) had. Also,

30% of the applications violated two rules.

Violations related to weak encryption keys, weak encryption algorithms and

weak random generators were studied by Balebako et al. (Balebako, 2014).

Although the authors found problems in some cryptographic API

implementations, the vast majority of problems were related to misuse of the

cryptographic APIs. The authors concluded “there was a lack of understanding

around privacy best-practices” among the participants they interviewed. Those

conclusions were reinforced by Lazar et al. (Lazar, 2014). They analyzed

mistakes in systems that implemented and used cryptographic algorithms and

demonstrated that 83% of the bugs related to privacy and security are related to

misuse of the cryptographic libraries, while 17% are bugs in the cryptographic

libraries themselves.

1.2 Motivation

In our Master’s Dissertation, we proposed SRAP (Secure RDF Authentication

Protocol) (ROSEMBERG, 2014). SRAP is a mutual authentication and key

exchange protocol, designed for Semantic Web applications. SRAP decentralizes

the trusted third party, making use of certificate authorities only as a last resort,

when the client does not trust any of the authentication partners. SRAP also

changes the authentication paradigm by caching URIs and public keys from

previous authenticated servers or clients into a social graph, unlike TLS

(Transport Layer Security), which verifies certificates in every authentication. In

SRAP, when the public keys have already been authenticated, both endpoints can

establish direct communication, verifying only the proof of possession of each

corresponding private key.

During the presentation, the review board suggested, since SRAP changes the

authentication paradigm in the second and subsequent authentications, such

authentications could be achieved with a symmetric key protocol, resulting in a

much faster authentication process.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

18

Through the course of our doctorate studies, we found out several symmetric

key encryption algorithms have been broken or significantly weakened. RC4 in

WEP (Wired Equivalent Privacy) was broken in 2007 (Tews, et al., 2007) and in

TLS or WPA-TKIP in 2016. In 2016 (Vanhoef & Piessens, 2015), Triple DES and

Blowfish were also proven to be unsecure. Both Blowfish and Triple DES are

vulnerable to SWEET32 attacks (Bhargavan & Leurent, 2016). Even in AES

(Advanced Encryption Standard), which is considered the state of the art in

symmetric key encryption, bugs were found in its key scheduling algorithm,

resulting in the decrease of its complexity (Biryukov & Khovratovich, 2009)

(Bogdanov, et al., 2011).

In many APIs such as Java Cipher Class, Python Crypto Package or .NET

Framework Cryptography Class, from the current set of available encryption

algorithms, only AES is still safe to use and widely accepted (National Security

Agancy/Central Security Service/Information Assurence Directorate, 2016). There

are other safe encryption algorithms like Twofish, HC-256 or Salsa20/ChaCha,

but they are usually not native in most common APIs. Their use will require either

implementation by the developers or copying some source code of those

algorithms from forums or other resources, which may not be safe.

Computing power is constantly growing and attacks on keys are becoming

more sophisticated. As a result, the easier the attacks on keys, the larger key

lengths become necessary.

Taking into account all these factors and particularly the mistakes developers

make when they use encryption algorithms, we were motivated to research and

specify a symmetric encryption algorithm, named HX (Hash and XOR), based on

Collision Resistant Hash Functions (CRHF) with the following requirements:

• Requires only the plaintext and the encryption key for encryption or

ciphered text and the encryption for decryption as mandatory parameters.

• Developers optionally can specify a hash algorithm and a cipher mode

• Keys can be of any length

• No padding scheme is needed

• No real time synchronization required between the sender and the receiver

• Easy to implement on almost any platform and programming language

• Automatic handling of all random parameters

• User friendly interface

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

19

• Flexibility and Modularity

We define a user Friendly Interface as a simple set of methods and attributes,

reasonably well documented able to automatically mitigate several encryption

rules violations.

We define Flexibility and Modularity as the capability for the user or

software developer to choose a CRHF from a set, according to her security

requirements. If the CRHF becomes unsecure in the future, all she has to do is to

adopt another CRHF. Neither the encryption nor the decryption algorithm needs

changes in their coding.

Future versions of the HX class or package may incorporate new and stronger

CRHF. However, from the developer’s point of view, there will be no change in

the code they produce other than setting the new algorithms for encryption or

decryption.

1.3 Goals and Contributions

 The specification of a symmetric key authentication and session key

negotiation protocol for SRAP second time and subsequent

authentications. The use of a symmetric key authentication protocol

improves the authentication speed and security over SRAP’s Fast

Negotiation (ROSEMBERG, 2014) pp. 65.

 The design and implementation of a symmetric key encryption

algorithm capable of accepting encryption keys of 160, 256, 384 and

512 bits or more. A 384 or higher key length is a significant

improvement over current 256 bits length algorithms.

 An empirical study on best practice rules violations commonly made by

developers, when using symmetric key cryptography algorithms and a

usability comparison with the proposed algorithm. This study also

demonstrates the immaturity of developers in relation to basic

cryptography concepts necessary to protect privacy and security.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

20

1.4 Research Questions

RQ1: Are software developers familiarized with the basic concepts of

symmetric key cryptography?

Egele et al. (Egele, et al., 2013), Balebako et al. (Balebako, 2014) and Lazar et

al. (Lazar, 2014) studied cryptographic rules violations. They did not, however,

identified the root cause of the problem. Do software developers even know what

an encryption key is? Do they understand the parameters they need to pass to

encryption functions? If they do not, this issue can be mitigated by reducing the

parameters list and educating them on key management, which is exactly what

Kerckhoff proposed [2.1].

RQ2: Are developers capable of consciously choosing a safe symmetric key

encryption algorithm?

This is more difficult for the developers. Unless they keep track on

cryptanalysis news, it would be difficult for them to select a safe algorithm and to

be sure they made a safe choice. If they choose a block cipher algorithm, they

must also select a safe mode of operation [2.4.3]. Such skills have to be verified.

Nevertheless, if a cryptosystem is “modular”, meaning it has a uniform high level

set of attributes and methods, software developer languages updates can deprecate

low level algorithms (algorithms used for Pseudorandom Permutation – PRP or

Pseudorandom Function – PRF). Advising deprecated algorithms should be used

only in legacy applications. Those updates can also change the default low level

algorithm. The term “safe” in this thesis means the algorithm cipher is secure and

therefore, reliable. The algorithm is neither broken nor significantly weakened.

[2.1].

RQ3: Can developers use the AES (CTR Mode) encryption algorithm

correctly?

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

21

The AES-CTR is one of the fastest and safest encryption algorithms and

modes of operation [2.4.3], [2.4.4.7]. In addition, AES is likely to be the only safe

algorithm commonly available in most APIs. Nevertheless, it is extremely

sensitive to its parameters list. If not used correctly, confidentiality may not be

achieved. We intend to confirm if developers can use AES-CTR correctly.

RQ4: is it possible to use a CRHF in combination with a secret key to generate

one time pads that will not repeat itself for a long time?

If a CRHF in combination with a secret key can be used as a PRF. It could

also be used as a keystream generator. As a result, we could build a stream cipher

algorithm from a CRHF by applying a bitwise XOR operation between the

keystream and the plaintext for encryption and a bitwise operation between the

keystream and the ciphered text for decryption.

RQ5: How effective is HX when compared to other encryption algorithms?

If the null hypothesis is rejected for RQ4, HX and other encryption algorithms

have to be compared for effectiveness and efficiency. Effectiveness, in the

usability context, means less violation of the following cryptographic rules.

1. Do not use the ECB mode of operation if the message length is bigger than

algorithm’s block length.

2. Always use a random Initialization Vector

3. Do not use a weak encryption key

4. Do not use a broken or weakened encryption algorithm

Those rules were selected taking into account that AES [2.4.4.7] and Twofish

[2.4.4.5] are the two most commonly available encryption algorithms that are safe

to be used. Both require an Initialization Vector [2.2] and a mode of operation

[2.4.3] among other parameters. Nevertheless, the developer may choose an

unsafe encryption algorithm, such as DES [2.4.4.1], 3DES [2.4.4.2], Blowfish

[2.4.4.4] or RC4 [2.4.4.8].

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

22

The effectiveness test, assumes HX is safe to use. However, at this time, an

assertion such as this cannot be considered definitive, for the reason that an

encryption algorithm takes years to be certified (Preneel, 2007).

RQ6: How efficient is HX when compared to other encryption algorithms?

We can perform an efficiency test, where efficiency, in the usability context,

means the time spent to implement a code that encrypts and decrypts messages

with HX or other algorithms.

1.5 Related Work

Bruce Schneier proposed a simple way to use One-way Hash Functions to

encrypt data in a stream cipher algorithm (Schneier, 1996):

Ci = Mi  H(K ║ Ci-1) and Mi = Ci  H(K ║ Ci-1)

This is basically the use of a Hash algorithm in Cipher Feedback Mode (CFB)

[2.4.3] to generate one-time pads. Schneier said nothing about C0. C0 can be H(K)

or it could be significant strengthened by using an Initialization Vector H(K,IV).

In the previously mentioned formula  means the bitwise XOR operation and ║

means string concatenation.

Another encryption algorithm, using Hash algorithms to use one time pads

was published in 1999 by Peyravian, et al. (Peyravian, et al., 1999). In this

cryptosystem, the authors used the SHA-1[2.5.3] hash of the encryption key and a

sequential counter to generate a keystream. They called this cryptosystem: Hash-

based Encryption System.

The encryption/decryption algorithm is described as:

Ci = Mi  H(I ║ K) and Mi = Ci  H(I ║ K).

The ciphered text is C = C1 ║C2║…║Cn.

This hash based stream cipher was cited 18 times. The articles (Gordon &

Loeb, 2002), (Campbell, et al., 2003), (Lee, et al., 2006), (Wang, et al., 2011),

(Kumari, et al., 2012) (Kumari & Khan, 2014), (Gordon & Loeb, 2001), (Gordon

& Loeb, 2004), (Demirkan & Goul, 2013), (Patrick, 2008), (Tesink, et al., 2005),

(Elzouka, 2006), (Yeh & Chou, 2001), (Elzouka, 2008), (Chen, et al., 2013), (Li,

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

23

et al., 2003) and (Cheng, 2005) cite this work as background reference. Huang,

Feng, & Zhang in 2001 (Huang, et al., 2001), in a four page short paper, propose

an encryption scheme based on one-way hash and the services of a pseudorandom

number generator to enhance the algorithm.

Specifically for images encryption, Cheddad, et al. in 2010 (Cheddad, et al.,

2010) proposed an encryption algorithm that uses hashes and the Fourier

Transform.

With both schemes, there are a few problems:

1) Not all hashes can be used in such a way. Most are vulnerable to the

Length Extension Attack [2.7.2] and can be exploited with an efficient

algorithm.

2) The same plaintext encrypted with the same key will produce the same

ciphered text. In Schneier’s proposal, this is true if C0 = H(K).

3) Even if a hash algorithm is resistant to the Length Extension Attack, the

scheme proposed by Peyravian et al. produces the same keystream when

the same key and initial counter is used. Such flaw, leads to a catastrophic

security failure. All the attacker needs to do is to capture two ciphertexts

encrypted with the same key and initial counter. She can then perform a

bitwise XOR between the two ciphertexts to retrieve the keystream. With

possession of the keystream, the attacker can decipher all messages

encrypted with the same key and initial counter, without the need of the

encryption key.

In order to use hash functions to produce keystreams, all these issues have to be

dealt with.

1.6 Outline of the Thesis

The thesis is organized in six sections.

In section 2, we provide the necessary background to support our work and

conclusions.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

24

In section 3, we describe the research questions, the hypothesis formulated to

refute or confirm the research questions, the research methodology and the

experiments designs.

In section 4, we state our proposal of the HX encryption algorithm, the

HXAuth authentication and key agreement protocol and the security analysis of

both the algorithm and the protocol. We also describe the minimum set of

attributes and methods necessary for the implementation of HX and HXBlock, a

variant of HX designed to encrypt and decrypt streams in real-time applications.

In section 5, we report our experiment results and compare HX with the state

of the art of encryption algorithms.

In section 6, we summarize our conclusions and give directions to future

works.

In this work, the participants of the experiments as well as the personal

pronouns of undetermined genders are always referred as she, regardless of the

true gender.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

 Background 2

In this chapter, we provide the theoretical background necessary to understand

this work.

2.1 The Kerckhoff’s Principles

In 1883, August Kerckhoff published the principles upon which a

cryptographic system should rely (Kerchhoff, 1883).

Ideally Kerckhoff wanted the security of the system to depend only on the

choice of the keys. Other rules should be reduced to a minimum set for the

success of the system. Translated from French, those principles are:

1) “The system must be practically, if not mathematically, indecipherable”.

2) “It should not require secrecy, and it should not be a problem if it falls into

enemy hands”.

3) “It must be possible to communicate and remember the key without using

written notes, and correspondents must be able to change or modify it at will”.

4) “It must be applicable to telegraph communications”.

5) “It must be portable, and should not require several persons to handle or

operate”.

6) “Lastly, given the circumstances in which it is to be used, the system must

be easy to use and should not be stressful to use or require its users to know and

comply with a long list of rules”.

Summarizing Kerckhoff’s principles, we need a strong public encryption

algorithm in such a way that if the attacker gains access to one or more

ciphertexts, she must not be able to compute the encryption keys or decipher the

ciphertexts. If the attacker is able to obtain both the ciphertexts and the original

messages, she must not be able to compute the encryption key and then decipher

future messages encrypted with the same key. Finally, the parameters and

cryptographic rules the users of the algorithm must comply should be reduced. In

this work, we strongly emphasize this principle.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

26

2.2 Salts, Nonces and Initialization Vectors

Salts and Nonces are random data with different goals. Salts protect

passwords against dictionary attacks, when passwords are hashed. Combining a

password with a salt and then hash the concatenated string, ensures different

hashes outputs for the same passwords, as long as the salts are different. In other

words, the salt “customizes” the hash of a password of a specific user (Bellare &

Rogaway, 2005). Salts are generally used in large quantities. An attacker which

gains access to a password database, where the passwords are concatenated with

salts and then hashed, cannot simple hash the each password of the dictionary and

check if it matches any hash of the database. Instead she must hash each password

of the dictionary with every salt in the database and then verify if it matches any

stored hash. Hence the number of queries the attacker must perform to find the

passwords increases. In other words, the search space is increased.

Nonces (number used only once) are one-time random numbers to be used,

for example, as IV (initialization vectors) in encryption algorithms, ensuring that

the same plaintext encrypted with the same key produces a different ciphertext.

Such technique makes it more difficult for an attacker to find patterns and recover

the encryption key or the plaintext (Rogaway, 2002). The initialization vector

allows the encryption key to be used longer, avoiding the slow process of

rekeying (Huang, et al., 2013). IVs are not secret and should be transmitted

openly to the receiver.

Nonces are also used in authentication protocols to mitigate Replay Attacks

(Stallings, 2011). Usually there is only one nonce for the entire encryption process

of a message, while salts are abundant and preferably unique for each password

stored in a repository.

2.3 The Vernam Cipher

The Vernam Cipher or one-time pad is considered the only unbreakable

encryption scheme (Kahn, 1967) (Vernam, 1926). It consists of an XOR operation

between the plaintext and a random key of the same length of the plaintext. Once

encrypted, the ciphertext gives nothing the cryptanalyst can use to decipher the

encrypted message (Preneel, 2007).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

27

 By studying the Vernam Cipher, Shannon published a mathematical proof,

showing that the attacker is unable to obtain any information on the plaintext or

original message from the observation of the ciphertext, no matter how much

computing power she has. Shannon called this property: “Perfect Secrecy” and he

also proved the key of the Vernam Cipher cannot be shorter than the plaintext, if

the endpoints want perfect secrecy (Shannon, 1949).

On the other hand, the Vernam Cipher has two drawbacks:

1) It is not feasible to negotiate a key between two parties, in which the key

size is as big as the message size, since the secure channel, in which the key must

be negotiated must also provide perfect secrecy. If the two parties are able to

provide a secure channel capable of negotiating a key with the same length of the

message, they could also exchange messages without the need for encryption.

2) For every new message, a fresh random key must be negotiated.

2.4 Symmetric Key Encryption Algorithms

Algorithms that use the same key to encrypt and decrypt messages are called

symmetric algorithms. Alice and Bob must agree on a single encryption and

decryption key which would be used by both during the session (STALLINGS,

2011).

Figure 2 - Model of symmetric key cryptosystem

The problem symmetric encryption algorithms do not solve, is how the

endpoints negotiate a session key (a symmetric key used in one communications

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

28

session), since the encryption algorithm is not responsible for the secure channel

in which the session keys are generated or negotiated. Key Management is the

area of Cryptography which studies in detail the problem of exchanging keys.

Key Management is detailed in [2.9]

Symmetric encryption algorithms are divided in two categories: Stream

Cipher and Block Cipher algorithms.

2.4.1 Stream Cipher Encryption Algorithms

The goal of stream ciphers is to mimic the Vernam Cipher by continuously

generating and synchronizing new keys between the sender and the receiver (El-

Razouk, et al., 2014). They are more difficult to implement than block ciphers,

because the keystream cannot repeat itself during the session. There are two types

for operation modes: Synchronous Stream Cipher and Self-synchronizing stream

ciphers.

In Synchronous Stream Cipher, the keystream is generated independently of

the plaintext and of the ciphertext. The keystream is commonly produced by a

pseudorandom generator, parameterized by the secret key of the whole scheme. In

this mode, the sender and receiver must be synchronized for decryption to be

successful. One way to achieve synchronization is to send an Initialization Vector

(IV) in the open before each ciphertext (Fontaine, 2011) (Rueppel, 1986).

Figure 3 - Synchronous Stream Cipher

In a Self-synchronizing, or asynchronous, stream cipher, the keystream

depends on the secret key of the scheme and also on a fixed number of ciphered

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

29

text digits that have already been produced by the sender, or read by the receiver.

The idea of self-synchronization was patented in 1946 and has the advantage that

the receiver will automatically synchronize with the keystream generator after

receiving a certain number of ciphered text digits (Fontaine, 2011) (Daemen &

Kitsos, 2008).

Figure 4 - Self-Synchronizing Stream Cipher

2.4.2 Block Cipher Encryption Algorithms

Block ciphers operate on fixed length blocks of bits (Stallings, 2011). If the

last block of the plaintext is shorter than the block size, some sort of padding

scheme is required to complete the last block. Block ciphers use the same key on

every block to encrypt the plaintext block. They operate on the principle of

Pseudorandom Permutation (PRP). Pseudorandom permutation must be invertible

or decryption would not be possible. As a result, block ciphers use two different

algorithms: one for encryption and another for decryption (Bellare & Rogaway,

2005).

Block ciphers rely on several rounds of combined operations of substitutions

and permutations, called Substitution-Permutation Networks (Kam & Davida,

1979). They are used to obtain the Confusion-Diffusion Effect (Coskun &

Memon, 2006), proposed by Shannon (Shannon, 1949). An example of which is

the Feistel Newtork (Rayan, et al., 2016) (Ebrahim, et al., 2013).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

30

Figure 5 - A sketch of a substitution–permutation network with 3 rounds (Preneel,
et al., 1998)

The goal of Confusion is to make the relationship between the key and the

ciphered text as complex as possible and to make it infeasible for the cryptanalyst

to find the key even if she has a large number of plaintext blocks and ciphered

blocks produced with the same key. As a result, the entire ciphered text is

dependent on the entire key and in different ways on different bits of the key.

The first goal of Diffusion is to dissipate the statistical structure of the

plaintext over the entire ciphertext, producing a non-uniform distribution of the

individual symbols (and pairs of neighboring symbols) in the plaintext. The

second goal of Diffusion is to make the output bits of the ciphered text dependent

in a very complex way of the bits of the input plaintext. “A single changed bit in

the input plaintext will produce a change in roughly half of the bits of the

ciphertext, in random positions of the ciphered text output”. This is called the

Avalanche Effect (Shahzad, 2012) (Feistel, 05).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

31

Figure 6 - Classical Feistel Network (Shahzad, 2012)

2.4.3 Block Cipher Modes of Operation

A block cipher by itself is only suitable for the secure encryption of one

fixed-length block (Ferguson, et al., 2010). In order to securely encrypt messages

larger than one block, a mode of operation is required. The mode of operation

delineates the way the cipher's single-block operation must be applied on every

block of the plaintext. As a result, block ciphers have several modes of operation.

Not all APIs supports all of the modes of operation. The most commonly

supported are the ECB (Electronic Code Block), the CBC (Cipher Block

Chaining), the CFB (Cipher Feedback Mode), the OFB (Output Feedback) and the

CTR (Counter Mode), which may be implemented in two options: Segmented

Integer Counter (SIC) or Integer Counter Mode (ICM). With the exception of

ECB, all other modes require an IV to function properly. Some operations modes

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

32

allow direct access to any of the ciphered blocks (random access) and are

parallelizable for encryption or decryption, while others are not (NIST Computer

Security Division's (CSD) Security Technology Group (STG), 2012).

2.4.3.1 ECB Mode

The Electronic Code Block mode is the simplest mode of operation, but it is

not safe if the message is longer than one block (Huang, et al., 2013). The

message is divided in blocks of the size of the encryption algorithm and for each

block of the message the encryption algorithm is applied. ECB encryption is

mathematically expressed as Ci=E(K, Mi). ECB decryption is mathematically

expressed as Mi = D(K, Ci). E(K, Mi) is the encryption function to encrypt the

plaintext block Mi, using the key K. D(K, Ci) is the decryption function to decrypt

the ciphertext block Ci, using the key K.

Figure 7 - ECB Mode of Operation

Figure 8 - Comparison between ECB and Other Modes (Huang, et al., 2013)

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

33

2.4.3.2 CBC Mode

The Cipher Block Chaining mode is more complex and safer than ECB. The

cipher block depends on the result of the previous cipher block. This also prevents

the encrypted message to be tampered with. If, at some block, the encrypted

message is tampered with, the last block will be unrecoverable. As a result, if the

last block can be successfully decrypted, the entire message has its integrity

assured (Abidi, et al., 2016). CBC encryption is mathematically expressed as Ci =

E (K, Mi  Ci-1), where C0 = IV. CBC decryption is mathematically expressed as

Mi = D (K, Ci)  Ci-1, where C0 = IV.

Figure 9 - CBC Mode of Operation

2.4.3.3 CFB Mode

The Cipher Feedback mode is similar to the CBC, but it transforms the block

cipher algorithm into a self-synchronizing Stream Cipher. The decryption

algorithm of the block cipher is not used. Only the encryption algorithm is used.

Any changes in a ciphered text block will propagate to the subsequent blocks.

Like in CBC mode, if the last block is recoverable, the entire message decryption

is successful, thus ensuring integrity (Asmara, et al., 2017). CFB encryption is

mathematically expressed as Ci = E (K, Ci-1) Mi, C0 = IV, while CFB

decryption is mathematically expressed as Mi = E (K, Ci-1) Ci, where C0 = IV.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

34

Figure 10 - CFB Mode of Operation

2.4.3.4 OFB Mode

The Output Feedback mode is another mode that transforms a block cipher

algorithm into a stream cipher algorithm. The main advantage of the OFB mode is

that the endpoints can generate the keystreams blocks (KSi) in advance, since the

keystreams do not depend on the plaintext. Also, if a transmission error corrupts a

block or some blocks, the blocks received without errors will be decrypted and

recovered (Jueneman, 1983). The disadvantages are: it is not parallelizable, it

cannot be used for data integrity verification, contrary to CBC and CFB and the

IV must never be repeated with the same key, even for different plaintexts. If it is

repeated, all the cryptanalyst have to do is to XOR two ciphered streams to

retrieve the keystream. With possession of the keystream, she will be able to

decrypt any message encrypted with the same key and IV pair, without the need to

know the encryption key. OFB encryption is mathematically expressed as Ci =

KSi Mi, KSi = E(K, KSi-1), KS0 = IV. OFB decryption is mathematically

expressed as Mi = KSi Ci, KSi = E(K, KSi-1), KS0 = IV.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

35

Figure 11 - OFB Mode of Operation

2.4.3.5 CTR Mode

The Counter mode, like CFB and OFB, turns a block cipher into a stream

cipher. It generates the next keystream block by encrypting the next value of a

counter. Even if only one bit is changed, the Avalanche Effect [2.4.2] will produce

a different keystream block which is also unrelated to previous keystreams

(Schneier, 1996).

When half of the block length (n/2) bits are reserved to the nonce and the

other half is reserved to the counter, it is called Segmented Integer Counter (SIG).

The maximum size of a message that can be encrypted, given a nonce and a key,

is 2
n/2

bits. For example, if the block cipher algorithm produces a block of 128

bits, the 64 leftmost bits are reserved to the nonce while the 64 rightmost bits are

reserved to the counter. The first counter is 0 and the last if 2
64

-1.

When a random number [0..2
n-1

] is chosen as a nonce, it is called Integer

Counter Mode (ICM). The maximum message size that can be encrypted is

approximately 2
n
. However, in ICM, when using the same key with a different

nonce, one must be very careful not to allow the next counter to overlap with a

counter used before with the previous nonce. For example, if the block cipher

algorithm produces a block of 128 bits and the first nonce is 2
125

 -1 and the second

nonce is 2
125

 + 8, the counters will overlap after 10 blocks. Overlapping counters

produce the same keystream in the interval the counters overlap.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

36

A practical example: using the Java Cipher Class encrypt a 64 Byte long

string of blanks (20 Hex) twice. Set the encryption key “011234567890abcdef”

(such a weak key must never be used for real life applications) for both

encryptions. Let the first IV: “0000000000000000” and the second

“0000000000000001”. The ciphered texts are:

30303030303030303030303030303030

7E35F53BCBC186AA3959A8204E340E4E

690EFA3BD0C256E774AD14D0740424BE

682704CAAEB97E23C2A8D8BA70301997

4C7288A1312650520B066E9D27E2AB5C

and

30303030303030303030303030303031

690EFA3BD0C256E774AD14D0740424BE

682704CAAEB97E23C2A8D8BA70301997

4C7288A1312650520B066E9D27E2AB5C

517919C6AC9E42EF9113E50E0AD4120B

respectively, converted to HEX (Note in bold where the ciphered texts

overlaps).

CTR mode has been proved secure by (Bellare, et al., 1998) and (Luby &

Rackoff, 1988). They argue, since CTR changes a Pseudorandom Permutation

(PRP) into a Pseudorandom Function (PRF), if the PRP is proven to be secure, so

must be PRF. In fact, Bellare et al. (Bellare, et al., 1998), argue that security is

increased by making a block cipher algorithm non-invertible.

The advantages of CTR are: padding is not required; it is parallelizable for

both encryption and decryption; it allows random access to a block, either for

encryption or decryption, since the blocks are independent from previous ones,

meaning blocks can be encrypted or decrypted independently. Like OFB,

keystreams can be generated in advance. The main disadvantage of CTR is its

sensitivity to usage errors (Lipmaa, et al., 2000) like a nonrandom nonce or the

possibility of keystream overlapping. As a result, key management and usability

with CTR is even more critical.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

37

Figure 12 - CTR Mode of Operation

Each mode of operation has its advantages and disadvantages. Table 1

compares and summarizes the modes of operation. The usage sensitivity takes into

account the following factors: The need for padding and the possibility of the use

of an unsafe padding scheme, the need for an IV and the impact of the

randomness of the IV on the security of the mode of operation. ECB and CBC

require a padding scheme. ECB does not require an IV. A nonrandom IV

compromises security on CBC and CFB, if the same plaintext is encrypted twice

with the same IV and Key pair. However in OFB and CTR modes, if the IV is

repeated, it compromises security even for different plaintexts.

Mode of
Operation

Encryption
Parallelizable

Decryption
Parallelizable

Random
Access

Requires
Padding

Requires
IV

Usage
Sensitivity

ECB Yes Yes Yes Yes No Low

CBC No Yes Yes Yes Yes High

CFB No Yes Yes No Yes Medium

OFB No No No No Yes Very High

CTR Yes Yes Yes No Yes Very High

Table 1 - Comparison of the Most Common Block Cipher Modes of Operation

2.4.4 Comparison of Symmetric Key Encryption Algorithms

2.4.4.1 Data Encryption Standard (DES)

DES was designed by IBM in 1973-1974 based on their Lucifer cipher. It was

the first encryption standard to be published by the NIST in 1975. The DES uses

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

38

the Feistel Network, operates with an effective key length of 56 bits, producing an

output block of 64 bits (Ebrahim, et al., 2013). Although the key is 64 bits long, 8

bits are parity (bits 8, 16, 24, 32, 40, 48, 56 and 64). The encryption function has

16 iterations or rounds. From the key, the algorithm schedules a 48 bit subkey to

be used for each iteration (Dahab & López, 2007). The best attack against DES is

2
39

 – 2
43

 time with 2
43

 known plaintexts (data) (Pascal, 2001). However a brute

force attack costs 2
56

, which is feasible to execute on modern computers. DES

requires up to 6 parameters: the plaintext, the encryption key, the operation mode,

the padding scheme, the IV and the function to be used (encryption or decryption).

When using OFB or CTR modes, a padding scheme is not necessary.

2.4.4.2 Triple-DES

DES was superseded by triple DES (3DES) in November 1998, concentrating

on the noticeable imperfections in DES without changing the original structure of

DES algorithm. 3DES applies DES three times. The first step uses DES

encryption with a 56 bit key (K1), the second step uses DES decryption with a

second 56 bit key (K2) and the third step uses the DES encryption with a third key

(K3). As a result, 3DES uses a 168bit key, even though it is possible to define a

112 bit key by making K3 = K1 (Ebrahim, et al., 2013). If K1=K2=K3, 3DES

becomes DES.

 The best attack against 3DES is 2
113

 time, with 2
32

 data and 2
88

 memory (data

needed for computations). Even if it seems infeasible at a first look, 3DES is also

vulnerable to the SWEET32 attack, making it possible to decrypt OPEN-Vpn or

TLS traffic after collecting 2
36.6

 blocks, approximately 785GB. The authors of

SWEET32 were able to break the cipher between 18.6 and 30.5 hours (Bhargavan

& Leurent, 2016). As a result of the SWEET32 attack, VPN and TLS

implementations are removing 3DES from their cipher suite. 3DES requires up to

6 parameters: the plaintext, the encryption key, the operation mode, the padding

scheme, the IV and the function to be used (encryption or decryption). When

using OFB or CTR modes, a padding scheme is not necessary.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

39

2.4.4.3 IDEA

The International Data Encryption Algorithm (IDEA) was developed in 1990.

It uses a 128 bit key and a 64 bit block. As opposed to DES or 3DES, IDEA does

not use the Feistel Network. It uses a substitution-permutation transformation

instead. Each round uses 6 16-bit subkeys, while the half-round uses 4, a total of

52 for 8.5 rounds. The first 8 sub-keys are extracted directly from the key, with

the first subkey from the first round being the lower 16 bits. The subsequent

groups of 8 subkeys are created by rotating the main key left 25 bits between each

group of 8. As a result, the key is rotated less than once per round, on average, for

a total of 6 rotations (Lai & Massey, 1990).

The best attack against IDEA is 2
126.1

 time, still infeasible by today’s

computational power (Khovratovich, et al., 2012). However the key size and the

short block length justifies IDEA not to be a good choice for future applications.

Please note that the SWEET32 attack can be applied with any 64bit block length

encryption algorithm. IDEA requires up to 6 parameters: the plaintext, the

encryption key, the encryption mode, the padding scheme, the IV and the function

to be used (encryption or decryption). When using OFB or CTR modes, a padding

scheme is not necessary and only the encryption function is used.

2.4.4.4 Blowfish

Blowfish is also a symmetric key Feistel Structured algorithm consisting of 2

parts: key expansion part and data-encryption part. Blowfish is a block cipher that

uses a 64 bit block with 16 rounds, allowing a variable key length from 32-448

bits (Ebrahim, et al., 2013). The key expansion function is a hash algorithm,

which produces 18 arrays of 32-bit subkeys and 4 S-Box arrays of 32-bit with 256

entries each, totaling 4168 Bytes. The algorithm was designed to accept two

modes of operation: ECB or CBC. Blowfish was designed by Bruce Schneier in

1993 and offered free for public use (Schneier, 1993).

Although no attack was successful against the 16 rounds of the Blowfish

algorithm (Rijman, 1997), it is also vulnerable to the SWEET32 attack

(Bhargavan & Leurent, 2016). Blowfish requires up to 6 parameters: the plaintext,

the encryption key, the encryption mode, the padding scheme, the IV and the

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

40

function to be used (encryption or decryption). The key length is flexible. In ECB

mode, an IV is not necessary.

2.4.4.5 Twofish

Twofish is 16 round Feistel Network algorithm designed by Bruce Schneier et

al., in 1998. Towfish was one of the five finalists of the Advanced Encryption

Stantard contest (1997-2000). Twofish uses a 128 bit block cipher and accepts

keys of 128, 192 and 256-bit lengths (Schneier, et al., 2000).

So far, no attack was successful against the 16 rounds of the Twofish algorithm

or its key schedule algorithm (Ferguson, 1999). Twofish requires up to 7

parameters: the plaintext, the encryption key, the encryption key length, the

encryption mode, the padding scheme , the IV and the function to be used

(encryption or decryption). However, Unlike Blowfish, the key length is not

flexible. When using OFB or CTR modes, a padding scheme is not necessary and

only the encryption function is used.

2.4.4.6 Serpent

Serpent is a 32 round Substitution-Permutation Network algorithm with a 128

bit block length and 128, 192 or 256-bit key lengths. Designed by Ross Anderson

et al., in 1998, Serpent made second place of the Advanced Encryption Standard

contest (1997-2000), even though it is safer than Rijndael, the winner (Anderson,

1999).

Rijndael was chosen because it was significantly faster than Serpent (up to 14

rounds, depending on the key size, against the 32 rounds of Serpent) (Schneier, et

al., 2000).

So far, no attack was succesfull against the 32 rounds of the Serpent algorithm

or its key schedule algorithm (Biham, et al., 2001). Serpent requires up to 7

parameters: the plaintext, the encryption key, the encryption key length, the

encryption mode, the padding scheme, the IV and the function to be used

(encryption or decryption). When using OFB or CTR modes, a padding scheme is

not necessary and only the encryption function is used.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

41

2.4.4.7 Rijndael (AES)

Rijndael is a Substitution-Permutation Network algorithm with a 128 bit block

length and 128, 192 or 256-bit key lenghts. Depending on the key length it uses

10, 12 or 14 rounds respactively. Designed by Vincent Rijmen and Joan Daemen,

in 1998, Rijndael was the winner of the Advanced Encryption Stantard contest

(1997-2000) (Huang, et al., 2013). Rijndael derives subkeys from the key, using a

key scheduling algorithm. It requeires a 128-bit key for each round of the block

encryption. A High-level description of the Rijndael algorithm consists of (Dahab

& López, 2007):

1. Key expansion

2. Initial round: “AddRoundKey” – each byte of the state is combined with a

block of the round key using bitwise XOR.

3. Next rounds

a. “SubBytes” a non-linear substitution step where each byte is

replaced with another according to a lookup table.

b. “ShiftRows” a transposition step where the last three rows of the

state are shifted cyclically a certain number of steps.

c. “MixColumns” a mixing operation which operates on the columns

of the state, combining the four bytes in each column.

d. “AddRoundKey”

4. Final round

a. “SubBytes” a non-linear substitution step where each byte is

replaced with another according to a lookup table.

b. “ShiftRows” a transposition step where the last three rows of the

state are shifted cyclically a certain number of steps.

c. “AddRoundKey”

Rijndael is recommended by NIST, NSA, CRYPTREC and NESSIE. It is fast

and its has been implemented in the hardware of most modern processors (Intel

Corporation, s.d.) (IBM Crypto Development Team, 2015) (Grisenthwaite, s.d.).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

42

In 2009, bugs were found in Rijndael key scheduling algorithm, resulting in the

decrease of its complexity. In 2011, the attack was improved. The best attacks for

AES are:

AES-128 2
126.1

 time 2
88

 known plaintexts 2
8
 memory

AES-192 2
189.7

 time 2
80

 known plaintexts 2
8
 memory

AES-256 2
254.4

 time 2
40

 known plaintexts 2
8
 memory

Table 2 - Best Attack Complexities for AES

AES requires up to 7 parameters: the plaintext, the encryption key, the

encryption key length, the encryption mode, the padding scheme, the IV and the

function to be used (encryption or decryption). When using OFB or CTR modes, a

padding scheme is not necessary and only the encryption function is used.

2.4.4.8 RC4

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It

accepts a variable key size, from 8 to 2048 bits, with byte-oriented operations.The

algorithm is very simple, fast and easy to use. The initial state is calculated from

the encryption key, meaning the same message encrypted with the same key will

produce the same ciphered text. However it requires only two parameters, the

plaintext and the key for encryption or the ciphered text and the key for

decryption. RC4 works in trhee stages (Stallings, 2011):

1) A state array of 256 Bytes is initialized using the key using the folowwing

algorithm:

j = 0;

for i = 0 to 255:

S[i] = i;

for i = 0 to 255:

j = (j + S[i] + K[i]) mod 256;

Swap S[i] and S[j];

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

43

The key is no longer used, after the state array is initialized. The second step

is the initial permutation of the state array S.

j = 0;

for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[j]);

The final step is the keystream generation, one Byte at a time and a Bitwise

XOR operation with the plaintext. After the keystream is generated, the state is

modified.

i, j, k = 0;

while (k<messageLenght)

i = (i + 1) mod 256;

j = (j + S[i]) mod 256;

Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256;

KS = S[t];

c[k] = M[i]KS;
return c;

 The state is expected to repeat itseft every 2
1024

 times for the same key. Such

an enourmous keystream space made RC4 one of the most popular and secure

algorithms of the 1990s and the initial half of the 2000s. However, in 2007,

Vanhoef and Piessens discovered biases in the keystream generation, making it

possible to derive the encryption key after 9∙2
27

 ciphertexts captured with a 94%

success probability. TLS, Microsoft RDP, WEP and WPA-TKIP encryption

protocols, which used RC4, have all been compromised (Vanhoef & Piessens,

2015). The first two protocols removed RC4 from their cipher suites. However,

the last two wireless encryption protocols, which are RC4 based, became obsolete

with the best attack costing 2
20

 time and 2
16.4

 data with a 95% probability (Tews,

et al., 2007). RC4 requires only 2 parameters: the plaintext and the encryption

key, which is flexible.

2.4.4.9 HC-256

HC-256 is a stream cipher algorithm and is one of the four finalists of the

eSTREAM contest (software profile). HC-256 uses a 256 bit key and an IV

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

44

(nonce) of 256 bits with a word size of 32 bits. The initialization process consists

expanding the key and the IV into 2 arrays P and Q, each containing 1024

elements of 32 bit integers. Like RC4, after each keystream generated, the state of

P and Q are updated. After 4096 steps of key generation without outputting the

keystreams, the cipher is ready to produce keystreams to be XORed with the

plaintext. The 65547-bit state of HC-256 ensures de period of the keystream to be

huge. The authors estimate the period to be about 2
66546

 (Wu, 2004).

The best attack against HC-256 takes about 2
276.8

 linear equations involving

binary keystream variables (Sekar G, 2009). HC-256 requires 3 parameters: the

plaintext, the encryption key and the IV. The key is not flexible.

2.4.4.10 Salsa20 and ChaCha

Salsa is another of the four finalists of the eSTREAM contest (software

profile) stream cipher algorithm. It uses a 256 bit key, a 512 bit state and 20

rounds based on an ARX (add-rotate-xor) structure (Mahfouf, et al., 2002). It also

requires a 64 bit counter and a 64bit nonce. Salsa20 expands a 256-bit key and a

64-bit nonce (unique message number) into a 270 Byte stream. It outputs 64 Bytes

(512 bits) as the keystream and discards the last 6 Bytes of the generated Byte

stream. Like HC-256, Salsa20 uses arrays of 32bit words (Bernstein, 2008).

At this time, there is no known attack against the 20 rounds of the Salsa20

algorithm. In fact, in 2013, Mouha and Preneel published a proof that 15 rounds

of Salsa20 was 128-bit secure against differential cryptanalysis. They calculated

there is no differential characteristic with higher probability than 2
−130

. As a result,

differential cryptanalysis would be more costly than 128-bit key exhaustion

(Mouha N, 2013). With reduced rounds (8/20) the best attack to recover the secret

key is 2
255

 operations, using 2
11.37

keystream pairs (Tsunoo Y, 2007). Salsa20

requires 3 parameters: the plaintext, the encryption key and the nonce. The key is

not flexible.

ChaCha is a variant of the Salsa algorithm. The difference is in the initial state

(Bernstein, 2008).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

45

Figure 13 - Initial States of Salsa20 and ChaCha

2.4.4.11 Comparison Summary

In this section, we listed the most used and the most advanced symmetric

encryption algorithms. The table below summarizes the characteristics of the

algorithms, if it is safe to use at this time and in the near future. The term “safe”,

as it was defined in the introduction section, means the algorithm cipher is secure

and therefore, reliable. The algorithm is neither broken nor significantly

weakened. The last column refers to our classification based on the number and

complexity of the parameters and flexibility of key lengths in compliance with the

6
th

 principle of Kerckhoff [2.1]. Parameters are not necessarily arguments of a

function or method, but rules required to be known by the user. Each required

parameter is given a point. If the algorithm is a stream cipher or can be converted

to a stream cipher algorithm via CTR or OFB mode of operation and the

algorithm specification leave it up to the developer or user to set the IV, another

point is added to the algorithm as a penalty due the fact a constant key and IV will

produce the same keystream every time, severally weakening security. If the

algorithm accepts variable key lengths, a point is taken from the algorithm as a

reward. 10 minus the total points is the final value of the usability index. The

highest the Usability Index, the more an encryption algorithm adheres to the 6
th

principle of Kerckhoff. Usability Indexes in the following are worst cases.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

46

Algorithm Block Cipher or
Stream Cipher

Block
Size

Maximum
Key

Length

Safe or Unsafe
to Use

Usability
Index

DES Block 64 56 Unsafe 4

3DES Block 64 168 Unsafe 4

IDEA Block 64 128 Unsafe 4

Blowfish Block 64 448 Unsafe 5

Twofish Block 128 256 Safe 3

Serpent Block 128 256 Safe 3

AES Block 128 256 Safe 3

RC4 Stream NA 2048 Unsafe 8

HC-256 Stream NA 256 Safe 7

Salsa20 Stream 512 256 Safe 7

Table 3 - Symmetric Key Algorithms Comparison

RC4 is the algorithm that more adheres to the 6
th

 principle of Kerckhoff,

requiring only the plaintext and the key, which has a flexible length.

2.5 Collision Resistant Hash Functions (CRHF)

Collision Resistant Hash Functions (CRHF) are used for various applications

such as message authentication, digital signatures, pseudorandom bit generation,

integrity assurance and others (Akhimullah & Hirose, 2016). Hashes are

mathematical functions that compress an input of arbitrary length to a result with a

fixed length. Hash functions are also used to allocate, as uniformly as possible,

storage for the records of a file. CRHF are hashes which collisions are hard to

find.

The formal definition of a collision resistant hash function is credited to

Damgård (Damgard, 1988).

A collision resistant hash function is a function h satisfying the following

conditions (Preneel, 2003):

1. The description of h must be publicly known and should not require any

secret information for its operation (extension of Kerckhoffs’s principles) [2.1].

2. The argument X can be of arbitrary length and the result h(X) has a fixed length

of n bits. In mathematical language: h: {0, 1}
*
 → {0, 1}

n

3. Given h and X, the computation of h(X) must be “easy”.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

47

4. The hash function must be one-way in the sense that given a Y in the image

of h, it is “hard” to find a message X such that h(X) = Y and given X and h(X) it

is “hard” to find a message X’ ≠ X such that h(X’) = h(X).

5. The hash function must be collision resistant: this means that it is “hard” to

find any two distinct messages that hash to the same result.

In order to satisfy conditions 4 and 5, a CRHF must be resistant to preimage,

second preimage and collision attacks (Rogaway & Shrimpton, 2004). For a

preimage or a second preimage attack to be successful (4), the computational

complexity required is O(2
n
), while for collisions (5), the computational

complexity required is O(2
n/2

).

Preimage and second preimage resistance also implies:

6. Pseudo-Randomness: Output of h meets standard tests for

pseudorandomness.

7. Non Malleability: given h(X), it is infeasible to produce h(X’) where X and

X’ are “related” in any fashion. Eg.: X’ = X+1, X’ = f(X).

2.5.1 Construction Structures of Collision Resistant Hash Functions

In order to produce a fixed length output for a variable length input, the input

string is divided into a series of blocks and the compression function is called

iteratively for each of the blocks. The internal state is updated each iteration and

the final state is either the hash output or the parameters for the finalization

function which produces the hash output. The way the internal state is updated is

called the construction structure. Since blocks have a unique length, the final

block is always padded, even if it has the same length of the block. The padding

scheme is usually a 1 bit followed by as many 0 bits as it is needed to complete

the block length minus the bits reserved for the message size. Putting the message

size into the final block helps to avoid collisions of two different size strings,

which would produce the same hash output (STALLINGS, 2011). An adversary

must either find two messages of equal length that hash to the same value or two

messages of differing lengths which, together with their length values, hash to the

same value.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

48

The most used construction structure for hash algorithms is the Merkle-

Damgård. It is so popular, because Merkle and Damgård independently proved the

construction structure was secure if an appropriate padding scheme is used and the

compression function is collision-resistant (Damgård, 1989) (Merkle, 1989). The

construction uses a fixed IV (initial value) of n bits as the initial state and

partitions the input string into L fixed size blocks of b bits, where b ≥ n. The

compression function f combines the state of n bits with the b bits from the input

string and updates the state. L iterations are necessary to produce the final state.

The finalization function consists of compressing the padding with the last state,

which will produce the hash output.

Figure 14 - The Merkle-Damgård Construction

The Merkle-Damgård construction has several vulnerabilities (Coron, et al.,

2005), particularly the Length Extension Attack [2.7.2] and the Multicollisions

Attack (Joux, 2004).

There are other construction structures, some made of block cipher encryption

algorithms (Bartkewitz, 2009). Of those, one that is relevant to this work is the

Miyaguchi–Preneel construction, used as the mode of operation of the encryption

algorithm of the Whirlpool CRHF.

Each block of the message is encrypted by the encryption algorithm. The

output ciphertext is then bitwise XORed with the same message block and then

also bitwise XORed with the previous hash value to produce the next hash value.

The previous hash value is passed as a parameter to a function g to be converted

or padded to fit as the key for the encryption algorithm. The first value to be

passed to g is the constant IV (Shrimpton & Stam, 2008).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

49

In mathematical notation, the Miyaguchi–Preneel construction is described as:

Hi = E(g(Hi-1),mi)  Hi-1  mi, H0 = IV, HL = Hash

Figure 15 - Miyaguchi–Preneel Construction

Another relevant construction structure for our work is the Sponge

Construction (Bertoni, et al., 2007), used by the SHA-3 CHRF. The Sponge

Construction is very complex, slow in performance when compared to other

constructions (Dahal, et al., 2013) but is proven to be superior in terms of security.

The Sponge Construction is resistant to Length Extensions Attacks (Bertoni, et al.,

2009).

The Sponge Construction contains the following components:

1) A state memory, S, containing b bits,

2) A function f : S → S which transforms the state memory (often it is a

pseudorandom permutation of the 2
b

state values)

3) A padding function P

The Sponge Construction operates according to the following steps:

a) The state S is initialized to zero

b) The input string is padded. The input is transformed into blocks of r bits using

the padding function P.

c) For each r-bit block B of the padded input:

R is replaced with R  B

S is replaced by f(S)

Those three steps make up "absorbing" phase of the sponge. The sponge

function output is now ready to be produced ("squeezing” phase) as follows:

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

50

The first r bits of the state are returned as output blocks, interleaved with calls

to the function f. The number of iterations is determined by the requested

number of bits. Finally the output is truncated to the requested length (Bertoni,

et al., 2011).

Figure 16 - The Sponge Construction (Bertoni, et al., 2011)

2.5.2 MD5

Message Digest 5 (MD5) was designed by Ronald Rivest from RSA in 1991.

MD5 uses the Merkle-Damgård construction with 512 bit block length and an

output of 128 bits. The compression function has 4 rounds. The security of MD5

is compromised and it is no longer suitable for digital signatures, integrity

validation and password storage (Dougherty, 2008). However it is still useful to

authenticate messages. RFC-6151 specifies the recommended uses for MD5

(Turner & Chen, 2011).

The best attack against MD5 cost only 2
18

 time and takes only seconds in a

regular PC (Xie, et al., 2013). Preimage resistance is 2
123.4

 for a full preimage

(Sasaki & Aoki, 2009). Even if MD5 has not been broken, The Birthday Attack

would take only 2
64

 hashes to find a collision pair.

2.5.3 SHA-1

Secure Hash Algorithm 1 was designed by the NSA in 1993. It produces a 160

bit output with an input block of 512 bits. It uses the Merkle-Damgård

construction and its compression function takes 80 rounds (NIST - National

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

51

Institute of Standards and Technology, 2015). SHA-1 was the main algorithm

used for digital signatures until 2016 and was hardware implemented in many

CPUs (Intel Corporation, 2013) (Mitchell & Kim, 2017) (ARM, 2015).

In 2011, Marc Stevens published a paper, where collisions could be found

with a complexity between 2
60.3

 and 2
65.3

. However, the first public collision was

published by CWI (Centrum Wiskunde & Informatica) and Google Research in

February, 2017. According to the authors, the attack required “the equivalent

processing power as 6,500 years of single-CPU computations and 110 years of

single-GPU computations” (Stevens, et al., 2017). As a result, Microsoft, Google,

Apple and Mozilla have all announced that their respective browsers stopped

accepting digital certificates signed with SHA-1 by the end of 2017 (Cloutier &

Vignesh, 2015) (Apple Support, 2017) (Google, 2014) (Mozilla Security Blog,

2014).

2.5.4 RIPEMD-160

RACE Integrity Primitives Evaluation Message Digest (160 bits) was

developed in 1996 by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. It

uses the Merkle-Damgård construction and its compression function takes 80

rounds. The input block length is 512 bits and the output digest length is 160 bits

(Dobbertin, et al., 1996). RIPEMD-160 is certified by CRYPTREC (The Ministry

of Internal Affairs and Communication of Japan and The Ministry of Economy,

Trade and Industry of Japan, 2003).

No known attack has been published against the full 80 rounds of RIPEMD-

160. The best attack is able to find collisions on 31 out of 80 rounds (Ohtahara, et

al., 2010).

2.5.5 SHA-256, SHA-384 and SHA-512

Secure Hash Algorithm 2 is a family of CRHF designed by the NSA. It was

first published by NIST as a standard in 2001. The family also includes a 224 bit

algorithm. The compression function is virtually the same for the entire family

except for the addition operation, which is A + B mod 2
32

 for SHA-256 and A + B

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

52

mod 2
64

 for SHA-512 or SHA-384. The IVs, the number of rounds, the input

block length and, obviously, the output digest length differ. The SHA-2 family of

CRHF uses the Merkle-Damgård construction with 64 rounds for SHA-256 and

80 rounds for SHA-384 or SHA-512. The length of the input block is 512 bits for

SHA-256 and 1024 for SHA-384 or SHA-512. The maximum message size is 2
64

-1 bits for SHA-256 and 2
128

 -1 bits for SHA-384 or SHA-512. SHA-384 is

obtained by truncating the left-most 384 bits of a 512 bit HASH output (NIST -

National Institute of Standards and Technology, 2015).

Like, SHA-1, SHA-256 have been hardware implemented in most recent

CPUs (Intel Corporation, 2013) (Mitchell & Kim, 2017) (ARM, 2015).

At this time, there are no attacks capable of reducing preimage, 2
nd

 preimage

or collision resistance. The best attacks against SHA-256 and SHA-512 are 43 of

64 rounds taking 2
254.9

 time (2
6
 memory) and 46 of 80 rounds taking 2

511.5
 time

(2
6
 memory) (Aoki, et al., 2009) respectively for preimage attacks. For collision

attacks, the best attack is 43 of 64 rounds taking 2
254.9

 time (2
6
 memory) and 46 of

80 rounds taking 2
511.5

 time (2
6
 memory), respectively (Aoki, et al., 2009).

2.5.6 Whirlpool

Whirlpool is a 512 bit input block and digest size, designed by Paulo Barreto

and Vincent Rijmen. It uses a Merkle-Damgård construction and a 10 round

modified version of the AES cipher, using the Miyaguchi–Preneel construction as

the mode of operation. Although it is slower then SHA-512, Whirlpool accepts

messages lengths up to 2
256

 -1 bit. The IV is a 512 bit long string of Zeros.

Whirlpool uses a padding and the message length as the parameter for the

finalization function. Whirlpool is certified by NESSIE, ISO and IEC (Barreto &

Rijmen, 2000).

At this time, there are no attacks capable of weakening the full 10 rounds of

Whirlpool, either for reducing the preimage resistance or for reducing the

collision resistance. The best attack against Whirlpool to reduce collision

resistance is 4.5 rounds taking 2
120

 time (Mendel, et al., 2009).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

53

2.5.7 SHA-3

Keccak (Secure Hash Algorithm 3) is the latest member of de SHA Family of

standards, released by NIST in 2015. Keccak was the winner of the SHA-3 contest

and is based in the Sponge Construction [2.5.1]. SHA-3 possible output digests

lengths are: 224, 256, 384 and 512 bits. The respective input block lengths are:

1152, 1088, 832 and 576 bits (1600 – (2 x Digest Size)). The internal state of

Keccak is always 1600 bits. The number of rounds is 24, no matter the digest size

(Bertoni, et al., 2013).

SHA-3 is immune to the Message Length Attack, meaning it would be more

costly than 2
n
 to succeed in such an attempt (Bertoni, et al., 2011). However, it is

considerably slower than SHA-2 in software implementation (Dahal, et al., 2013).

At this time, no attacks have been successful against SHA-3. The best attack

against SHA-3-256 is limited to 5 rounds at the cost of 2
115

. Against SHA-3-384,

the attack is limited to 4 rounds, costing 2
147

. For SHA-3-512, the attack is limited

to 3 rounds, with the cost of approximately 2
34

 (Dahal, et al., 2013)

(Dinur, et al.,

2013).

2.5.8 Skein

Skein was one of the 6 finalists of the SHA-3 contest. It is the fastest of the

finalists, being faster and safer than SHA-2. Skein was designed to replace any

and all of the previous mentioned hashes, except Keccak. Skein can produce

digest sizes of 128 (MD5), 160 (SHA-1, RIPEMD-160), 224 (SHA-224), 256

(SHA-256), 384 (SHA-384), 512 (SHA-512) and 1024 bits. Skein uses UBI

(Unique Block Iteration), a construction variant of the Matyas-Meyer-Oseas

structure. UBI requires a configuration block which parameterizes the hash and

the encryption algorithm (tweak). The finalization function is also a call or several

calls to the UBI construction, allowing skein to generate the desired output size

(Ferguson, et al., 2010). The encryption algorithm is the Threefish tweakable

block cipher which can produce ciphertexts of 256, 512 or 1024 bits, using an

ARX structure (Mahfouf, et al., 2002).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

54

Figure 17 - Skein UBI Producing Larger Output Sizes (Ferguson, et al., 2010)

Even though Skien is immune to the Length Extension Attack [2.7.2], the

authors created a personalized form of authentication: Skein-MAC. It first

consumes the key, passed as a configuration parameter and then the message.

Figure 18 - Skein – MAC

The best attack against Skein 256 can find collisions up to 53 of 72 rounds.

For Skein 512, collisions can be found up to 57 of 72 rounds. No attack has been

published, at this time, for Skein 1024, which takes 80 rounds. The cost for 42

rounds of Skien-256 is 2
244

 and for 46 rounds of Skien-512 is 2
495

 (Khovratovich,

et al., 2010).

2.5.9 Collision Resistant Hash Functions Summary

In this section, we listed the most used and the most advanced CRHFs. The

table below summarizes the characteristics of the algorithms, number of rounds

broken (rounds where collisions can be produced) and if it is safe to use at this

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

55

time and in the near future for message integrity validation and digital signatures

(according to the NIST) [Figure 1].

Algorithm Block
Size

Digest
Size

Length
Extension

Attack

Broken
Rounds

Percent
Broken

Safe or
Unsafe

for Use Now

Safe or Unsafe
for Future Use

MD5 512 128 Applies 4/4 100 Unsafe Unsafe

SHA-1 512 160 Applies 80/80 100 Unsafe Unsafe

RIPEMD-160 512 160 Applies 48/80 60 Safe Unsafe

SHA-256 512 256 Applies 31/64 48 Safe Unsafe

SHA-384 1024 384 Applies 24/80 30 Safe Unsafe

SHA-512 1024 512 Applies 24/80 30 Safe Safe

SHA-3-256 1088 256 Does not
Apply

5/24 21 Safe Unsafe

SHA-3-512 576 512 Does not
Apply

3/24 12,5 Safe Safe

Whirlpool 512 512 Applies 4.5/10 45 Safe Safe

Skein-256 256/512 256 Does not
Apply

53/72 74 Safe Unsafe

Skien-512 512/1024 512 Does not
Apply

57/72 79 Safe Safe

Skein-1024 1024 1024 Does not
Apply

NA NA Safe Safe

Table 4 - CRHF Comparison for Message Integrity and Digital Signature

2.6 Message Authentication

A CRHF ensures integrity but not authenticity. There are several ways a key a

message and a CRHF can be combined as a function in order to guarantee

integrity and authenticity.

A message authentication scheme must satisfy the following conditions:

1. The description of the MAC must be publicly known and the only secret

information lies in the key K (extension of Kerckhoffs’ principles).

2. The message to be authenticated M can be of arbitrary length and the result

MAC(K, M) has a fixed length of n bits.

3. Given a MAC, M and K, the computation of MAC(K, M) must be “easy”.

4. Given a MAC and M, but not K, it must be “hard” to determine MAC(K,

M) with a probability of success “significantly higher” than 1/(2
n/2

). Even when a

large set of pairs {Mi, MAC(K, Mi)} is known, where the Mi have been selected

by the opponent, it must be “hard” to determine the key K or to compute MAC(K,

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

56

M’) for any M’ ≠ Mi. This last attack is called an adaptive chosen plaintext attack

(Preneel, 2003).

2.6.1 Message Authentication Code (MAC)

The first mechanism designed to ensure both integrity and authenticity is the

MAC. MAC is simply a secret key concatenated with the message to be

authenticated. The concatenated string in then hashed and the digest is sent in the

open with the message. The receiver, which also holds the secret key,

concatenates the message received with the key and applies the same hash

algorithm. If the calculated hash matches the received hash, the message is

authentic, meaning it was neither tampered with nor corrupted during transmission

(Tsudik, 1992). The key may be the message’s prefix or suffix.

As mentioned in [2.5.1], CRHFs which use the Merkle-Damgård construction

cannot be used with this authentication method.

2.6.2 Hash Based Message Authentication Code (HMAC)

HMAC is a form of MAC that resists the Length Extension Attack. HMAC is

formally defined in RFC 2104 (Krawczyk, et al., 1997): HMAC = H((K ⊕ opad)

∥ H((K ⊕ ipad) ∥ M)). The opad is the outer padding with the value 5C HEX

repeated |B| times, where |B| is the size of the output hash in Bytes. The ipad is the

inner padding with the value 36 HEX, also repeated |B| times. The disadvantage

of HMAC is that the compression function is used at least three times. If the key

size is longer than |B|, HMAC must first hash the key, producing K’. K’ then will

replace K in the HMAC formula. In this case, HMAC uses, at least, four

compression function calls.

HMAC can be used with any CRHF and it has been proved secure (Kim, et

al., 2006) (Bellare, 2006), even for MD5 (Turner & Chen, 2011). The best key

recovery attack against MD5-HMAC is 2
97

 time, 2
89

 table and 2
97

 memory, with

87% success probability (Wang, et al., 2009), infeasible to execute, satisfying

MAC prerequisites. For Whirlpool, the best attack to produce collisions is 2
256

time, 2
256

 memory and 2
256

 data (Guo, et al., 2013), meaning there is no

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

57

optimization other than the birthday attack. The best key recovery attack against 6

out of 10 rounds of the HMAC-Whirlpool is 2
496

 time, 2
448

 memory and 2
384

 data

(Guo, et al., 2013).

The compression function is used at least three times with HMAC. There will

be at least two iterations in the inner hash and one in the outer hash. Also, there is

the cost two bitwise XORs, besides the paddings.

2.6.3 ENVELOPE

ENVELOPE can be twice as fast as HMAC, depending on the message and

key size, and algorithm’s input block size. ENVELOPE is accepted as a secure

MAC even for MD5 (Metzge & Simpson, 1995) and SHA-1 (Metzge & Simpson,

1995). The idea of the “envelope” is to pad the key in the same manner the

message is padded for the hash algorithm, making it infeasible for the attacker to

execute the Length Extension Attack.

ENVELOPE is defined as H(K ∥ πK ∥ M ∥ K). Please note that a second

padding will be made automatically by any hash algorithm finalization function

that uses the Merkle-Damgård construction [2.5.1]. The compression function is

used at least twice but there is only one hash function call. Comparing

ENVELOPE with the basic MAC, ENVELOPE adds the cost of the padding of

the key, and the additional cost of one or two extra interactions, depending on the

key size and the selected CRHF.

The best attack against MD5-Envelope is 2
96

 time with 2
89

 table or 2
113

 time

with 2
66

table, both with a success probability of 87% (Chen & Jin, 2011).

2.6.4 CBC-MAC

CBC-MAC is a technique to construct a MAC from a block cipher. The

message is encrypted in CBC mode [2.4.3], where each ciphered block depends

on the previous block. Because of such interdependency, the last block cannot be

computed without the proper key or if the ciphertext has been tampered during

transmission. CBC-MAC uses zeros as the IV. The last block is the authentication

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

58

tag. The security of CBC-MAC depends solely on the strength of the block cipher

algorithm (Bellare, et al., 2000).

2.7 Attacks on CRHF and Encryption Algorithms

Cryptanalysis is the study dedicated to obtain a plaintext for a given

ciphertext. However cryptanalysis ultimate goal is to deduce the encryption key

used to encrypt a set or plaintexts (Stamp & Low, 2007). An encryption scheme or

algorithm is considered broken, when cryptanalysis is feasible. Feasible meaning

the effort to break the system costs less than the value of the encryption

information or the required time to decipher messages is less than the life span of

the information (Lenstra & Verheul, 2001). Concerning a CRHF, the main goal of

any attack is either to find collisions or to reduce the complexity to recover the

preimage or produce a second preimage, while in the case of MACs, recovering

the key (key recovery attack) or producing a second preimage without knowing

the key is the aim of the attacks.

The brute force attack is the most inefficient attack. The idea is to try every

possible key combination until a successful decryption is achieved. In CRHF, the

idea is to try every possible input to find the preimage or a second preimage. If a

brute force attack can randomly select the next key to be tested not repeating and

previous key, it is expected the brute force attack can succeed after testing half of

the key space or 2
n-1

 where n is the key length in bits.

There are numerous attacks on collision resistant hash functions and

encryption algorithms. We selected the most relevant to our work.

2.7.1 The Birthday Attack

The Birthday Attack weakens any hash function by exploiting the

mathematics behind the birthday problem in probability theory (Jin, et al., 2017)

(McKinney, 1966).

The Birthday Problem concerns the probability that, given a set of k randomly

people, two of them will have the same birthday. With just 23 people, the

probability is 50%, while with 30 people the probability rises to 70%. Applying

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

59

the birthday problem to hash functions, the attacker wants to find any pair of

messages m and m’ producing the same hash output, H(m’) = H(m). For a hash

function of 2
n

possible outputs, where n is the fixed length size in bits of the hash

output, the probability of finding a collision is

𝑝(𝑛) = √
𝜋

2
2𝑛

As a result, the equation lowers the time complexity for obtaining a collision of

two random inputs from O(2
n
) to O(2

n/2
).

2.7.2 The Length Extension Attack

The Length Extension Attack is the concatenation of a second message with

the first one, in such a way that the second message produces the same hash

output (2
nd

 preimage) in sub exponential or polynomial time. The Merkle-

Damgård construction is vulnerable to this attack. The attacker does not need to

know the secret part of the first message, for example a prefix or a suffix key,

used for authentication. The attacker requires only the length of the secret part

(Vû, 2012).

2.7.3 Known Plaintext and Chosen Plaintexts Attacks

In the known plaintext attack, the adversary, somehow, gained access to

several pairs of plaintexts and ciphered texts encrypted with a key. The chosen

plaintext attack is more powerful because the adversary has the ability to ask the

sender to encrypt plaintexts of his choosing and collect the ciphered text. However

the goal is the same for both attacks: to deduce the encryption key and decrypt any

messages encrypted with such key (Stamp & Low, 2007). Known plaintexts were

fundamental in finding the daily keys of the Enigma Cipher Machine, during

World War II. At the time, any known plaintext or suspected plaintext were

denoted “cribs”. Whenever the Germans broadcasted a continuation of a previous

message the plaintext would start with FORT (Fortsetzung) plus the time of the

first message twice, bracketed by the letter Y. This protocol became known as

FORTYWEEPYWEEPY (continuation of the message sent at 2330. Letters also

represented numbers). By knowing part of the plaintext, the ciphered text and the

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

60

index position of known plaintext in the original message, British cryptanalysts

could program the Enigma decipher machines (Bombe) to stop processing when

they found the keys that matched the Forty-Weepy-Weepy protocol (Mahon,

2003-2007). The British also performed the chosen plaintext attack, by mining

Atlantic grids which they have not the equivalent German reference. They knew

the message about the minefield would be transmitted both using the “dockyard

cipher” and the Enigma Machines inside the U-Boats (Morris, 1993).

2.7.4 Related-Key Attack

In this attack, the adversary knows (or chooses) a relation between several

keys and is given access to encryption functions with such related keys, even

though she has no knowledge of the keys themselves. The goal of the attacker is

to find the encryption keys, by finding a function to compute a possible key given

a sample of relations between several keys (Biryukov, 2011).

2.7.5 Differential Cryptanalysis

Differential Cryptanalysis is usually a sophisticated form of chosen plaintext

attack applicable to block ciphers, stream ciphers and also hash functions. It

studies how slight differences in information input can affect the corresponding

output of an encryption algorithm or hash function. If the attack is able to trace

differences through the substitution-permutation network or how the input is

transformed in each round of a compression function and such traces exhibit a

non-pseudo-random behavior it may exploit those non-random properties and

recover the secret key or to force collisions in a hash function. It was originally

designed to break the FEAL cipher (Stamp & Low, 2007).

2.7.6 Linear cryptanalysis

Linear Cryptanalysis is also a sophisticated chosen plaintext attack applicable

to block ciphers, stream ciphers and hash functions. The goal of linear

cryptanalysis is to exploit eventual biases in the substitution permutation network.

The idea is to approximate the operation of a portion of the cipher with an

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

61

expression that is linear where the linearity refers to a mod-2 bit-wise operation,

like the bitwise XOR, for instance (Heys, 2002).

The attack is divided in two phases: construction linear equations relating

plaintexts, ciphered texts and key bits equivalents and deriving key bits from

known plaintexts and ciphered texts in conjunction with those equations. When

those derivations have diminish the quantity of unknown key bits considerably, a

brute force attack becomes feasible and it is performed to recover the encryption

key. Like Differential Cryptanalysis it was also utilized to break the FEAL cipher

(Stamp & Low, 2007).

2.7.7 Side Channel Attack

Side channel attacks are related to hardware construction details that leak

information rather than a weakness of the cipher algorithm or hash function

design or implementation, meaning it is neither a design flaw obtained through

cryptanalysis nor it is an implementation bug. Side channel attacks can obtain

information on plaintexts or keys from electromagnetic leaks, power consumption,

CPU usage spikes, timing information and even sounds can be utilized to gain

knowledge on encryption keys or plaintexts. Since side channel attacks rely on the

relationship between information leaked through a side channel and the secret

data, mitigation of such weaknesses fall into two main categories: Either the

elimination or the reduction of the emission of such information or to eliminate

the relationship between the leaked information and the secret data. One has to

make the leaked information unrelated or rather uncorrelated (e.g., by introducing

random timing shifts and wait states or by use of dummy instructions) (Chen, et

al., 2010) (Zhou & Feng, 2005).

2.7.8 The Encryption Oracle

In order to prove an encryption scheme is secure or insecure, a mathematical

theorem assumes the cryptanalyst have access to an encryption oracle, a

theoretical machine which always returns a ciphertext μ from a query q produced

by an encryption function EK(m). In other words, the Attacker is capable of

performing a chosen plaintext attack and to observe the ciphertexts instantly.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

62

When the Attacker becomes capable of distinguishing patterns between the

ciphertexts and random garbage, she gains advantage (Adv) over the encryption

scheme (Bellare, et al., 1997).

2.7.8.1 Left-or-Right Indistinguishability

Left-or-right indistinguishability is composed of two games. The attacker is

capable of querying in the form of (x0, x1), where x0 and x1 are messages of equal

length. In the first game, each message is responded by encrypting x0, the left

message. In the second, the response comes from x1, the right message. The

formal definition of the left-right-oracle is EK(LR(∙,∙,b)), where b  {0,1}. If b = 0

then the oracle computes C = EK(x0). Otherwise it computes C = EK(x1). “An

encryption scheme is considered “good” if a “reasonably” adversary cannot

obtain “significant” advantage in distinguishing cases b = 0 and b = 1 given

access to the left-right-oracle” (Bellare, et al., 2000).

2.8 Post-Quantum Cryptography

The “Post-quantum cryptography” term refers to the ability of a cryptographic

algorithm to resist attacks from a quantum computer (Bernstein, 2009). At this

time, there is a commercial 20qubits quantum computer from IBM (Lardinois,

2019). N qubits in quantum computers are equivalent to 2
n
 bits from a classical

computer. Besides the large number of equivalent bits that can be processed by a

single quantum instruction, other properties from quantum physics (Feynman,

1982) allow certain NP problems from classical computing to be resolved in

polynomial time in quantum computers. In the cryptography domain there are two

quantum algorithms of the utmost importance: The Shor’s algorithm and the

Grover’s algorithm.

The Shor’s algorithm reduces the complexity of the integer factorization

problem, the discrete logarithm problem or the elliptic-curve discrete logarithm

problem from O(2
n
) to O(n

3
) (Shor, 1997). As a result, asymmetric cryptography

in use today would be useless. We will need algorithms resistant to the Shor’s

algorithm such as Lattice-based cryptography (de Magalhães, 2014).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

63

In relation to symmetric key cryptography, the Grover’s algorithm reduces the

effectiveness of an algorithm from O(2
n
) to O(2

n/2
) (Grover, 1996), meaning a

brute force attack, which we can expect to succeed in finding the encryption key

in 2
n-1

 time, will find the key in 2
n/2

 time. As a result, we will need encryption

algorithms with double the current key length to resist a quantum computer attack.

2.9 Key Management

According to Kerckhoff’s principles [2.1], encryption keys should be easy to

remember, the users must be able to change keys at any time, but the keys must be

strong enough, so that they will not be easily guessed or recovered by an

adversary. Such principle is not an easy task to achieve in real life. Keys have a

life cycle: They need to be generated, employed, stored during their life cycle and

destroyed after their useful life, all this in a very carefully manner.

The NIST have specified 19 different types of keys along with their validity

period (Barker, 2016). Dahab & Lopez-Hernandez (Dahab & López, 2007)

summarized key management and the 3 main types of keys. In relation to our

work, the Dahab and Lopez-Hernandez key definitions suites us better. However,

we follow the NIST validity period for keys presented in this section.

2.9.1 Session Keys

Session keys are ephemeral and symmetric used during a single

communication session between two endpoints. When the session is terminated,

the keys are discarded. They must not be stored. Session keys are used to encrypt

and decrypt data transmitted between the endpoints. If the endpoints are using a

stream cipher algorithm, the session key is used to generate the stream keys or

one-time pads.

Depending on the cryptosystem, session keys may not be used during the

entire session. A validity period such as one hour or an amount of transmitted data

such as 100MB can be set as limits for a session key. When either of the limits is

reached a new session key is negotiated.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

64

2.9.2 Long Term Keys

These are non-ephemeral keys used to generate session keys, keys for digital

signature or message authentication (MAC). For symmetric keys, long term keys

are usually wrapped (encrypted with a higher hierarchy symmetric key) before

they are persisted. They can be also protected by smartcards, dedicated hardware,

passwords or passphrases. A key that encrypts another key is called a Wrapping

Key. According to the NIST a long term key or wrapping key should not exceed 2

years.

2.9.3 Master Keys

Master keys are critical keys, with a very long life span, such as certification

authority private keys. Not only their storage requires dedicated hardware but also

a fractioned shared secret, so that no single person can access a master key alone.

For private asymmetric keys, the life span depends on the key size. For symmetric

keys, a master key is never used for encryption or decryption. It is used to derive

other keys instead. Its life span should not exceed 1 year.

2.9.4 Passwords and Keys

An encryption key is a secret value independent of the plaintext and of the

encryption algorithm used to lock (encrypt) or unlock (decrypt) sensitive

information (Stallings, 2011). However, once two endpoints have negotiated a

Session Key or a Shared Key, such key can also be used for authentication

purposes [2.6]. In order to authenticate a message with a key, one must have the

proper key. The authentication is done with what you have.

 A password is a secret used for authentication purposes (Brose, 2014).

Authentication by password is called Knowledge Based Authentications or

authentication with what you know. The user must prove she knows her password

to be authenticated. A password can also be defined as a human memorizable key

(Bellare, s.d.). A password can also be used as a Master Key.

What you know, what you have and who you are (biometrics) are access

control authentication methods (ROSEMBERG, 2014), section 2.2.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

65

2.10 Authentication Protocols

An authentication protocol is a set of rules and operations, which in most

cases involves cryptographic algorithms or cryptographic hash functions with the

objective of authenticate the endpoints of a communications session. The

authentication consists on the verification of the credentials presented by each

endpoint to the other to prove the claimed identity (Zuccherato, 2014).

Simple authentication protocols, such CHAP (Challenge Handshake

Authentication Protocol) provide authentication only, while more sophisticated

ones like TLS (Transport Layer Security) or SRAP (Secure RDF Authentication

Protocol), provide authentication and confidentiality by negotiating a session key

for a communications session.

Authentication can be done by passwords, asymmetric keys of digital

certificates, Personal Identification Numbers (PIN), biometric information or a

combination of the previous mentioned methods (Anil, et al., 2004).

There are numerous authentication protocols in use and proposed. In this

section we describe the most relevant to our work.

2.10.1 Strong Mutual Authentication with a Shared Symmetric Key

The following protocol, proposed by Stinson authenticates both endpoints

Client, C and Server, S, assuming C and S know each other respectively identities

(C, S) and a shared symmetric key KCS. As a result they either accept or reject

their identities (Dahab & López, 2007). Please note that the communications is

started by the client. This step is omitted.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

66

1 S: random(rs);

→C: (S, rs);

2 C: random(rc);

y1 ← MAC(KCS, C║rs║rc) ;

→S: (rc, y1);

3 S: y’1 ← MAC(KCS, C║rs║rc);

If y1 ≠ y’1 then reject C and Stop;
Else

Y2 ← MAC(KCS, S║rc) ;

→C: (y2);

4 C: y’2 ← MAC(KCS, S║rc);

If y2 ≠ y’2 then reject S and Stop;

Else
Both Client and Server are authenticated

For this protocol to work, MAC (K, Message) generated by hash algorithm

must not be vulnerable to the Length Extension Attack or both endpoints first

validate the parameters received, ensuring they are well formed.

2.10.2 Strong Mutual Authentication with Public Keys

Stinson also proposed an authentication protocol using digital certificates and

asymmetric keys, similar to the previous one. Both, Client, C and Server, S

have digital certificates CERTC, CERTS which contains their respective

identities and public keys PC and PS. Their private keys SC and SS are not

shared. They exchange certificates and digital signatures DSC and DSS. If the

verifications of each other digital signatures succeed, they are authenticated.

Otherwise the authentication is rejected (Dahab & López, 2007).

1 S: random(rs);

→C: (CERTS, rs);

2 C: random(rc);

DSC ← SIGN(SC, S║rs║rc);

→S: (CERTC, DSC);

3 S: Validate CERTC;

If not verify(PC, DSC) then reject C and Stop

Else

DSS ← SIGN(SS, C║rc);

→S: (C, DSS);

4 C: Validate CERTS;

If not verify(PS, DSS) then reject S and Stop

Else
Both Client and Server are authenticated

For this protocol to work, the certificates must be signed by a trusted third

party or a Public Key Infrastructure (PKI) must be deployed. Otherwise, a

man in the middle attack is can break the protocol.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

67

2.10.3 TLS – Transport Layer Security

TLS is the state of the art in authentication and session key establishment.

TLS uses digital certificates a PKI infrastructure and a suite of cryptographic

algorithms and hashes to enforce authentication, session key negotiation, session

confidentiality and message integrity.

The problem with TLS is in the way it is used in real world applications. It is

supposed to require digital certificates for both clients and servers, but clients

hardly ever use digital certificates, because of financial cost constraints. Also, the

large numbers of Certification Authorities (CAs), which are the trusted third party,

have become the “Achilles Heel” of TLS.

A clean installation of Windows 7 trusts 13 root CAs. A clean installation of

Windows 10 trusts 16 CAs. The latest major update (1.803) at the time of this

work shows that Windows 10 trusts 53 root CAs. SSL Observatory claims they

observed 1,482 CA certificates trusted by Windows or Firefox, which includes the

intermediate CAs certificates. They also observed 651 distinct organizations with

authority to sign certificates. However ownership and jurisdiction of those

organizations overlap. Those are 2010 numbers (Eckersley & Burns, 2010).

A root CA should sign certificates for an intermediate CA only. However

intermediate CAs, depending on the certificate received can sign for a lower

hierarchy intermediate CA or an endpoint. The lowest hierarchy intermediate CA

should sign only certificates for an endpoint. An endpoint can be a client, a single

server (single finality), a domain (multiple finalities) or an entire enterprise.

Nevertheless if a root CA signs a certificate for a domain, for example, such

domain certificate would be trusted by everyone who trusts such a root CA. The

same is valid for any intermediate CA. If a single private key from hundreds or a

maybe few thousand CAs is compromised, it can sign false digital certificates for

any social network, government organization, financial institution, major e-

commerce sites and others, provoking chaos in web transactions until the

certificate whose private key has been compromised is revoked. This has

happened at least once with DigiNotar in 2011 in a period of 7 months (Schwartz,

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

68

2011). DigiNotar root CA certificate had a valid date up to 2025. If not

discovered, one cannot even estimate the damage it could have caused.

Figure 19 - DigiNotar Revoked Certificates from Windows 7

Jacob Appelbaum, a core member of the Tor Project stated: "We cannot

determine whether they succeeded in creating any intermediate CA certs. That's

really saying something about the amount of damage a single compromised CA

might inflict with poor security practices and regular internet luck"

Further details on TLS and how it can be exploited can be found in

(ROSEMBERG, 2014) pp. 46-50.

The TLS handshake protocol is described below:

Figure 20 - TLS Handshake Protocol (Mitchell, et al., 1998)

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

69

2.10.4 SRAP – Secure RDF Authentication protocol

In our Master’s dissertation, we proposed SRAP as an alternative to TLS with

the primary goal of reducing the dependency on CAs. SRAP uses self-signed

digital certificates for both clients and servers (ROSEMBERG, 2014).

SRAP takes advantages of Web Semantic concepts such as RDF, OWL and

Linked Data to construct a social graph where servers can vouch for the

authenticity of other servers, building a Web of Trust. A copy of the client’s

public key exists in the client’s RDFK file (hidden RDF) located in the client’s

personal web server.

Servers that vouch for other servers are called authentication partners (APs). If

the server whom the client is trying to authenticate for the first time do not trust

any of the APs, the authentication partner of last resort APRL must be used to

authenticate the server. The APRL is the only one who must have a digital

certificate signed by a CA.

The trust, in the client’s context, exists if the client has already authenticated

itself with at least one of the APs. From the server’s context, trust in client’s

identity exists if any of the APs can vouch for the client’s identity, meaning the

client has authenticated with at least one of the APs and at least one of the APs

has a copy of the client’s RDFK file in its identity repository. If the client has not

yet authenticated itself with any of the APs, it informs the server the location of its

RDFK file in its personal web server.

Both the server’s identity and the client’s identity are verified by a challenge.

The challenge consists of encrypting a random string with the public key of the

challenged endpoint and sending both the encrypted string and a hash of the

random string to the challenged endpoint. The challenged endpoint will use its

private key to decrypt the encrypted random string, calculate its hash, comparing

it with the received hash. If they match, the second endpoint returns a new hash

(different hash algorithm) of the random string. The payload returned to the

challenging endpoint is only the new hash. The challenging endpoint will

calculate the new hash of the random string and compare it with the received

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

70

second hash. If they match, the challenged endpoint is authenticated and the

random string can be used as a session key.

Once both client and server have been authenticated, they store each other’s

RDFKs in their identity repository. As a result, second and future authentications

can be done much faster by a modification of Stinson’s mutual authentication

protocol with digital certificates. A trusted third party is not needed, since the

endpoints’ public keys have already been authenticated in the first time they

authenticated each other. SRAP simply challenge both endpoints. We called this

protocol SRAP Fast Authentication. However, if both endpoints negotiate a long

term symmetric key in the first authentication, second and future authentications

may be achieved even faster without the need to use computationally expensive

asymmetric key operations. When the lifetime of the long term symmetric key

expires, the endpoints can negotiate another one with the use of SRAP Fast

Authentication.

2.10.4.1 SRAP Disadvantages

Although an attacker has fewer opportunities to disrupt SRAP than she has to

disrupt TLS, if SRAP is exploited it could take a long time for the endpoints to

notice they were attacked. For example, if the attacker is successful in replacing

the client’s RDFK file in the client’s personal web server, and the targeted server

has not yet authenticated the targeted client before, the attacker can deceive the

targeted server and then restore the client’s original RDFK file. The targeted

server will trust a false client until the real client tries to authenticate itself with

the targeted server. The credentials presented by the real client will not match the

ones already in possession by the server.

Suppose the attacker is able to gain access to the private key of an AP of the

targeted server and the AP is already trusted by the targeted client. If the attacker

is able to replace the targeted client RDFK file by a false one, she can successfully

perpetrate a man-in-the-middle attack. After the first authentication with the

targeted server, she can return the original RDFK file of the targeted client. The

attacker will be able to intercept and forge communications between the targeted

client and server, as long as she can maintain herself between the attacked

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

71

endpoints. The targeted client will be able to detect the attack only if it tries to

authenticate itself with the targeted server from a device, which the attacker

cannot position herself between the new device and the server.

The full description of SRAP protocols can also be found at (ROSEMBERG,

2014), section 6.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

 Hypothesis and Experiment Design 3

In this section, we report the hypothesis formulated to refute or confirm the

research questions and the methods used to assess the experiments.

3.1 Hypothesis for the research questions

RQ1: Are software developers familiarized with the basic concepts of

symmetric key cryptography?

H01: Developers have clear knowledge of the basic concepts of symmetric key

cryptography.

HA1: Developers confuse basic concepts of symmetric key cryptography such

as block sizes and key sizes. They also do not know the key is secret and must be

negotiated in a secure channel. They do not know the purpose of the IV and why a

padding scheme is necessary for block ciphers. As a consequence they are bound

to violate cryptographic rules.

RQ2: Are developers capable of consciously choosing a safe symmetric key

encryption algorithm?

H02: Given an API, the developer chooses the AES or the Twofish encryption

algorithm with any encryption mode other than ECB. The developer uses a

random IV and she is aware of her choice.

HA2: The developer chooses an unsafe encryption algorithm, an unsafe mode

of operation or she chooses a safe algorithm and mode of operation by chance, not

being sure whether the selection is safe.

RQ3: Can developers use the AES (CTR Mode) encryption algorithm

correctly?

H03: The developer uses a random and unique IV for each encryption that uses

the same encryption key, as a result, the same plaintext encrypted with the same

key several times will produce different ciphertext each time.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

73

HA3: The developer uses a constant IV.

RQ4: is it possible to use a CRHF in combination with a secret key to generate

one-time pads that will not repeat itself for a long time?

H04: Given an unbroken CRHF, a safe MAC Algorithm, a constant encryption

key, a counter and one salt per counter, the keystream repeats itself during a

session.

HA4: Given an unbroken CRHF, a safe MAC Algorithm, a constant encryption

key, a counter and one salt per counter, the keystream does not repeat itself during

a session.

RQ5: Is HX is more effective than other encryption algorithms?

H05: The developer violates as many cryptographic rules using HX as she does

using other algorithms or more.

HA5: The developer violates less cryptographic rules using HX than she does

using other algorithms.

RQ6: Is HX is more efficient than other encryption algorithms?

H06: The developer takes more time to write a code that encrypts and decrypts

a message using HX than she does using other algorithms.

HA6: The developer takes less time to write a code that encrypts and decrypts a

message using HX than she does using other algorithms.

3.2 Experiment Methodology

In order to reject H01, we designed a survey to test the knowledge of the

developers in basic concepts of symmetric cryptography with emphasis on block

cipher algorithms, taking into account that AES and Twofish are block cipher

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

74

algorithms, they are the widely available algorithms and AES algorithm is the

state the art in symmetric key cryptography. Initially we expected the survey was

also enough to reject H02 and H03. However the survey was not the best method to

accomplish the rejection of those null hypotheses.

To reject H04, we need to test if the use of an encryption key, a counter and a

salt used as parameters for a safe MAC Algorithm will generate pseudorandom

keystreams that will not repeat itself for the duration of a session. We selected

RIPEMD160, SHA-256, SHA-384, SHA-512 and Whirlpool as CRHFs and

HMAC and ENVELOPE algorithms as keystream generators, where the message

was the counter concatenated with the salt. If a billion unique keystreams can be

generated for each CRHF and Keystream generator algorithm pair, H04 is rejected.

For H02, H03, H05 and H06 rejection, we designed a controlled experiment

empirical study. Each participant had to implement three tasks to encrypt and

decrypt a very important message five times in a row. Each task had to be timed.

In the first task, the developer had to choose an encryption algorithm from her

choice. In the feedback form, she had to justify why she selected the chosen

algorithm to prove she was aware of her choice.

In the second task, she had to implement a code similar to the code of the first

task, but she had to use AES-CTR mode. If she chose AES-CTR mode in task

one, she had to use AES-CBC as an alternative.

In the third task, the code had to be implemented using the HX algorithm.

Half of the participants started with task one, then task two and finished with

task three while the other half started with task three first, then task one and

finally task2. This division helps to mitigate the influence on the others tasks due

to the possibility of fatigue and frustration for not been able to complete one of the

tasks.

At the end of the experiment, developers were asked to fill the feedback form,

where they had to justify their algorithm’s choice for the first task, among other

questions.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

75

3.3 Survey Design

As stated in the background section [2.4.4.7], the AES block cipher algorithm

is one of the most secure block cipher encryption algorithms and widely available

in most APIs and even in most modern CPU instructions sets. The goal of the

study is to verify the familiarity of software developers regarding the basic

concepts of symmetric cryptography, such as key management, IV randomness

and Padding. These concepts are necessary to correctly use the AES algorithm.

3.3.1 Target Audience, Population and Sample

The target audience of the study was software developers with at least one

year of experience in software development. We believed experienced developers,

preferably with previous experience in the use of cryptographic algorithms would

know relatively well the basic concepts of cryptography. However, only a

participant who either has not enough experience in software development or had

never used a cryptographic algorithm was classified as an outlier. The survey was

designed in Portuguese (the native language of most of the participants and

required language for foreign students). In this sense, we selected graduate

students of the Informatics course of PUC-Rio to compose the survey population.

All of the participants had to sign the consent form [Annex 1].

3.3.2 Subjects Characterization

In order to filter possible outliers, we applied a characterization questionnaire

composed of four filter questions (LinÂker, et al., 2015).

1. The highest academic degree (High School, Bachelor, Masters,

Doctorate)

2. How many years of experience as a software developer

3. In how many projects has the participant used cryptographic

algorithms

4. How well familiarized the participant was with symmetric key

encryption theory. This question was designed on a Likert Scale (Allen

& Seaman C, 2007) with the following possible choices: (Not

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

76

familiarized at all; Not well Familiarized. I feel unsafe to use them;

I’m fairly familiarized. I have no problems in using them, if I have

access to the documentation; Well Familiarized; Totally Familiarized)

3.3.3 Substantive Questions

We designed seven substantive questions (5 to 11) (LinÂker, et al., 2015)

(Kasunic, 2005) to help us reject H01. All of the substantive questions are closed-

ended questions (multiple choices). Questions 5 and 11 also asked the participants

to justify the answers. We asked the participants to answer the questions in

sequence and not to turn the page until all of the questions on each page had been

answered to mitigate the influence one question could have on the others,

especially the last question, which gives information about Padding schemes.

5. Which cryptographic algorithm would you choose to encrypt a text file,

containing confidential information?

The possible choices were:

a) DES

b) 3DES

c) AES ECB 256

d) AES CBC 128

e) RC4

f) Blowfish

6. When you read SERPENT 256, for you, what is the meaning of the

number 256?

The possible choices were:

a) Key size in Bytes

b) Key size in bits

c) Algorithm’s block size in Bytes

d) Algorithm’s block size in bits

e) Both key size and Algorithm’s block size in bits

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

77

7. The CBC (Cipher Block Chaining) mode may use an IV (Initialization

Vector
I
). For you, the IV is required or optional and what is its purpose?

The possible choices were:

a) Optional. Strengthening of the cryptographic algorithm

b) Required. Fill the message with the necessary bits to complete the

block size

c) Optional. Mislead the Cryptanalyst by putting random information

which will not be used in the encryption

d) Optional. If not supplied by the developer, the algorithm will

automatically create a random IV

e) Optional. If not supplied by the developer, the algorithm will use a

default value for the IV

8. In your understanding, what is the purpose of Padding in block cipher

algorithms?

The possible choices were:

a) Strengthening of the cryptographic algorithm

b) Fill the message with the necessary bits to complete the block size

c) Mislead the Cryptanalyst by putting a random information which will

not be used in the encryption

d) Optional. If not supplied by the developer, the algorithm will

automatically create a random Padding

e) Optional. If not supplied by the developer, the algorithm will use a

default value for the Padding

I
 The IV is required in CBC mode [2.4.3]

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

78

9. In relation to cryptographic keys and block cipher algorithms, what is your

understanding about the key size?

The possible choices were:

a) The greater the key size, the better

b) The key size must be exactly the same size of the block of the

algorithm

c) The key size must be exactly the size in bits specified by the algorithm,

no matter the block size

d) If the key size is greater than the algorithm’s block size, the algorithm

will truncate the key to the block size automatically

e) If the key size is less than the algorithm’s block size, the algorithm will

automatically concatenate the key with the necessary blanks (spaces)

needed to match the block size

10. Concerning cryptographic Keys and IVs, what must be secret and what

must be transmitted openly with the ciphertext?

The possible choices were:

a) Both must be secret. The Key and the IV must be negotiated in a

secure channel

b) Both must be transmitted openly with the ciphertext

c) The Key is secret and must be negotiated in a secure channel. The IV

must be transmitted openly with the ciphertext

d) The IV is secret and must be negotiated in a secure channel. The Key

must be transmitted openly with the ciphertext

e) Both must be secret. The HASH of the IV with the key must be

informed

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

79

11. Concerning Padding Schemes observe the following explanation about

Padding and choose the safest scheme in your opinion. Also, please explain why

you chose your preferred Padding Scheme.

ANSI X.923 ...|DD DD DD DD DD DD DD DD | DD DD DD DD 00 00 00 04|

In ANSI X.923 Bytes filled with nulls (00) are padded and

the last Byte defines the padding length including the last

Byte.

ISO 10126 ... |DD DD DD DD DD DD DD DD | DD DD DD DD 81 A6 23 04|

ISO 10126 Bytes filled with random Bytes are padded and the

last Byte defines the padding length including the last

Byte.

PKCS7 (extension of PKCS5)

01
02 02
03 03 03
04 04 04 04
05 05 05 05 05
06 06 06 06 06 06

The value of each added Byte is the number of bytes that

needed.

Padding with Nulls

... |DD DD DD DD DD DD DD DD | DD DD DD DD 00 00 00 00|

Padding with Blanks

... |DD DD DD DD DD DD DD DD | DD DD DD DD 20 20 20 20|

The possible choices were:

a) I prefer ANSI X.923 because of its simplicity and confusion avoidance

between valid nulls (nulls which are part of the original message) and

invalid nulls (the ones that are padded to the message)

b) I prefer ISO 10126 because random bits will make it more difficult for

a cryptanalyst

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

80

c) I prefer PKCS7 because it is even more guaranteed to identify valid

and invalid bits (padded bits)

d) I prefer filling the message with Nulls or Blanks because there is

nothing simpler than these schemes

e) I prefer a scheme that exists on any API in order to guarantee

interoperability

3.3.4 Confounding Factors and Threats to Validity

If a participant chooses a correct answer it does not mean she really knows the

correct answer. She might have guessed.

We cannot control the level of commitment of the participants with the

experiment. The lack of commitment poses a threat to the validity of the

experiment, since the participants might have chosen to answer the questions of

the survey randomly.

3.4 Experiment to Reject H04

For each CRHF and MAC algorithm used as a keystream generator, we

generated one billion keystreams. A constant key was used in the experiment.

Each time a new keystream was generated it was compared with all the other

previously generated keystreams. If the last keystream is unique, H04 can be

rejected. The counter (i) started at 0 and was incremented by one for each

keystream generated. At the same time we generated the salt (Si) with random

values ranging from 0 to 2
31

. The keystream generator formulas are explained in

[4.1] and [4.3].

3.5 Controlled Experiment Empirical Study

In this study, we were interested in testing the maturity level of developers in

relation to encryption algorithms. Particularly, we wanted to verify if they could

select a safe encryption algorithm from the available set of the Cipher class of the

Java Language and if they were able implement a code that encrypted and

decrypted messages without violating the rules we selected in section [1.4] pp.18.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

81

It was also our intention to compare the effectiveness and the efficiency of

AES, HX and any other algorithm chosen by the participants. The effectiveness

and the efficiency of both algorithms were our usability metrics.

3.5.1 GQM

According to Claes (Claes, et al., 2000), a goal-definition template, which

identifies the objects, goals, quality focus and the perspective of the study, ensures

that important aspects of an experiment are defined before the planning and

execution of an empirical study. In this study, we used the Goal Question Metric

model (Basili & Weiss, 1984) for the elaboration of evaluation plans of usability

of encryption algorithms.

GQM Questionnaire

Analyze HX and AES algorithms

With the purpose of
Evaluate the effectiveness and efficiency of HX,
when compared to AES

Focusing
The identification of insecure code and the usability
of encryption algorithms

In relation to Sensitive information protection

From the point of view of Software Developers

In the context of Symmetric Key Cryptography usability

Table 5 - GQM Template of the Empirical Study

3.5.2 Confounding Factors and Threats to Validity

1) Formal training in cryptography. Developers who have had training are not

expected to violate encryption rules.

2) The Developers’ previous experience: Experienced developers might have

had their code inspected by a security expert and learned how to avoid the

violations of cryptography rules.

3) The Developer’s affinity to the Java Language. Since the experiment was

conducted in Java, Developers who were not familiarized with Java may

have produced a worse code than the ones who were familiarized.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

82

4) Poor code examples. Developers were free to research on the Internet and

to copy and paste code from any forum they chose. The quality of those

codes might have influenced the results.

5) The fatigue and frustration for not being able to complete one of the tasks

might influence on the outcome of the others.

3.5.3 Target Audience Identification

As target audience, we invited graduate students of the Department of

Informatics of PUC-Rio or professional developers from software houses.

3.5.4 Participants Characterization

In order to identify possible outliers, we asked each participant to fill the

characterization form. We wanted to know the academic level of each participant,

how much experience they had in software development, how familiar they were

with the Java language, who was responsible for inspecting the code they produce

for security vulnerabilities (in their organization), if they had any formal training

in cryptography, network security or information security. Finally, what was their

opinion on who should be responsible in detecting or correcting any encryption

rule violation: the developer, the project manager, a security expert, an external

plugin or the class itself used for encryption. The participant’s characterization

form can be found in [Annex2].

3.5.5 Participants Training and Leveling

There was no training or leveling. Since there were no example codes for the

HX algorithm, developers received the UML documentation and the Javadoc of

the class. No examples or hints in cryptography were provided to the participants.

The Javadoc, however, explained the cipher modes available for HX and the hash

algorithms available to generate keystreams. It also recommended the developers

to set the masterKey property first or they would get an empty string from the

encrypt() or decrypt() methods.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

83

The participants received a recommendation to import

javax.xml.bind.DatatypeConverter and to use the method

DatatypeConverter.printHexBinary() to print the encrypted message.

The participants were told that in order to use the HX class, they had to import

the puc.galgos.crypto.HX package.

3.5.6 Experiment Tasks

The experiment encompassed three tasks. All of the tasks consisted in building

a code to encrypt and to decrypt a message 5 times in a row. Each time, the

encrypted message and the decrypted message should be printed at the console

output. Nevertheless, in the first task, the developer was asked to select an

encryption algorithm of her choice. In the second task, the AES-CTR algorithm

and encryption mode was mandatory. If the developer chose AES-CTR for the

first experiment, she was asked to use AES-CBC instead. Finally in the third task,

the developer was asked to use HX. The order of the tasks (1-2-3 or 3-1-2) was

randomized for each participant, to mitigate the influence of order of the tasks in

the experiment. When necessary, we intervened and directly assigned the task

order to balance the order of the tasks distribution.

For each task, the participant should spend at most thirty minutes. Preferably

the entire experiment should not exceed one hour per participant. After thirty

minutes, the participant should advance to the next task, but we did not interfere

with the participant’s choice to finish the current task or give up and move to the

next. The intent was to avoid some emotional response or frustration from the part

of the subject, which could interfere with the rest of the experiment.

We also instructed the participants to write down the start and finish times of

each task, so we could measure the time spent on each task.

If the participants did not violate any encryption rule, other than a poor choice

of a key, the encrypted message should be different for each of the five

encryptions. A poor choice of a key did not affect the outcome, but was marked as

a violation.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

84

In this experiment there were 4 possible encryption rules that could be

violated:

1) The use of a safe encryption algorithm

2) The use a safe mode of operation

3) The use of a strong encryption key

4) The use of a random and unique IV

In this experiment, the number of rules violated indicated the effectiveness of

the algorithm in the context of the usability of the algorithms. The time spent on

each task indicated the efficiency of the algorithm. An algorithm that takes less

time to implement a code which produces the same result is more efficient than

another, which takes more time to accomplish the same goal. The experiment

tasks (HX as the last task) can be found in [Annex3].

3.5.7 Feedback Form

On the last phase of the experiment, each participant was asked to fill the

feedback form to provide additional data to our research. In relation to the first

task we asked which algorithm the participant chose and why. We needed to

know the justification of the choice to assess if the participant consciously

chose a safe encryption algorithm. We also asked if the participant copied and

pasted code from a forum or documentation example. If they did, we asked if they

checked the code for any vulnerability that could weaken the encryption. Finally

we wanted to have a feedback on the difficulty level of the task. We decided to

measure the difficulty level, which is directly influenced by usability of the class,

with a Likert scale with the following choices:

1. Very easy. I did not have any difficulty.

2. Easy, even though I had some difficulty, easily overcame.

3. Complicated. I experienced some difficulty and I needed some effort to

overcome.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

85

4. Difficult. The task was hard and I needed considerable effort to

overcome.

5. Too difficult. I was unable to complete the task

Concerning the second task, the first question we asked if the participants

knew the reason why the researchers forced the use of the AES-CTR algorithm.

The answers might have provided additional information to confirm the choice of

the algorithms made in the first task by the participants.

Like in the first task, we asked if the participant copied and pasted code from

forums or on-line documentation, if they checked the code for any vulnerability

and how they classified the difficulty level of the task.

We asked a specific question about AES-CTR: If the participants found

strange the fact the encrypted message was different each time it was encrypted

and gave them five choices for best answer:

1. Yes. I don't know why.

2. No. It is supposed to be this way.

3. With my code, it did not happen.

4. That happened with my code, but I changed it to avoid it.

5. I did not notice and it does not matter. What matters is to encrypt and

decrypt the message correctly.

Concerning the third task, we were particularly interest in the usability of HX.

In consequence, we asked if the participants opted to change the default attributes

of HX and why, the difficulty level of the task, what was their impression about

the JAVADOC of the class and what was their impression about the set of

methods of HX class. The last two questions were also measured by the Likert

scale. In relation to the JAVADOC the choices were:

1. Very poor. Insufficient information.

2. Poor. Lacks example codes.

3. Acceptable. I was able to understand, but it lacks further technical

information.

4. Good. It's what is expected from a JAVADOC.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

86

5. Very good. It does not need any other information

About the set of methods of HX, the choices were:

1. Unsuited to the goals of the class.

2. Partially unsuited to the goals of the class

3. Undecided. I can't evaluate.

4. Suited to the goals of the class

5. Well suited to the goals of the class

We also decided to ask a few questions about the experiment. We asked which

encryption class the participants preferred Cipher or HX and why, assuming both

of them was safe to use. The participants were also free to write about their

impression of the tasks, their impression of the experiment forms and to give any

suggestion they wanted to the researches. The feedback form (HX as the last task)

as well as the participants’ answers can be found in [Annex4].

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

 The HX proposal 4

In this section, we discuss our proposal of a stream cipher encryption

algorithm based on CRHF. We also show how SRAP can use a CRHF to

authenticate both the client and the server using a long term shared key.

4.1 Formal Description

The encryption processes consists of the following steps:

• The Sender and Receiver negotiate a CRHF (H)

• Generate and distribute a shared key K between the sender and the

receiver. The key can be of any length, but the optimal Key size is the size of the

digest output of H.

• Divide the message M in n blocks of size |H|, such that M = m0

║m1║…║mn-1. For compatibility among operating systems regional code pages,

M must be converted to CP-1252 encoding.

• i is the block counter, varying from 0 to n-1.

• For each block, generate a 32 bit integer random number (Si). Si must be a

DWORD little endian format. The same format is required for the counter i.

• Generate the ciphered block, using HMAC, with the following formula:

ci = Si║ mi ⊕ H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ Si ∥ i))

• Calculate the MAC (Message Authentication Code) = H(K║M║SMAC)

and prepend it to the ciphertext (only if authenticated encryption is required).

SMAC is the salt used for the message authentication code.

As a result, the ciphertext is C = SMAC║MAC║c0 ║c1║…║cn-1

The decryption process is slightly different from the encryption:

• Separate both SMAC and MAC from the ciphertext.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

88

• The ciphered block length is l = |H| + 32 bits long, except for the last

ciphered block. The last block length may vary from 40 bits (last salt + one

character) to l. For each ciphered block ci of l bits, take the first 32 bits which

corresponds to the block salt (Si). The remaining l-32 bits is the encrypted

message block (Φi).

• The original message block is obtained from the formula

mi = Φi ⊕ H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ Si ∥ i))

• Reassemble the message M = m0 ║m1║…║mn-1

• Calculate the message’s MAC’ = H(K║M║SMAC)

• Check if the received MAC matches MAC’. If they do, the message is

both authentic and intact.

4.2 Analysis of the Encryption Scheme

“The construction of a pseudorandom generator from a one-way function

provides a solution for symmetric encryption starting from a one-way function”

(Bellare, et al., 2000) (Håstad, et al., 1999).

Using the counter and having one Salt for each block generates a unique

keystream, enforcing the same message, encrypted with the same key twice, will

not produce the same ciphertext, because the salts would be different for the same

counter. It emulates the Vernam Cipher, the same way other stream ciphers do,

generating a keystream as large as the plaintext and then performing a bitwise

XOR between the plaintext and the keystream.

A successful Known-plaintext attack on a specific block allows an attacker to

decrypt only that specific block. It reveals the keystream of that block only. It

does not reveal the encryption key.

The salts replace the IV in HX. No developer can use a constant IV with HX,

since the salts are randomly created during encryption.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

89

A sloppy developer which uses a constant encryption key is less affected in

HX than in other algorithms. The same key may be reused to encrypt other

messages, since the sequence of Salts generated for each block will be different. A

keystream generated with the same key, counter and salt is expected to be

repeated with a 50% probability after 2
16

 encryptions (birthday attack on a 32 bit

integer). In this case, half of the keystream will be repeated. If HX is implemented

with a 64 bit salt, half of the keystream will be repeated after 2
32

 encryptions with

the same key.

Because the ciphered block is composed of the salt block and the encrypted

block, there is no need for synchronization between the sender and the receiver.

However, there is an increase in the size of the ciphertext. For each plaintext

block, we get a ciphertext with 32 extra bits. As an example, for a plaintext

message of 2GB, the ciphertext increases, according to the following table:

Hash Length (bits) Hash Length (Bytes) Number of Blocks Total Salt Cost (MB) Final Size (GB) Increase

160 20 107.374.183 409,6 2,40 20%

256 32 67.108.865 256 2,25 12,5%

384 48 44.739.243 170,7 2,17 8%

512 64 33.554.432 128 2,13 6%

1024 128 16.777.216 64 2,06 3%

Table 6 - Salt Cost

From Table 6, we can infer that the larger the length of the digest output if the

CRHF, the stronger the cipher and the lower the salt cost.

The cipher strength depends on the strength of the CRHF, HMAC and the

counter mode of operation. Because the encryption algorithm applies the hash to

the encryption key, the salt and the counter, the compression function of the hash

used up to four times (four if the key size is greater than |H|), strengthening the

resistance to second preimage attacks to a complexity nearing O(2
n
) (Kelsey &

Schneier, 2005). The cost to succeed in a key recovery attack is the cost of the

key recovery attack of HMAC with the CRHF, which is infeasible even for the

broken MD5 [2.6.2].

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

90

Since HMAC is a pseudorandom function, we can expect the keystream to

repeat itself close to 2
n/2

 blocks (birthday paradox on random distribution). As a

result, given an encryption key, the maximum theoretical plaintext size that can be

encrypted with HX is n∙2
n/2

 bits. However, with a 31 bit counter used in the

implemented version, the maximum plaintext size is n∙2
31

 bits.

The proposed scheme uses HMAC(CRHF) as a PRF (pseudo-random function)

and the counter mode of operation to encrypt messages. Proposition 8 of (Bellare,

et al., 1997) proves the counter mode of operation is secure. The authors

demonstrate the encryption function is indistinguishable from a PRP (pseudo-

random permutation) and that any secure PRP can be converted to a secure PRF.

Proof: Let t be the running time a an oracle query is answered, q the number of

queries made to the oracle, μ the number of ciphertext bits returned by the oracle, l

the input bits of the PRF function, L the output bits of the PRF function and Adv

the advantage when distinguishing a function from random. For a PRP, l = L.

Then:

Adv[PRF](t, q) ≤ Adv[PRP](t, q) + q
2
∙ 2

−l−1

Assuming the PRP is indistinguishable from random, Adv[PRP](t, q) = 0. As a

result, if ε = Adv[PRF] then q = ε
1/2

 ∙ 2
l/2

, meaning unless about 2
l/2

 keystreams

blocks are generated, the adversary’s advantage is limited to ε (Xian &

Tingthanathikul, 2004).

Theorem 13 [Security of a XORC using a pseudorandom function] (Bellare, et

al., 1997) proves any stream cipher using a pseudorandom function is secure if the

PRF function is secure. The authors shows that there is a constant c > 0 which

satisfies the following: for given a function F(t’, q’, ε’)-secure PRF family with

input length l bits and output length L bits, then, for any q the XORC(F) scheme is

(t, q, μ; ε)-secure in the left-or-right sense, for μ = min(q’L, L2
l
) and t = t’ – c ∙ (μ /

L) ∙ (l + L) and ε = 2ε’, where μ is number of ciphertexts returned from the

encryption oracle from the queries q. XORC refers to an encryption scheme which

uses bitwise XOR operation between the plaintext and the keystream produced by

an encryption function in counter mode of operation.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

91

From the above, considering n is the digest output length of a CRHF, if a

CRHF is secure, HMACCRHF is a secure PRF up to 2
n/2

 digests produced with the

same key (Bellare, 2006) (Kim, et al., 2006) and the counter mode of operation is

secure, up to 2
n/2

 keystreams segments for any PRF (Bellare, et al., 1997), then we

can deduce HX is also secure up to 2
n/2

 keystreams.

In order to break HX, an attacker must either break the counter mode of

operation, the HMAC algorithm or the CRHF. Since it is infeasible to break or

weaken the CTR-mode or HMAC, the best choice for the attacker is to try to

break or to significantly weaken the CRHF.

For authentication and integrity, we can use the MAC algorithm because both

the key and the plaintext are unknown to the attacker. A Length Extension Attack

[2.7.2] with MAC requires knowledge of the plaintext and the key size.

Recently, there have been significant improvements on Hash functions. In

(Su, et al., 2016), the authors claim that a non-iterative hash function for small

messages can produce a hash output complexity of O(2
m

), where 80 ≤ m ≤ 232

and 80 ≤ m ≤ n ≤ 4096 and n being the size of the message to be hashed.

Assuming a perfect distribution is achieved such hash algorithm would be

immune to the Birthday Attack. Without iteration a construction structure is not

needed. As a result the basic MAC algorithm can be applied without the risk of

the Length Extension Attack. By using this hash algorithm, the maximum key

length would be 3.832 bits (4096 – 232 bits of the counter – 32 bits of the salt).

The maximum plaintext size that could be encrypted would be 232∙2
232

bits.

Skein [2.5.8] and SHA-3 [2.5.7] are immune to the Length Extension Attack,

since they do not make use of the Merkle-Damgård structure. As a result the

simple MAC instead of HMAC could be applied by HX with those CRHF with

significant performance gains.

All of these hash functions can be added to the CRHF set of HX, giving more

encryption options to the developers, without the need of changing the HX

algorithm itself. However, once a CRHF security is compromised, developers can

switch the compromised CRHF for another one of the set with minimal changes in

their code.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

92

4.3 Options for HX

We call the use of multiple salts, one per block, the Counter Mode (CTR) of

operation for HX. We call the combination of HMAC with CTR operation mode

to generate keystreams the HMAC/CTR encryption mode or cipher mode.

However HMAC is not the only safe MAC algorithm. The ENVELOPE [2.6.3]

technique is also safe to use. ENVELOPE can be twice as fast as HMAC with a

marginally smaller security level [2.6.3]. The formal representation of HX in

ENVELOPE/CTR encryption mode is:

ci = Si ║ mi ⊕ H(K ║ πK ∥ Si ∥ i ∥ K), to encrypt and

 mi = Φi ⊕ H(K ║ πK ∥ Si ∥ i ∥ K), to decrypt

It is also possible to use an IV instead of multiple salts. We call this mode of

operation, the Segmented Integer Counter (SIC). A 32 bit integer is randomly

generated automatically by the encryption function. It is converted into a 64 bit

integer and left shifted 32 bits. The random value is used as the higher 32 bits of a

64 bit integer. The remaining lower 32 bits are incremented each time a new

keystream is generated. The implementation cannot allow the lower 32 bits

overflow and increment the higher 32 bits, in order to avoid keystream

overlapping. The IV is prepended to the ciphered text.

This mode of operation has an inferior security level, when compared with the

original CTR mode but does not have the salt increase cost. In this mode, using

the same key, after 2
16

 encryptions there is 50% probability the entire keystream

will be repeated, allowing the cryptanalyst to decrypt the messages where the

keystream is repeated. With the original CTR mode, only half of the salts are

expected to be repeated with the same counters, allowing the decryption of half

the message by the cryptanalyst.

The formal representation of HX in HMAC/SIC encryption mode is:

c0 = N║ m0 ⊕ H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ N ∥ i))

ci = mi ⊕ H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ N ∥ i)), to encrypt, and

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

93

m0 = Φ0 ⊕ H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ N ∥ i))

mi = ci ⊕ H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ N ∥ i)), to decrypt

Finally the formal representation of HX ENVELOPE/SIC encryption mode:

c0 = N║ m0 ⊕ H(K ║ πK ∥ N ∥ i ∥ K)

ci = mi ⊕ H(K ║ πK ∥ N ∥ i ∥ K), to encrypt, and

m0 = Φ0 ⊕ H(K ║ πK ∥ N ∥ i ∥ K)

mi = ci ⊕ H(K ║ πK ∥ N ∥ i ∥ K), to decrypt

The following pictures display the modes of operation for HX

Figure 21 - HX CTR-Mode

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

94

Figure 22 - HX SIC-Mode

The table below summarizes the cipher modes for HX and their respective

security level. We are considering ENVELOPE less secure than HMAC, for the

reason of the best attack against HMAC-MD5 and ENVELOPE-MD5, 2
97

 and 2
96

respectively [2.6.2] [2.6.3].

Cipher Mode Security Level

HMAC/CTR Highest

ENVELOPE/CTR Slightly Less secure than HMAC/CTR

HMAC/SIC Less secure than the previous ones if the developer uses a
constant key

ENVELOPE/SIC Slightly Less secure than HMAC/SIC

Table 7 - HX Encryption Modes

4.4 Image Encryption Test

We tested the HX encryption algorithm with images. The encrypted image

gives an idea of pseudo randomness and the salt cost of the HMAC/CTR.

We converted each pixel into a three Byte string (24 bit integer) containing the

RGB values of the pixel. The final plaintext is the concatenation of all three Byte

pixel strings. The length of the plaintext is the Width of the image times the

Height of the image times 3 Bytes per pixel. After the encryption, a higher image

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

95

is necessary to store the Salts of the encrypted blocks. Each pixel of the encrypted

image takes 3 Bytes of the encrypted message. If, for the final pixel we become

shorter than 3 Bytes, the green or blue components of the last pixel are set to zero.

As a result, if we only have one Byte for the last pixel, it would have only the red

component of the pixel and, if we have two bytes for the last pixel, it would have

only the red and the green components. The keystream is generated and a bitwise

XOR is applied with the plaintext. Each salt is concatenated with the respective

ciphered block to form the ciphered text.

The decryption process is similar. Every pixel has to be converted into a string

of RGB components and then the decryption algorithm separates de salts from the

encrypted blocks. It then generates the keystream and applies the bitwise XOR

operation with the block keystream and the encrypted block to get the plain block.

Finally the original image high is calculated from the plain message length and the

original image is restored. For image encryption, the salt range is 0 to 2
24

-1 in

order to generate a valid pixel color.

The images below shows an example of an image encrypted with the HX

algorithm.

Figure 23- Encryption an image with HX HMAC/CTR

In [

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

96

Figure 23], we have the original image (left), the encrypted image using SHA-

512 as the keystream generator (center) and the encrypted image using SHA-256

as the keystream generator (right). We can observe the high increase, because of

the block salts.

The image below is a test with a 24bit color gradient

Figure 24 - Encrypting a 24 bit Gradient

The original image (left), the encrypted image using SHA-512 as the

keystream generator (center) and the encrypted image using SHA-256 as the

keystream generator (right). We can observe that having more colors and less

black or white does not affect the pseudo-randomness of the encrypted images.

The image below is a test with a white image

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

97

Figure 25 - Encryption of a White Rectangle

The blank original image (left), the encrypted image using SHA-512 as the

keystream generator (center) and the encrypted image using SHA-256 as the

keystream generator (right). We can observe that having a single color for the

entire image does not affect the pseudo-randomness of the encrypted images

either.

4.5 HX Authentication Protocol

The HX authentication protocol (HXAuth) uses a long term pre-shared

symmetric key or, as an alternative, a password stored on a server repository to

authenticate both the client and the server. It is similar to the protocol presented in

section [2.10.1], but it takes only two transmissions, while the original protocol

takes four instead.

The authentication results in a session key calculated by both endpoints. Such

session key will be the key used with HX to provide confidentiality during the

session.

Let

rc: Random from Client in a 32 bit integer positive value converted to string

rs: Random from Server in a 32 bit integer negative value converted to string

T: Timestamp in a previously agreed format (e.g.: YYYY-MM-DD hh:mm:ss)

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

98

H: The CRHF (RIPEMD-160, SHA-256, SHA-384, SHA-512 or Whirlpool)
II

Id: Client’s URI

LK: Long Term Key negotiated by the 1
st
 time SRAP Authentication or

Client’s password stored in the server’s repository

M: The MAC Algorithm. Either HMAC or ENVELOPE

MACH(LK, Mauth): MAC Algorithm digest output, using H, of the long term

key and the authentication message

KS: Session Key

The validate function verifies if all parameters were received, if they are in a

canonical format and if they are all valid. It is up to the server to accept or reject

the client timestamp based on the time gap between the endpoints’ clocks.

Once both endpoints have been authenticated rc and rs will be the nonces for

the client and the server respectively. If HX is set to SIC mode of operation. Up to

approximately two billion messages can be sent by each side. When either of the

counters reaches its last value, the corresponding endpoint sends a

REAUTHENTICATION REQUIRED message to the other endpoint. By

performing a new authentication, the endpoints will generate another session key

and reset both counters.

Since the session key is generated automatically and independently from the

will of the developer, it is not possible to use a constant encryption key. This is

why SIC mode is a better choice than CTR mode to be used by HXAuth.

II
 Other CRHF such as SHA3-512 or SKEIN-1024 may be added in the future.

1 C: random(rc);

Msg1 ← MACH(LK, (Id ∥ rc ∥ T));
→S: (M, H, rc, T, Id, Msg1);

2 S: If not validate(M, H, rc, T, Id) then reject C and Stop;
Else

 Msg’1 ← MACH(LK, (Id ∥ rc ∥ T));
 If Msg1 ≠ Msg’1 then reject C and Stop;

 Else

 random(rs);

 Msg2 ← MACH(LK, (Id ∥ rs ∥ T));

 KS ← MACH(LK, (Id ∥ rc ∥ rs ∥ T));
 →C: (rs, Msg2);

3 C: Msg’2 ← MACH(LK, (Id ∥ rs ∥ T));
If Msg2 ≠ Msg’2 then reject S and Stop;

Else

 KS ← MACH(LK, (Id ∥ rc ∥ rs ∥ T));
 (Both Client and Server are authenticated)

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

99

Nevertheless it is not recommended to exchange such a huge amount of data with

a single encryption key. The endpoints should also negotiate the elapsed session

time and Bytes transferred thresholds to trigger a REAUTHENTICATION

REQUIRED message to renegotiate a new session key.

4.6 Analysis of HX Authentication Protocol

The strength of the cryptosystem relies on the following assumptions:

1) The CRHF is safe to use, meaning it is not feasible to find

preimages, second preimages or collisions.

2) HMAC and ENVELOPE have been proved to be safe [2.6.2]

[2.6.3].

3) The timestamp also works as a nonce, making it very difficult for a

Replay Attack to succeed [4.6.2.3].

Although HXAuth was designed to work with SRAP, it will also be analyzed

for possible vulnerabilities, if it is used outside SRAP, when client’s and server

share a common secret such as a pre-shared key or the server has a table of users

and their respective passwords stored.

4.6.1 Perfect Forward Secrecy

Perfect Forward Secrecy or simply Forward Secrecy means that a

compromised session key should only affect the compromised session, not

allowing earlier sessions to be compromised (Gunther, 1990). For example, if an

eavesdropper is recording every encrypted session and she was able to guess a

specific session key, she can only decrypt the messages exchanged during such

specific session. She cannot, however, decrypt the previous sessions.

HXAuth has this property. Each session key generated during the

authentication is unique.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

100

4.6.2 Resilience to Protocol Attacks

According to Boyd and Mathuria (Boyd & Mathuria, 2003), an authentication

protocol must be resilient against the following type of attacks:

4.6.2.1 Eavesdropping

Unless the selected CRHF is broken, weakened or has a trapdoor function, it is

infeasible to find preimages or second preimages of the keys. HMAC and

ENVELOPE were proved to be secure, even if they are used with broken CRHF,

such as MD5 or SHA1. For an eavesdropper to succeed in braking HXAuth, she

has to be able to break HMAC or ENVELOPE with the selected CRHF.

Otherwise she has no means to reproduce de session key or deduce the long term

key. The probability of guessing the session key is
1

min (2𝑛,2|𝐾|)
, where n is the

CHRF digest size in bits and |K| is the length of the long term key or pre-shared

secret in bits. When using a password as the pre-shared secret, password strength

rules apply. For example: a ten Byte password using printable characters only has

a strength of 6.57 bits per character, requiring 2
65.7

 brute-force attempts.

4.6.2.2 Modification

Modification has the best chance to successfully hijack a session, if the

attacker is able to guess the session key. This is why it is prudent to establish

elapsed time and Bytes transferred thresholds to mitigate session hijacking.

4.6.2.3 Replay

Depending on the acceptable time gap between the client and the server, a

replay attack can be used to try to guess the client’s long term key. During 5

minutes, it is possible to make 300 brute-force attacks, one per second, assuming

the server will not allow the same timestamp twice for a given client. As a result,

the server must have other mechanisms to protect itself against a prolonged replay

attack, like blocking the user’s account if an authentication fails too many times or

force a Fast Negotiation authentication (ROSEMBERG, 2014) pp. 65, when

HXAuth is being used with SRAP.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

101

4.6.2.4 Preplay

If used as a password based authentication system, HXAuth is vulnerable to

preplay attacks, like PHISHING (ROSEMBERG, 2014) pp. 41-43. If the attacker

is able to convince the client to put her credentials on a fake system, the attacker

will have the user’s ID and password to perpetrate a successful attack.

4.6.2.5 Reflection

We do not see reflection as a feasible way to break HXAuth because there is

no challenge involved. The client presents her credentials and the server simply

replies with a random value and a proof of possession of the shared secret. The

session key must be calculated by both endpoints, which cannot succeed without

the knowledge of the shared secret.

4.6.2.6 Denial of Service

It is relatively easy to perpetrate a DoS attack on HXAuth. All the attacker has

to do is to delay the communications long enough for the time gap between the

client and the server to become unacceptable. If this happens, communications

should be terminated.

4.6.2.7 Typing Attacks

There is very little information to be used for a typing attack. Using a

previously used salt every time is not enough to break the generated keys, since

the timestamp cannot be reused and the attacker has no control over the salt

generated by the server. However, it is a good policy, not allow the same salts to

be used twice in a roll.

4.6.2.8 Cryptanalysis

The strongest point of HXAuth and HX is that cryptanalysis applies to the

CRHF, HMAC and ENVELOPE. As long as the MAC algorithms and the CRHF

resists key recovery, preimage and second preimage attacks, an attacker will not

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

102

be able to predict or generate keystreams without the knowledge of the long term

key or shared secret.

4.6.2.9 Certificate Manipulation

Certificates are not used in HXAuth; therefore this attack does not apply.

Certificates are relevant in SRAP, particularly in the first time authentication if the

authentication partner of last resort if used.

4.6.2.10 Protocol Interaction

The user ID is always used to generate the next encryption key. Hence, if

multiple users are interacting with a server, each one with a unique user ID,

Protocol interaction does not apply. However, if the same user ID is used in

different sessions, e.g.: a single pre-shared key, other layer protocols must be able

to correctly identify the sessions, not allowing interaction among them.

4.6.3 Advantages of HXAuth

As the analysis showed, HXAuth is much faster than most symmetric key

authentication protocols; it is light and easy to be implemented; it is resilient to

attacks and can be used in a variety of scenarios well suited for smart cities. It

automatically negotiates a session key from 160 to 512 bits or possibly 1024 bits,

if Skein becomes a widely adopted CHRF.

The main disadvantage of HXAuth is the endpoints require time

synchronization. If the endpoints clocks are out of sync, the authentication will

fail and a session key will not be successfully negotiated. However, smart cities of

the near future will require more advanced sensors and devices. As a

consequence, not only the internal clock of the endpoints will need greater

precision but also they will have multiple sources for time synchronization,

besides a NTP server, such as GPS time synchronization or synchronization with

mobile phone networks. Multiple time synchronization options and a more precise

internal clock mitigate DoS attacks by time sync denial.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

103

4.7 HX Class Design

Although the developer can choose a CRHF and a cipher mode, default values

must be assigned to both parameters, making them optional, enforcing

Kerckhoff’s 6
th

 principle [2.1]. From the CRHF set {RIPEMD-160, SHA-256,

SHA-384, SHA-512, Whirlpool}, we chose SHA-512 the default CRHF and

HMAC/CTR the default cipher mode. This combination provides the strongest

keystream possible [2.5.9], [4.2]. Also, according to the NIST, the proper hash

digest size for the near future, when smart cities become a reality, is 512 bits

[Figure 1]. SHA-512 was preferred to Whirlpool considering the former is faster

than the latter [5.4.1] even though they both produce the same digest size.

Figure 26 - HX Class Main Attributes and Methods

The attributes and methods presented are the ones developers must be aware

of.

A second class, HXBlock was implemented to encrypt and decrypt streams. It

is suited to be used by HXAuth protocol. With HX-SIC, every time the encrypt()

or decrypt() methods are invoked, the counter is reset and encrypt() generates the

nonce. However, for streams, the counter cannot be reset every time a stream is

encrypted or the keystream would repeat itself. As a consequence, with HXBlock

we added additional methods to handle stream encryption and decryption.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

104

Figure 27 - HXBlock Class Methods

The setFirstBlock() method modifies the behavior of encryptBlock() and

decryptBlock(). When firstBlock is false, the counter is incremented each time

encryptBlock() or decryptBlock() is invoked. However when firstBlock is true,

the counter is reset when encryptBlock() or decrpytBlock() is invoked. The

encryptBlock() method generates the nonce and prepend it to the first ciphered

block. The decryptBlock() method removes the nonce from the first cipher block

and invokes setNonce(). Both encryptBlock() and encryptBlock() methods sets

first block to false right before they return the ciphered block or plain block

respectively. Both encryptBlock() and decryptBlock() use ENVELOPE/SIC as the

cipher mode.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

 Experimental Results 5

In this section, we report the results from the experiments designed to reject

the null hypotheses.

5.1 Survey Results

None of the participants was able to answer all the substantive questions

correctly. The study points in the direction most developers do not have enough

background in cryptography. They are unable to select a safe encryption algorithm

and a safe mode of operation. Even those who believed they have sufficient

background or have previously used cryptographic algorithms failed to respond

several simple questions about symmetric key cryptography.

5.1.1 Sample Size

Nineteen participants took the survey. Two of them failed to answer all the

questions and were eliminated. Six of them answered all the questions but

declared explicitly they have no knowledge on cryptography concepts and never

used any cryptographic algorithm before. Four had a bachelor’s degree and two

had a master’s degree. Nonetheless all 6 were eliminated from the sample. As a

result, we ended with an 11 participant sample size.

5.1.2 Sample Qualification

From the 11 participants, 7 had a bachelor’s degree and 4 had a master’s

degree. One of the participants had 10 years of experience but never used a

cryptographic algorithm in a project before. The participant was not rejected

because the participant believed she was fairly familiarized with cryptographic

algorithms and was confident she would be able to use them correctly in a project,

if she had access to the algorithms’ documentation.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

106

Years of Experience as a Software Developer Qty.

1 1

3 1

4 2

5 4

10 1

Table 8 – Participants Years of Experience as a Software Developer

Previous experience with cryptographic algorithms (# of Projects) Qty.

0 1

1 5

2 2

4 1

6 1

7 1

Table 9 - Participants past experience with cryptographic algorithms

How well familiarized are you with symmetric cryptographic algorithms? Qty.

Not familiarized at all 3

Not well familiarized 3

I’m fairly familiarized 5

Well familiarized 0

Totally familiarized 0

Table 10 - Familiarization Level of the Participants with Cryptographic Algorithms

Tables 8, 9 and 10 qualify the participants. Although 3 of them said they were

not familiarized at all with cryptographic algorithms, they have indeed used

cryptographic algorithms in at least one project and, as experienced developers,

should be able to recognize the best answer of the questions designed to test their

knowledge about symmetric cryptography.

5.1.3 Substantive Questions Answers

For each question we highlighted the best possible answer in green and the

worst possible answer, when applied, in red.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

107

Which cryptographic algorithm would you choose to encrypt a text file, containing

confidential information? Qty.

DES 0
3DES 0
AES ECB 256 0
AES CBC 128 0
RC4 1
Blowfish 0
I don ’t know how to choose 10

Table 11 – Answers from question 5

None of the developers chose AES/CBC with a 128bit key. One chose RC4

because she had used it before. RC4 would have been an excellent choice, if it had

not been broken recently [2.4.4.8]. Unfortunately the vast majority answered they

did not know how to choose a safe encryption algorithm. This question alone

helps to refute H02 - The developer chooses AES or Twofish with a mode other

than ECB. Nonetheless, additional confirmation will be available from the code

produced by the different sample of the controlled experiment empirical study

[5.3.2].

When you read SERPENT 256, for you, what is the meaning of the number 256? Qty.

Key size in Bytes 3

Key size in bits 4

Algorithm’s block size in bits 2

Both key size and Algorithm’s block size in bits 2

Algorithm’s block size in Bytes 0

Table 12 – Answers from question 6

The sixth question aims to check whether the participants understand the

difference between the key length and the block size and that the key length is

expressed in bits. Thus, they need to know the number 256 expresses the key

length in the algorithm SERPENT-256. According to the answers, only 4 out of

11 participants answered the question, correctly. We noticed that many

developers, in fact, make some confusion about the key size and the block size. 3

of the participants believed the encryption key size was in Bytes instead of bits.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

108

An incorrect key size in a block cipher algorithm is bound to raise an exception or

to return a null string as the resulting ciphertext, depending on the API.

The CBC (Cipher Block Chaining) encryption mode may use and IV (initialization
vector). For you, the IV is required or optional and what is its purpose? Qty.

Optional. Strengthening of the cryptographic algorithm 3

Required. Fill the message with the necessary bits to complete the block size 2
Optional. Mislead the Cryptanalyst by putting random information which will not be used in
the encryption 1
Optional. If not supplied by the developer, the algorithm will automatically create a random
IV 4

Optional. If not supplied by the developer, the algorithm will use a default value for the IV 1

Table 13 - Answers from question 7

Question 7 was tricky. The IV is random information required for the CBC

mode of operation, not optional. However its purpose is to strengthen the

algorithm by making sure the same plaintext produces a different ciphered text

encrypted with the same key. This makes it more difficult for the cryptanalyst to

infer relationships between segments of the encrypted message [2.2]. From the

answers, we can see there is some confusion between IV and Padding. Almost

half of developers think or hope the IV will be managed automatically by the

encryption algorithm. Because we had two questions to be considered with only

one choice, we decided to ask the developers for the best answer.

In your understanding, what is the purpose of Padding in block cipher algorithms? Qty.

Strengthening of the cryptographic algorithm 2

Fill the message with the necessary bits to complete the block size 7
Mislead the Cryptanalyst by putting a random information which will not be used in the
encryption 1
Optional. If not supplied by the developer, the algorithm will automatically create a random
Padding 1
Optional. If not supplied by the developer, the algorithm will use a default value for the
Padding 0

Table 14 - Answers for Question 8

This question had the objective to test if developers understand the concept of

padding. The majority answered correctly. Nevertheless to pad means exactly to

fill or to cover something. The developers might have deduced correctly the

purpose of padding by the answers.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

109

In relation to cryptographic keys and block cipher algorithms, what is your
understanding about the key size? Qty.

The grater the key size, the better 2

The key size must be exactly that same size of the block of the algorithm 2

The key size must be exactly the size in bits specified by the algorithm, not matter the block
size 3

If the key size is greater than the algorithm’s block size, the algorithm will truncate the key to
the block size automatically 3

If the key size is less than the algorithm’s block size, the algorithm will automatically
concatenate the key with the necessary blanks (spaces) needed to match the block size 2

Table 15 - Answers for Question 9

The ninth question explores even further the knowledge of the participant

about the key sizes in block cipher algorithms. Only 3 out of 11 participants chose

the correct answer. 4 participants think encryption algorithms automatically

handle keys that do not comply with the specifications. Not only that is not true

but it is also a dangerous assumption. If an algorithm requires a 128 bits long key

(16 Bytes) and the developer passes a key of only 64 bits (8 Bytes) long, assuming

the encryption algorithm would “padd” the last 64 bits of the encryption key, that

action would substantially decrease the security of the encryption. 2 of the

participants believe the greater the key size, the better, which is the principle of

the Vernam Cipher [2.3]. However, such concept does not apply to block cipher

algorithms. Finally, 7 of the participants confused the block length with key

length, which are two distinct concepts.

Concerning cryptographic Keys and IVs, what must be secret and what must be
transmitted openly with the ciphertext? Qty.

Both must be secret. The Key and the IV must be negotiated in a secure channel 4

Both must be transmitted openly with the ciphertext 0
The Key is secret and must be negotiated in a secure channel. The IV must be transmitted
openly with the ciphertext 4
The IV is secret and must be negotiated in a secure channel. The Key must be transmitted
openly with the ciphertext 2

Both must be secret. The HASH of the IV with the key must be informed 1

Table 16 - Answers for Question 10

The tenth question checks whether the participant knows exactly what

information should be transmitted in the open and what should be negotiated in a

secure channel: the encryption key or the IV. According to the answers, 4 out of

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

110

11 participants answered correctly. The key is secret and must be negotiated in a

secure channel. However, the IV is not and is transmitted openly with the

ciphertext. 4 answered both the IV and the Key must be secret. Albeit this policy

does not compromise security, it defeats the purpose of the IV [2.2]. 2 of the

participants even said the key must not be secret. Only the IV should be. The

participants who chose this answer, revealed a complete lack of understanding of

the most basic cryptography concept.

Concerning Padding Schemes, observe the following explanation about Padding and
choose the safest scheme in your opinion Qty.

I prefer ANSI X.923 because of its simplicity and confusion avoidance between valid nulls
(nulls which are part of the original message) and invalid nulls (the ones that are padded to
the message)

2

I prefer ISO 10126 because random bits will make it more difficult for a cryptanalyst 4

I prefer PKCS7 because it is even more guaranteed to identify valid and invalid bits (padded
bits) 1

I prefer filling the message with Nulls or Blanks because there is nothing simpler than these
schemes 0

I prefer a scheme that exists on any API in order to guarantee interoperability 4

Table 17 - Answers for Question 11

About question 11, there is no correct answer. Padding is used on the last

block of the message. If the message length is a multiple of the block size, an

entire block of Padding is added to the message. The most significant answers (I

prefer a scheme that exists on any API in order to guarantee interoperability and I

prefer ISO 10126 because random bits will make it more difficult for a

cryptanalyst) are exactly what we hoped to get. ISO 10126 is the most secure,

because it uses random Bytes for the Padding. The other padding schemes may be

vulnerable to the Padding Oracle Attack (Manger, 2001 pp. 230-238), if the

"oracle" (usually a server) leaks data about whether the padding of an encrypted

message is correct or not. Such data can allow attackers to decrypt or encrypt

messages through the oracle using the oracle's key, without the knowledge the

encryption key.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

111

PKCS7, ISO 10126 and ANSI X.923 are interoperable. The last Byte on the 3

schemes determines the length of the Padding. Once decrypted it will tell the

algorithm how many Bytes of the decrypted message need to be discarded.

Nevertheless, if blanks or nulls are used, a binary message my not be decrypted

correctly. Besides, when blanks or nulls are used, no padding occurs if the

message length is a multiple of the block size. None of the participants chose

Blanks or Nulls as their Padding schemes. Their comments confirm their primary

concern was interoperability and security.

From to the answers we collected, the only concept of block cipher encryption

developers from our sample seem to understand is Padding. However, confusion

between key sizes and block sizes and the lack of understanding of the purpose of

the IV, points in the direction that most developers are unable to use a block

cipher algorithm, like AES, correctly.

Considering none of the developers was able to answer all of the substantive

questions accurately, even though 10 out of 11 have had previous experience with

cryptographic algorithms and 5 out of 10 declared they were fairly familiarized

with cryptographic algorithms, we can also conclude they lack the necessary

background in symmetric key cryptography, thus rejecting H01.

5.2 Keystream Generation Experiment

We selected five CRHF for testing purposes: RIPEMD160, SHA-256, SHA-

384, SHA-512 and Whirlpool. For each CRHF, we generated one billion keys,

divided in 200 sets of 5 million keys. We used a HMAC [2.6.2] and ENVELOPE

[2.6.3] algorithms as pseudorandom algorithms to generate the keystreams to

emulate the Vernam Cipher [2.3], with each salt ranging from 0 to 2
31

. The

counter started at 0 and was incremented by one for each keystream generated.

The first set had counters ranging from 0 to 4,999,999. The second had counters

ranging from 5,000,000 to 9,999,999, and so on.

The generated keystreams were validated for uniqueness in a key-value

structure. An attempt to insert a duplicated keystream into the set would raise an

exception and would have not rejected the null hypothesis.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

112

Because of memory constraints, each set was saved in a CSV (comma

separated values) file and loaded into memory only when necessary. Each CSV

file contained the keystream in a hexadecimal format, the salt and the counter,

both 32 bit integers converted to strings. Two CSVs at a time were loaded into a

key-value structure. Again, a duplicate keystream would cause an exception and

the null hypothesis would not be rejected. All possible file combinations were

tested.

For all CHRF, we tested the basic MAC, HMAC and ENVELOPE as

keystreams generators.

We used the string: “Key_&_TesT-2017” without the quotes for the secret

key. The cost of a brute force attack on this key is 2
98.55,

 since each character

belongs to the printable character set (95 characters = 2
6.57

) and the length of the

key is 15 characters.

After the generation of the sets, each set was loaded into memory and

confronted with the others for duplicated keys, two at a time. As expected, there

were no key duplications and the null hypothesis (H04) was rejected for all CRHF

and MAC algorithms combination.

One billion keystreams is a tiny fraction of the 2
n/2

 number, which keystreams

duplication is expected. However in a real life application, a session key is not

expected to last long enough to transmit or receive 32GB of data, using SHA-256

to generate keystreams, or 64GB of data, when using SHA-512 instead. As a

result, 1 billion unique keystreams is large enough to refute H04.

The entire collection of sets requires more than 1.5TB. They have been

preserved for data provenance and will be made available for download upon

request.

The basic MAC algorithm was tested to prove any CRHF can be used to

generate keystreams, using the key as the seed. However, none of the CRHF

tested should use the basic MAC as a keystream generator in a real life

application, since they all use the Merkle-Damgård construction, which is

vulnerable to the Length Extension Attack [2.5.1].

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

113

5.3 Controlled Experiment Empirical Study

Twelve participants took part in the experiment. Half of them were asked to

start with HX and the other Half with an algorithm of her choice. The sample of

this experiment is not the same of the survey experiment.

One of the participants (number 5), which started with AES-CTR, failed to

implement a code using HX to encrypt and decrypt messages. The participant

modified the code from the previous tasks and, although HX was instantiated and

the masterKey was set, the encryption and decryptions methods were called from

the previous experiment. Not from the HX class.

One of the participants (number 8) which started with HX, was not able to

complete the task with the algorithm of her choice. Although the participant is a

veteran developer, she is a bearer of special needs. Having a 100% visual

impairment, the developer had to use an application to read the words of the IDE

and console and speak them into her earpiece. Also, she had to hear every single

word from the encrypted message, which was time consuming and irritating. She

gave up after one hour. She chose AES-CBC as a result from a search engine

query. However, she produced the simplest code from all participants, when HX

was used, without violating any cryptographic rules.

5.3.1 Sample Qualification

From the twelve participants, in regard to the highest academic degree, half

had a master’s degree, five had a bachelor’s degree and one had a high school

degree.

In regard to the experience as a software developer, we had a range in years

varying from 4 to 40 with an average of 12.6 years and 9.5 years as the median.

The table below displays the experience in software development of the

participants.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

114

Participant Years of experience as a software developer

8 40

7 34

12 4

3 9

4 11

11 10

9 7

1 7

5 5

2 4

6 10

10 10

Mean 12.6

Med 9.5

Table 18 - Sample Distribution of the Years of Experience as a Software Developer

Half of the participants had never used cryptographic algorithms. From the

other half, one participant had used cryptographic algorithms in one project, four

had used cryptographic algorithms in two projects and one had used cryptographic

algorithms in five projects.

Number of Projects using Cryptographic Algorithms Participants Qty.

0 6

1 1

2 4

5 1

Table 19 - Previous Experience with Cryptographic Algorithms

All of the participants have, at least, some familiarity with Java. None failed to

complete the tasks due to a lack of familiarity with Java.

Only two of the developers declared they had previous training in

cryptography. However both were self-taught in cryptography. None have had any

formal training in cryptography.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

115

When we asked the developers about who, in their organization, was

responsible to inspect the code in order to detect security vulnerabilities, half of

the participants answered nobody had such a responsibility.

 Professional Responsible for Inspecting the Code for
Security Vulnerabilities

Qty.

None 6

The developer 1

The project leader or manager 3

A security expert (either internal or outsourced) 2

Table 20 - Professional responsible for vulnerabilities in the code in the
organizations of the participants

However, when we asked the participants about who should be responsible to

check or detect violations in encryption rules, only two of the participants believe

the developer should be the one responsible. The others believe an expert, a plug-

in or the class itself, chosen to encrypt and decrypt messages, should have that

responsibility.

Who Should Be Responsible for Encryption Rules
Violations Checks

Qty.

The developer 2

A plug-in or external tool 1

The project leader or manager 1

A security expert (either internal or outsourced) 4

The Class chosen for encryption or decryption 4

Table 21 - Professional who should be responsible for encryption rules violations

5.3.2 Experiment Results

After analyzing the code produced by the participants and verifying their

answers of the feedback form, we were able compare the effectiveness and the

efficiency of HX in relation to the both the chosen algorithm and AES-CTR

algorithms. We used the following criteria:

1) Safe Encryption Algorithm: Since none of the participants chose Twofish,

any participant who did not choose AES as her encryption algorithm, were

automatically marked as unable to choose a safe encryption algorithm.

Nevertheless, if a participant chose AES, we did not automatically mark

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

116

her as someone able to choose a safe encryption algorithm. Depending on

how she answered the feedback form question of why she decided to

choose the chosen algorithm, she may have been marked as unable to

choose a safe encryption algorithm. We had answers saying AES was

chosen because it was the first the developer found in a search engine

query about encryption. From that particular answer we inferred the

participant was unable to choose a safe encryption algorithm. Still,

participants who said they have used AES before or they researched and

found an article saying AES was safe or the most used were marked as

able to choose a safe encryption algorithm. We defined this criterion as the

conscious choice in the table results.

2) If the developer chose a trivial key, the plaintext as the key, her own name

as the key, a key which is likely to be in a dictionary or a key with a

complexity less than 2
64

 bits, such choice was marked as a weak key

violation. We had one special case where the developer generated a

random encryption key but used it as the IV. Since IVs are transmitted in

the open, the participant was in fact disclosing the encryption key. Since

disclosing the secret key is the worst possible mistake, we decided to mark

such mistake as a weak key violation with a key complexity of 2
0
.

3) If the developer chose EBC mode of operation, either because she chose

AES with default options or explicitly declared ECB mode, such decision

was marked as an unsafe operation mode violation.

4) If the developer used a constant IV in CBC or CTR modes of operation,

this was marked as a constant IV violation.

5) If the developer chose AES/CBC for the free choice algorithm task but did

not make any modification in the code other than change the instance from

(AES/CBC/PKCS5Padding) to (AES/CTR/NoPadding) in the AES-CTR

task, the time taken to implement the free choice task was used as the time

of AES-CTR task. Otherwise, the real time spent in the AES-CTR task

was used.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

117

The participants numbered 1 to 6 started the experiment with the free choice

of the algorithm task. The participants numbered 7 to 12 started the experiment

with the HX task.

5.3.2.1 Effectiveness Test Results

Based on the criteria previously mentioned and the analysis of the code

produced by the participants, we compiled the following tables:

Participant Choosen AlgorithmWeak Alg Conscious Choice Weak Key ECB Mode Constant IV Total Violations Notes Key Complexity

1 AES/ECB 0 0 1 1 0 2 Dictionary 2^83

2 AES/CBC 0 1 0 0 1 2 2^75

3 AES 0 0 1 0 1 2 2^41,5

4 AES/CBC 0 1 0 0 1 2 2^128

5 AES/CTR 0 0 1 0 1 2 Used the Key as IV 2^0

6 AES/CBC 0 1 0 0 1 2 2^106

7 DES 1 0 1 1 0 3 2^41,5

9 AES/CBC 0 0 0 0 0 0 2^128

10 AES/ECB Default 0 1 0 1 0 2 2^101

11 AES/ECB Default 0 0 1 1 0 2 Own Name as Key 2^86

12 AES/ECB Default 0 0 1 1 0 2 Trivial Key 2^75

8 AES/CBC 0 0 Failed to Complete

Totals 1 4 6 5 5 21

Cryptographic Rules Violations

Table 22 - Free Choice Algorithm Test Results

From the table above, we can see that all but one of the participants violated,

at least, one rule, with an average of 2 violations per participant and 21 violations

in total. This number reinforces the conclusion developers do not have the basic

knowledge to use cryptographic algorithms and reinforces the rejection of H01.

Four of the participants were able to choose a safe encryption algorithm but

eight weren’t. Of those who did choose a safe encryption algorithm, two declared

they have had previous training in cryptography. With only 1/3 of the participants

were able to choose a safe encryption algorithm and none finished the task

without a violation (other than a weak key), we can conclude, in general,

developers do not know how to consciously choose a safe encryption algorithm

and therefore H02 is rejected.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

118

Participant Weak Key Violation Constant IV Violation Notes Key Complexity

1 0 0 Failed to Complete 2^83

2 0 1 2^75

3 1 1 2^41,5

4 0 0 Failed to Complete 2^128

5 1 1 Used the Key as IV 2^0

6 0 1 2^106

7 0 0 2^83

9 1 1 Trivial Key 2^64

10 0 0 2^101

11 1 1 Own Name as Key 2^86

12 0 0 Failed to Complete 2^83

8 Failed to Complete

Table 23 - AES-CTR Task results

In relation to the AES-CTR task, only two of the participants were able to

complete the task without violating the non-random IV rule, which is critical in

CTR mode [2.4.3.5]. They also managed to choose an encryption key strong

enough not to be found by a dictionary attack or by brute force attack. Four of the

participants failed to complete the tasks. However participants 4 and 12 would

have succeeded in completing the task if they had instantiated the Cipher class

with (AES/CTR/NoPadding) instead of (AES/CBC/PKCS5Padding). The results

leads us into the conclusion developers are not able to use AES-CTR, thus

rejecting H03.

In relation to HX, the only rule developers can violate is the choice of a weak

key, which is exactly what Kerckhoff defined as an ideal cryptosystem [2.1], in

terms of usability.

Participant Weak Key Violation Notes Key Complexity

1 1 Trivial Key 2^83

2 0 2^422

3 1 2^41,5

4 0 2^128

5 0 Failed to Complete 2^0

6 0 2^422

7 1 2^36

9 1 Trivial Key 2^64

10 0 2^422

11 1 Own Name as Key 2^38

12 1 Used plainText as Key 2^83

8 0 2^240

Table 24 - HX Task Results

As stated before, the participant number 5 failed to complete the HX

encryption and decryption task. All others were able to complete the task. Still,

half of the participants violated the Do not use a weak key rule. Six participants

either generated their encryption keys or chose a strong encryption key. All

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

119

consoles outputs of the codes execution of the participants who successfully

completed the task, show different ciphered texts for the same plaintext encrypted

with the same key on each of the five iterations.

The following table compares the total number of cryptographic rules

violations on all three tasks.

Task # of
Violations

of participants who
completed the task

Violations/Participant

Free choice algorithm 21 11 1.91

AES-CTR 10 8 1.25

HX 6 11 0.55

Table 25 - Total Cryptographic Rules Violations Comparison

From

Table 25], we can verify developers violate less cryptographic rules with HX

than they do with other algorithms, thus we can reject H05.

5.3.2.2 Efficiency Test Results

In accordance with the criteria defined in [5.3.2], we produced the following

tables:

Participant Start Time End Time Time Spent Notes

1 18:44 19:28 00:44

2 10:00 11:10 01:10

3 09:30 11:26 01:56

4 12:40 13:05 00:25

5 18:05 18:45 00:40

6 20:28 21:16 00:48

7 09:45 10:20 00:35

9 16:15 16:41 00:26

10 20:00 20:28 00:28

11 12:22 12:35 00:13

12 09:47 10:15 00:28

8 Failed to Complete

Table 26 - Free Choice Algorithm Time Spent on Task

In the Free Choice Algorithm task, the total time spent in the implementation

of the code by the 11 developers who successfully completed the task was 7 hours

and 53 minutes. The average time of the task was 43 minutes.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

120

Participant Start Time End Time Time Spent Notes

1 Failed to Complete

2 10:00 11:10 01:10

3 09:30 11:26 01:56

4 Failed to Complete

5 18:05 18:45 00:40

6 20:28 21:16 00:48

7 10:21 10:52 00:31

9 16:42 16:59 00:17

10 20:34 20:59 00:25

11 12:35 12:52 00:17

12 Failed to Complete

8 Failed to Complete

Table 27 - AES-CTR Time Spent on Task

In the AES-CTR task, the total time spent in the implementation of the code

by the 8 developers who successfully completed the task was 6 hours and 4

minutes. The average time of the task was 45 minutes.

Participant Start Time End Time Time Spent Notes

1 19:50 20:05 00:15

2 11:30 11:40 00:10

3 11:31 11:43 00:12

4 13:14 13:20 00:06

5 Failed to Complete

6 21:53 22:10 00:17

7 09:16 09:43 00:27

9 15:45 16:12 00:27

10 19:37 19:44 00:07

11 12:16 12:22 00:06

12 09:21 09:47 00:26

8 09:45 10:25 00:40

Table 28 - HX Time Spent on Task

In the HX task, the total time spent in the implementation of the code by the

11 developers who successfully completed the task was 3 hours and 13 minutes.

The average time of the task was 17 minutes.

Task # of participants who
completed the task

Total Time
Spent

Average
Time/Participant

Free choice algorithm 11 7:53 43’

AES-CTR 8 6:04 45’

HX 11 3:13 11’

Table 29 - Efficiency Test Comparison

From Table 29, we can verify developers take less time to implement an

encryption and decryption application with HX than they do with other encryption

algorithms, even without example codes available to copy and paste. HX is more

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

121

efficient than the other algorithms in the usability context. As a result, we can

reject H06.

5.3.2.3 Feedback Form Additional Information

All of the participants declared they copied and pasted code from a forum or

from some other documentation in order to complete the free choice algorithm

task. The participants 3, 4, 6, and 9 declared they checked the code for some

vulnerability. Nevertheless only the participant 9 was able to complete the task

without any violation. Even so, she did not specify a random IV. She left it up to

the Cipher class default behavior, which is to randomize the IV.

The participant’s behaviors were repeated with the AES-CTR task. The

participant 2, however, did not copy any code from forums. All she did was to

change the instance of the Cipher class from (AES/CBC/PKCS5Padding) to

(AES/CTR/NoPadding). The participant 9, who completed the free choice

algorithm task without any violations, chose a weak key and a constant IV in the

AES-CTR task. The participants 7 and 10, which were the only ones who

completed the AES-CTR task successfully, did copy and paste code but did not

checked the code for vulnerabilities.

None of the participants opted to change the default hash algorithm and cipher

mode of the HX class. Only one participant (number 10) declared she examined

the options and decided the default values were the “best” choices.

About the question that asked if the participant found strange the fact the

encrypted message from the AES-CTR task was different each time the plaintext

was encrypted, even though the key was the same, only two participants answered

it was supposed to be this way. This is due the fact the CTR mode of operation

requires a nonce [2.4.3.5]. Nonetheless the participant 7 reported she chose AES

because it was the first algorithm found in a Google query. She did not make a

conscious choice on the encryption algorithm. In addition, she only changed the

instance of the Cipher class form CBC to CTR to complete the AES-CTR task.

We deduce she does not know the purpose of the IV but was lucky to find a good

example from a forum. Nonetheless, the participant 10 did make a conscious

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

122

choice in the AES algorithm and produced different codes for the free choice and

AES-CTR tasks. She noticed the HX produced different ciphered texts for the

same plaintext and key on each loop and associated it as the right behavior for an

encryption algorithm. If she started the test with the free choice algorithm first, the

answer could have been different.

We did not expect half the participants would choose weak keys for the HX

experiment. We hoped all the participants would have thought of the key like a

password and choose a strong password or passphrase for the key or that they

would choose to invoke the generateMasterKey() method.

5.3.2.4 Qualitative Analysis

From the experiment results, the qualification and the feedback forms, we

compiled the following table:

Participant Analysis

P1 The participant copied and pasted the code used in the experiments,

claiming it was the first example she found in a web search. She did not

check the code for vulnerabilities. She said “AES-CTR is not safe,

because it is too difficult to use”. She said she did notice the encrypted

message was different for each loop in AES-CBC, but it was not. She

confused the console output from the HX task. She had no idea why the

ciphered texts were different in the HX experiment. From that statement,

we can also infer she does not know the purpose of the IV. Even having

copying and pasting code from forums, she found the experiment difficult

to complete. She violated rules the do not use ECB mode and the do not

use a weak key. She has a Master’s degree, seven years of experience in

software development and used encryption algorithms in five projects. She

claimed she was highly familiarized with the Java language and had no

formal training in cryptography. With HX, she violated the rule do not use a

weak key.

Conclusion: we are talking about a specialist in computer science, with

experience in software development, previous experience with

cryptographic algorithms and good knowledge on the Java language.

However she does not seem to understand the basics of cryptography.

P2 The participant copied and pasted the code used in the experiments. She

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

123

claimed she had previous experience with AES, nevertheless she did not

check the code for vulnerabilities. She used a constant IV on both free

choice and AES-CTR task. Even with four years of experience in software

development, having used cryptographic algorithms two projects, she

claimed the tasks were relatively hard to complete. She had a bachelor’s

degree in informatics and when asked if the ciphered texts were different

on each loop, she answered in her code it did not happen. She made

conscious choices on the algorithm and mode of operation, did not choose

a weak key, had not formal training in cryptography and was highly

familiarized with the Java language.

Conclusion: the subject demonstrates concerns only about the strength of

the key. She seems to have chosen AES-CBC by chance and does not

seem to know the purpose of the IV. Besides the need of a strong

encryption key, the participant did not show good knowledge of best

practices in cryptography.

P3 The participant copied and pasted the code used in the experiments,

claiming it was the first example she found in a web search. She did not

check the code for vulnerabilities. When asked if the ciphered texts were

different on each loop, she answered in her code it did not happen. Even

having copying and pasting code from forums, she found the experiment

difficult to complete the first task but not the second. She violated no rules

on the first task but chose a weak key and a constant IV for the AES-CTR

task. She has a bachelor’s degree, nine years of experience in software

development, not having used encryption algorithms in any project before.

She claimed she was totally familiarized with the Java language but had

no formal training in cryptography. With HX, she violated the rule do not

use a weak key.

Conclusion: this subject is a senior Java developer, with lots of experience

in software development, who seem to have accomplished the first task by

luck in choosing a secure code from a forum. Nevertheless she does not

seem to understand the basics of cryptography.

P4 The participant copied and pasted the code used in the experiments,

claiming it was conscious choice because she is well known about

cryptography principles. She did check the code for vulnerabilities.

Nevertheless she failed to complete the AES-CTR task and violated the do

not use a constant IV rule. She said it answered it does not matter if the

ciphered texts are always the same. What matters is the message was

correctly encrypted and decrypted. From that statement, we can also infer

she does not know the purpose of the IV. Even having copying and

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

124

pasting code from forums, she did not find the experiment difficult to

complete. She has a Master’s degree, eleven years of experience in

software development and used encryption algorithms in one project. She

claimed she was totally familiarized with the Java language and had formal

training in cryptography as a self-taught learned in the domain. With HX,

she violated no rules

Conclusion: we are talking about a specialist in computer science, with lots

of experience in software development. It was a surprise the experiments

showed she does not know the basic concepts of cryptography, except the

need of a strong key, even though she taught she did.

P5 The participant copied and pasted the code used in the experiments,

claiming it was the first example she found in a google search. She did not

check the code for vulnerabilities. When asked if the ciphered texts were

different on each loop, she answered in her code it did not happen. She

found the experiment relatively easy to complete, although she took the

longest time to complete the experiment and made the worst possible

mistake: used the key as the IV, even though the key itself was not weak.

She also failed to complete the HX task, because she instantiated the HX

class, set the masterKey but called encryption and decryption methods

from the previous task, probably due to fatigue. We have no doubt she

would be able to complete the HX task without any violations if HX was the

first task. She has a bachelor’s degree, five years of experience in

software development, not having used encryption algorithms in any

project before. She claimed she was fairly familiarized with the Java

language but had no formal training in cryptography.

Conclusion: at the time of this work, this subject was taking the final

semester to get her Master’s degree. She has a significant experience in

software development. However she demonstrated to be unable to work

with cryptography.

P6 The participant copied and pasted code from forums, but claimed she did

check the code for vulnerabilities. Having a Master’s degree, she did what

any researched supposed to do: she quickly researched about encryption

algorithms and chose AES-CBC for the first task. She chose a strong key

but used a constant IV. On the HX task, she was one of the two who

invoked the method generateMasterKey() and produced the strongest

possible key, completing the HX task with no violations. Having ten years

of experience in software development, without previous experience with

cryptographic algorithms, she claimed she was highly familiarized with the

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

125

Java language and had no problems with the implementation of the tasks.

Conclusion: although this subject has no formal training in cryptography,

she was able to complete the HX task without aby violations and was able

to maximize the security of the encryption. However with a more difficult to

use API, she was not able to complete the tasks without violations.

P7 The subject copied and pasted code from forums, claiming it was the first

code that appeared after a web search. She did not check the code for

vulnerabilities. She assumed the code from the forum was safe. She did

notice the encryption was different on each encryption loop, but did not

know why it happened, demonstrating she does not know the purpose of

the IV and completed the AES-CTR task not violating any rule by luck.

However, on the second task, she was not lucky and used an unsafe code

which used DES mode of operation and a weak key. The same weak key

was used in the HX task. The participant had a bachelor’s degree in

Computer Science and a Latu-Sensu specialization course. She has thirty

four years of experience in software development and claimed she used

the Java language professionally, even though she did not work with

encryption algorithms before.

Conclusion: experience in software development had no impact on

security issues. The participant assumed any code posted in a forum,

which was not refuted by another developer is secure. A dangerous

assumption.

P8 Even though this subject has visual impairment, she was able to complete

the HX task, producing the simplest code. Her disability, however,

impacted on the other tasks. Having the need to use an earpiece to read

the console output and the hexadecimal ciphered texts caused frustration

and fatigue. She gave up after one hour. The participant has a high school

degree and forty years of experience in software development, although

she has not used encryption algorithms previously. She was totally

familiarized with the Java language and had no formal training in

cryptography.

Conclusion: an easy to use API helped the subject with complete the HX

task, while a more complicated API, even with the help of codes from

forums was more difficult to handle.

P9 The subject copied and pasted code from forums, claiming it was the first

code found on a google query. She said she checked the code for

vulnerabilities and the code was successful in completing the first task

without any violations. On the AES-CTR task, however, the code copied,

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

126

and checked for vulnerabilities, produced the worst results. The key was

weak the IV was fixed. Even though she claimed she noticed the ciphered

texts were different after each loop, she declared it does not matter if the

ciphered texts are constant or different. What matters is the proper

encryption and decryption. The subject has a Master’s degree and seven

years of experience in software development. She had no previous

experience with encryption algorithms, is totally familiarized with the Java

language but had not formal training in cryptography. She completed the

HX task, violating the not to choose a weak key rule, the same she used in

the AES-CTR task.

Conclusion: The subject does not seem to take privacy and security

seriously or she assumes a security issues are the responsibility of

another professional, either internal in the software house or an

outsourced security expert.

P10 The subject copied and pasted code from forums, claiming she checked

the code for vulnerabilities. Even though she violated the IV rule on the

free choice algorithm, she implemented a very robust code to generate

pseudo-random nonces for the AES-CTR task and completed that task

without any violations. The participant has a Master’s degree, ten years of

experience in software development and she had used encryption

algorithms in two previous projects. She is totally familiarized with the java

language and claimed she had formal training in cryptography. She

completed the HX task without any violations and she was the other

participant who invoked the generateMasterKey() method, producing the

strongest ciphered texts.

Conclusion: even for an experienced developer with formal training in

cryptography, it is difficult not to violate any best practice rule in

cryptography. This emphasizes the need of a simple and easy to use

encryption API, which automatically sets maximum security settings by

default upon instantiation.

P11 The participant copied and pasted the code used in the experiments,

claiming it was the first example she found in a web search. She did not

check the code for vulnerabilities. When asked if the ciphered texts were

different on each loop, she answered she did not notice and it does not

matter. What matters is to encrypt and decrypt the message correctly. She

found the experiment easy to complete. the first task but not the second.

She violated no rules on the first task but chose a weak key and a

constant IV for the AES-CTR task. She has a Master’s degree, ten years

of experience in software development, having used encryption algorithms

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

127

in two projects before. She claimed she was fairly familiarized with the

Java language but had no formal training in cryptography. With HX, she

violated the rule do not use a weak key. She used her own name as the

key on all experiments. With the free choice task, she chose AES-ECB

and on the AES-CTR used a fixed IV.

Conclusion: The subject is a specialist in computer science, with

experience in software development, previous experience with

cryptographic algorithms and fair knowledge on the Java language.

However she does not seem to understand the basics of cryptography.

P12 The participant copied and pasted code from forums on both task1 and

task2. She did not check the code for vulnerabilities and justified the codes

were found on a search query. She chose AES-ECB (default instantiation

of the Cipher class) with a trivial key. She failed to complete the second

task, because she instantiated AES-CBC instead of AES-CTR. Even if she

instantiated the class correctly she would have used a fixed IV and the

same trivial key. On HX, she also used the same weak key. When asked

about the different ciphered texts on each loop, she answered it is

supposed to be this way, even though in her code the ciphered texts were

the same on every loop. She has a bachelor’s degree, four years of

experience in software development and claimed she used cryptographic

algorithms in two previous projects. She has no formal training in

cryptography but is highly familiarized with the Java language.

Conclusion: the participant either does not understand the basic principles

of cryptography or she did not take the experiment seriously.

From the empirical studies, we can conclude developers from the sample

misuse cryptographic APIs due to a lack of formal training. They confuse basic

concepts such as an IV and padding, cannot choose a safe encryption algorithm

and same do not even understand the importance of the encryption key. Although

the sample sizes of both the survey and the controlled experiment were small,

recent studies confirm our conclusions. Braga and Dahab found out cryptography

misuse is common in on-line communities and are recurrent in developer’s

discussions. The authors concluded developers learn to use cryptographic APIs

without learning the tricky details of cryptography (Braga & Dahab, 2017). In

their experiments, the authors observed experienced developers using fixed IVs

and some developers using obsolete encryption algorithms.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

128

Other researches also conducted experiments to understand security mistakes

made by developers. In a recent study, the authors observed 53% of the

developers used a fixed IV or a not random enough IV, or the use of a weak

encryption algorithm (Votipka, et al., 2019).

5.4 Performance Tests

In addition to the experiments designed to prove the research questions, we

designed two other test scenarios, where we compared the performance of HX

with AES, first encrypting and decrypting messages in a computer and second in a

VPN simulated environment, where we measured how the encryption affected

network performance at different network speeds.

Initially we made a comparison with HMAC, ENVELOPE and AES to

determine the basic performance of the algorithms. The HMAC and the hash

functions of the SHA-512 algorithm are built-in in the GNUCrypto
III

 API and

were reused by the HX package. We implemented the padding and concatenations

necessary for the ENVELOPE algorithm, before applying the SHA-512, also from

GNUCrypto. The AES algorithm is available in the Java Cipher Class. For all the

three algorithms, we used the same 256 bit Key. The GNUCrypto API is fully

implemented in Java.

Figure 28 - MAC Algorithms vs AES Throughput

III

 The GNUCrypto Project - http://www.gnu.org/software/gnu-crypto/

http://www.gnu.org/software/gnu-crypto/
DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

129

The tests shows HMAC is twice as fast as AES and ENVELOPE is twice as

fast as HMAC.

5.4.1 Encryption and Decryption Tests

In this scenario, we encrypted and decrypted messages of several sizes. We

compared the time taken using AES-256-CTR against HX with most hash

algorithms and cipher modes. We tested a JAVA application, executed in Core I7-

2600 CPU, running at 3.40GHz with 16GB DDR3-1,333 RAM and 2 SSD Drives.

The OS is Windows 7 Ultimate 64 bits. We obtained the following average

encryption/decryption results:

Figure 29 - HX vs AES Performance

The chart shows that for messages up to 200 Bytes, HX can beat AES. For

messages greater than 200 Bytes, AES always beat HX. The greater the message

size, the more AES outperforms HX. For 8KB messages, AES is twice as fast as

HX. The hash algorithm which performed the best was SHA-512. With messages

up to 512 Bytes it beats SHA-384. The latter beats the former, but the difference is

not significant. However 512 bits of security instead of 384 bits is significant.

Also a 512 bit keystream can encrypt 33% more information than a 384 bit [Table

6]. ENVELOPE beats HMAC in terms of speed, but the cost of manipulating salts

in CTR operation mode made no difference against the single nonce of the SIC

operation mode in HX. The table below shows the test results. We highlighted in

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

130

green the cells where HX beets AES. The cells where HX had worse performance

than AES were highlighted in red.

Algorithm/MsgSize 48 64 100 128 256 512 1024 1500 2304 5120 8192

SHA256-HMAC/CTR 3573 1586 1540 1203 1189 1237 1121 1113 1121 1103 1098

SHA256-ENVELOPE/CTR 1385 656 735 574 533 513 506 504 506 496 495

SHA256-ENVELOPE/SIC 1604 711 840 656 629 581 581 574 571 561 563

SHA384-HMAC/CTR 2260 1914 1680 1313 1244 1135 1111 1092 1086 1064 1062

SHA384-ENVELOPE/CTR 729 656 525 438 410 355 345 341 336 327 326

SHA384-ENVELOPE/SIC 802 766 665 547 479 444 427 420 416 407 405

SHA512-HMAC/CTR 2115 1094 1190 984 889 854 848 854 857 828 823

SHA512-ENVELOPE/CTR 729 547 560 438 424 383 376 380 377 364 366

SHA512-ENVELOPE/SIC 656 492 525 410 383 355 349 350 348 337 337

Whirlpool-HMAC/CTR 1896 1094 1330 957 943 923 902 908 911 880 875

Whirlpool-ENVELOPE/CTR 948 766 805 629 588 567 554 560 559 543 541

Whirlpool-ENVELOPE/SIC 1094 930 910 738 670 649 639 646 649 628 625

AES-256/CTR 3354 1695 945 656 328 164 126 114 105 94 92

Table 30 - HX vs AES Performance Comparison (Cycles/Byte)

The experiment shows HX is fast enough to encrypt real time audio and video

communications between two endpoints, since the encryption of an Ethernet

frame (1500 Bytes) and a Wi-Fi Ethernet 802.11 frame (2304 Bytes) performs at

hundreds of microseconds. Such an overhead is insignificant for real time audio

and VoIP communications. VoIP quality is considered excellent when the delay

time between endpoints is less than 150ms (Barry & Talha, 2013). With a more

efficient bitwise XOR operation between the keystream and the plaintext and

ciphered blocks concatenation, HX could beat AES-CTR in every scenario.

5.4.2 VPN Performance Tests

In this scenario, we assumed a client and a server had already negotiated a

session key and wish to encrypt their communications with HX. We also

compared HXBlock, setup to use SHA-512 ENVELOPE/SIC cipher mode, with

AES-256-GCM (Galois Counter Mode) in a transport mode or host-host VPN.

A host-host VPN has a significantly lower overhead when compared with a

tunnel-mode VPN, where the original packet is encapsulated by another set of IP

headers. The transport mode, however, encrypts only the payload and ESP

(Encapsulated Security Payload) trailer; hence the IP header of the original packet

is not encrypted (Juniper Networks, 2017).

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

131

Figure 30 – VPN connection in transport mode

The environment consists of two virtual machines (VMs) in two different

physical machines and a physical switch.

The test consists in downloading a text file from the server VM to the client

VM. The file was generated by a real life banking application. The goal is to

compare the transfer speed of the download operation. Each VM is located in a

different physical machine: the physical computer and the physical server. The

following figure better illustrates the test environment.

Figure 31 – VPN Test Environment

5.4.2.1 Hardware Description

The physical computer had an Intel Core I7-4770 CPU, running at 3.40GHz,

with 16GB DDR3 1,600 RAM, a Gigabit NIC and 2 SSD Drives. The host OS

was Windows 10 pro 64 bits.

The physical server had an AMD FX-8320 CPU, running at 3.5GHz, with

8GB DDR3 1,600 RAM, two Gigabit NIC and 2 SSD Drives. The host OS was

the VMWare ESXi 6.7.0.

The physical switch was the LAN ports of a Draytek Vigor 2925 Router.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

132

5.4.2.2 Virtual Machines Description

The client VM was configured with a RedHat Linux Enterprise 8.0 OS, 4GB

non-shared memory, 2 VCPUs and one virtual NIC running in a VMWare

Workstation 15.1.0. The VPN server VM was also configured with a RedHat

Linux Enterprise 8.0, 4GB non-shared memory, 4 VCPUs and one virtual NIC.

Network Description

The Client VM IP address was 192.168.0.26/24, while the server VM IP

address was 192.168.0.27/24. The server application opened a TCP socket

listening on the port 5501.

5.4.2.3 Tasks Description

We executed four tasks to test compare HX performance with AES. On all

four tasks we transmit streams of 1500 Bytes (the stream buffer), which is the

maximum size of an Ethernet frame. The file size was 11.3 Megabytes. The

bandwidth was limited by the client VM, where we set both incoming and

outgoing maximum transfer rates to 10, 20, 45 and 100 Mbps.

In the first task, we set the target IP address in the client VM application to

192.168.0.27. By doing so, the NAT on each router allows the client to connect to

the server VM directly, without a VPN tunnel. Once the TCP connection was

established, the server VM read 1500 Bytes from the file at a time and sent the

stream to the client VM via the TCP socket. Upon receiving the stream, the client

VM wrote the stream to the disk. The elapsed time was calculated and displayed

in the console before the flushing operation and the closing of the downloaded

file. The file was downloaded 20 times. The average transfer speed of this task,

which represents the maximum performance of our test algorithm can reach, is our

control variable.

In the second task, we established a transport mode VPN and set the target IP

address in the client VM to 10.0.2.1. The rest of the task was exactly as described

in the first task.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

133

The third task is similar to the second task, but we established tunnel mode

VPN instead by modifying the ipsec.conf file (RedHat Inc., 2019).

In the fourth task, the target IP address returned to 192.168.027. However,

both the server and the client applications were modified to respectively encrypt

and decrypt the stream, using HXBlock. The server encrypted the stream prior to

sending it via the socket and the client decrypted the stream prior to writing it to

the disk. By encrypting and decrypting the file, we simulated a VPN connection

with HX as the encryption algorithm.

Both the client and the server codes were controlled by a single Boolean

variable: usingEncryption. When the variable is set to false, encryption and

decryption methods are not invoked. The average transfer speeds from tasks 2 to 4

were our dependent variables. We interfered neither in the MAC messages nor

over the rekeying process, which occur in VPN communications.

The experiment produced the following results:

Figure 32 - HX vs AES VPN Throughput Comparison

The experiment shows the encryption cost is negligible. Considering the

LibreSwan library, used by the IPSEC daemon in the RedHat Enterprise 8.0, is

compiled in C and capable of calling AES hardware instructions, while HX is

compiled in Java and there is no SHA-512 hardware instruction, we conclude both

AES and HX algorithms achieved similar results in the experiment.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

134

We can clearly see the encapsulation cost of the tunnel mode in the 100Mbps

test. We were unable to conduct the test at lower speeds. The VPN tunnel fails and

the IPSEC daemon had to be restarted on both virtual machines.

The performance tests show HX is very versatile and can be used in many

scenarios to secure smart cities applications and encrypted data collection.

As an example, Cruz et al. proposed in 2010 an encryption scheme for

exchanging SMS and MMS messages in a mobile network, which used AES-128

as the encryption algorithm (Cruz, et al., 2010). The scheme can have its security

enhanced by HX, replacing AES-128, using keys up to 512 bits instead.

5.5 Comparison between HX and the State of the Art Algorithms

Based on the NIST key recommendations [Figure 1], the usability index in

section [2.4.4.11] and the experiments from this section, we built the following

tables for comparison of HX against the state of the art algorithms.

Algorithm Block Cipher or
Stream Cipher

Maximum Key Length Usability Index

Twofish Block 256 3

Serpent Block 256 3

AES Block 256 3

HC-256 Stream 256 7

Salsa20 Stream 256 7

HX Stream 512 8

Table 31 - Encryption Algorithms Security and Usability Comparison

In Table 31], HX hash algorithm is either SHA-512 or Whirlpool. The

maximum key length will be the same, if SHA3-512 is used or 1024 bits, if

SKEIN-1024 is used. Since the hash algorithm and cipher mode are optional

parameters, the only required parameters for HX is the plaintext, the encryption

key, which is flexible and the function (encrypt or decrypt). This puts HX in the

same Usability Index as the now unsafe RC4, with the advantage over the RC4

that HX produces different ciphered texts for the same key and plaintext each time

the encryption method is invoked, while RC4 does not.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

135

5.6 Post-Quantum Cryptography Comparison

Figure 1 shows the minimum key length recommendations for the near future,

which applications for smart cities will have to comply with. The

recommendations, however, do not consider Quantum Computing. If a Quantum

Computer with enough qubits to brake current cyphers becomes available, post-

quantum cryptography must be considered. Consequently, most algorithms in use

today would not comply with minimum key length recommendations. The

following table shows the impact of Quantum Computing resistance [2.8].

Algorithm Maximum
Key Length

Effective Key Length
(Classical Computer)

Effective Key Length
(Quantum Computer)

Complies with
minimum key
requirements

Twofish 256 255 128 No

Serpent 256 255 128 No

AES 256 255 128 No

HC-256 256 255 128 No

Salsa20 256 255 128 No

HX 512 511 256 Yes

Table 32 - Post-Quantum Cryptography Algorithm Comparison

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

 Conclusions and Future Works 6

In this thesis, we proposed HX encryption algorithm and HX Authentication

Protocol. Our experiments prove HX is safe, has a significant increase in key

length, has the highest usability index among the state of the art algorithms and is

modular in the sense that if a CHRF is broken or significantly wakened, the

developer can choose another hash algorithm to generate keystreams without

major changes in the code of the application.

Considering the fact the participants from the controlled experiment empirical

study copied unsafe code from forums, the qualitative analysis of that experiment,

the fact none of the participants were able to complete all tasks without any

violations and the fact none of the participants from the survey experiment were

able to answer all of the substantive questions correctly, we conclude the

developers from the distinct samples lack the basic knowledge of cryptography

concepts and are unskilled to develop an application that depends on cryptography

to secure sensitive information. As a result, they will produce unsafe applications

for the smart cities of the future.

Although the use of HX as the encryption algorithm might considerably

mitigate usability problems, developers may still use a weak key for encryption.

For that reason, developers of applications for smart cities should have mandatory

formal training in cryptography

Encryption APIs could mitigate many encryption rules violations, if they

have a “novice” default mode, which automatically instantiate the strongest

algorithm, with the longest possible key, with a safe mode of operation,

automatically creating a random IV, requiring only the key as a mandatory

parameter, just like the HX API. “Expert” developers can decide if they want to

change any of the default parameters.

HXAuth can be used with SRAP or other applications safely, easily

implemented and with little overhead.

Developers and users of smart cities applications will benefit from HX and

HXAuth, considering the strength of HX and that developers have fewer

opportunities to violate cryptographic rules.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

137

HX needs a more efficient bitwise XOR algorithm between keystreams and

plaintexts to enhance encryption and decryption performance.

SHA-3-512 and SKEIN-1204 will be incorporated into the hash algorithms

set to further enhance the strength of HX keystreams.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Glossary of Terms

 Bitwise XOR operation

║ Concatenation operation

M The plaintext message. The original unencrypted message

C The ciphertext

Mi The plaintext block indexed by i

Ci The ciphertext block indexed by i

H(K,M) The Message Authentication Code of the key K concatenated with the

message M

H(i,K) The hash of an integer i concatenated with a key K

E(K,M) The encryption function E, using the key K to encrypt M

D(K,C) The decryption function D, using the key K to decrypt C

KSi The keystream of the i block of a stream cipher

IV Initialization Vector of an encryption algorithm or the Initial Value of a Hash

Φi The ciphertext block indexed by I of the HX algorithm in CTR mode

Si The salt of ciphered block indexed by i of the HX algorithm in CTR mode

|H| The length in bits of the digest produced by the hash algorithm H

|M| The length in bits of the message M

πK The padding function of the key K

N The nonce

C: Ops The client of a client-server communications performs the operations Ops

S: Ops The server of a client-server communications performs the operations Ops

→S: Msg The client sends the message Msg to the server

→C: Msg The server sends the message Msg to the client

x ← cpt The variable x receives the result of the computation cpt

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Bibliographic References

Abidi, A. et al., 2016. Quantitative evaluation of chaotic CBC mode of operation.

Advanced Technologies for Signal and Image Processing (ATSIP), pp. 88-92.

Akhimullah, A; Hirose, S., 2016 . Lightweight Hashing Using Lesamnta-LW

Compression Function Mode and MDP Domain Extension. Hiroshima, IEEE, pp.

590-596.

Allen, I; Seaman C, A., 2007. Likert scales and data analyses. [Online]

Available at: http://rube.asq.org/quality-progress/2007/07/statistics/likert-scales-

and-data-analyses.html

[Accessed on 30 11 2017].

Anderson, R., 1999. Serpent Home Page. [Online]

Available at: http://www.cl.cam.ac.uk/~rja14/serpent.html

[Accessed on 18 06 2018].

Anil, J., Ross, A; Prabhakar, S., 2004. An Introduction to Biometric Recognition.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, 14(1), pp. 4-20.

Aoki, K. et al., 2009. Preimages for step-reduced SHA-2. In: International

Conference on the Theory and Application of Cryptology and Information

Security. Heidelberg - Germany: Springer, pp. 578-597.

Apple Support, 2017. Safari and WebKit ending support for SHA-1 certificates.

[Online]

Available at: https://support.apple.com/HT207459

[Accessed on 21 06 2018].

ARM, 2015. ARM Cortex-A57 MPCore Processor Cryptography Extension.

[Online]

Available at:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0514g/DDI0514G_cortex_a

57_mpcore_cryptography_trm.pdf

[Accessed on 21 06 2018].

Asmara, R. J. A; Ardiansyah, R., 2017. Cipher feedback mode cryptographic

algorithm with gingerbreadman two-dimensional map key generator on digital

image. IEEE Information & Communication Technology and System (ICTS), Issue

11, pp. 169-174.

Balebako, B. et. al., 2014. The Privacy and Security Behaviors of Smartphone App

Developers. s.l., s.n.

Barker, E., 2016. Recommendation for key Management. [Online]

Available at: https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-

57pt1r4.pdf

[Accessed on 30 06 2018].

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

140

Barker, E., 2016. Recommendation for Key Management. [Online]

Available at: https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-

57pt1r4.pdf

[Accessed on 02 04 2018].

Barreto, P; Rijmen, V., 2000. The Whirlpool hashing function. In: First open

NESSIE Workshop. Leuven - Belgium: s.n., p. 14.

Barry, B; Talha, S., 2013. Evaluating the impact of AES encryption algorithm on

Voice over Internet Protocol (VoIP) systems. International Conference on

Computing, Electrical and Electronics Engineering (ICCEEE), Issue 1, pp. 686-

691.

Bartkewitz, T., 2009. Building hash functions from block ciphers, their security

and implementation properties, Bochum - Germany: Ruhr-University.

Basili, V; Weiss, D., 1984. A methodology for collecting valid software

engineering data. IEEE Trans. on Software Engineering, SE-10(6), pp. 728-838.

Bellare, M., 2006. New proofs for NMAC and HMAC: Security without collision-

resistance. Annual International Cryptology Conference. Springer, Berlin,

Heidelberg, pp. 602-619.

Bellare, M., et. al., 1997. A concrete security treatment of symmetric encryption.

In: Proceedings 38th Annual Symposium on Foundations of Computer Science.

Miami Beach, FL, USA: IEEE, pp. 394-403.

Bellare, M., et. al., 2000. A concrete Security Treatment of Symmetric Encryption,

San Diego, CA, USA: Dept. of Computer Sciense & Engineering, University of

California San Diego.

Bellare, et. al., 2000. The security of the cipher block chaining message

authentication code.. Journal of Computer and System Sciences, 61(3), pp. 362-

399.

Bellare, et. al., 1998. Luby-Rackoff Backwards: Increasing Security by Making

Block Ciphers Non-invertible. Advances in Cryptology—Eurocrypt ’98, Lecture

Notes in Computer, Volume 1402, pp. 266-280.

Bellare, M. Key Distribution: PKI and Session-Key Exchange. [Online]

Available at: http://cseweb.ucsd.edu/~mihir/cse207/s-kd.pdf

[Accessed on 07 08 2018].

Bellare, M; Rogaway, P., 2005. Block Ciphers. In: Introduction to Modern

Cryptography. s.l.:s.n., pp. 39-40.

Bernstein, D., 2008. ChaCha, a variant of Salsa20, Chicago, USA: The

University of Illinois at Chicago, Department of Mathematics, Statistics, and

Computer Science (M/C 249).

Bernstein, D., 2008. The Salsa20 family of stream ciphers. In: New stream cipher

designs. Heidelberg - Germany: Springer, pp. 84-97.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

141

Bernstein, D., 2009. Is cryptography dead?. In: J. B. E. D. Daniel J. Bernstein, ed.

Post-Quantum Cryptography. Darmstadt, Germany: Springer, p. 1.

Bertoni, G., et. al., 2007. Sponge functions. ECRYPT hash workshop, 2007(9).

Bertoni, G., et. al., 2009. Keccak sponge function family main document.

Submission to NIST (Round 2), s.l.: s.n.

Bertoni, G., et. al., 2011. Duplexing the Sponge: Single-Pass Authenticated

Encryption and Other Applications. Heidelberg - Germany, s.n.

Bertoni, G., et. al., 2013. Keccak. In: Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Heidelberg - Germany:

Springer, pp. 313-314.

Bhargavan, K; Leurent, G., 2016. On the practical (in-) security of 64-bit block

ciphers: Collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security.

s.l.:ACM, pp. 456-467.

Biham, E., et. al., 2001. Linear cryptanalysis of reduced round Serpent. In:

International Workshop on Fast Software Encryption. Springer. Heidelberg -

Germany: Springer, pp. 16-27.

Biryukov, A., 2011. Related Key Attack. In: Encyclopedia of Cryptography and

Security. Boston - USA: Springer, pp. 1040-1041.

Biryukov, A; Khovratovich, D., 2009. Related-key Cryptanalysis of the Full AES-

192 and AES-256, Luxembourg: University of Luxembourg.

Bogdanov, A., et. al., 2011. Biclique cryptanalysis of the full AES. Advances in

Cryptology — ASIACRYPT, 7073(Lecture Notes in Computer Science), pp. 344-

371.

Boyd, C; Mathuria, A., 2003. A Tutorial Introduction to Authentication and Key

Establishment. In: Protocols for Authentication and Key Establishment.

Heidelberg - Germany: Springer-Verlag, pp. 23-31.

Braga, A; Dahab, R., 2017. A Longitudinal and Retrospective Study on How

Developers Misuse Cryptography in Online Communities.. Brasília, DF, Brazil.,

XVII Simpósio Brasileiro em Segurança da Informação e de Sistemas

Computacionais (SBSeg’17).

Braun, T., et. al., 2018. Security and privacy challenges in smart cities.

Sustainable Cities and Society v.39, pp. 499 - 507.

Brose, G., 2014. Password. In: Encyclopedia of cryptography and security.

s.l.:Springer Science & Business Media, pp. 453-455.

Campbell, K., et. al., 2003. The economic cost of publicly announced information

security breaches: empirical evidence from the stock market. s.l., IOS Press, pp.

431-448.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

142

Cheddad, A., et. al., 2010. A hash-based image encryption algorithm. s.l.,

Elsevier, pp. 879--893.

Chen, B., et. al., 2013. A Hybrid Mutual Identity Authentication Technology with

its Application. Computer security n.12, pp. 34-37.

Cheng, Y., 2005. A New Text Digital Watermarking Algorithm. Science &

Technology and Engineering v.5 n.14, pp. 1006-1008.

Chen, S; Jin, C., 2011. Distinguishing Attack on MAC with Enveloped Method

Using MD5. IEEE - International Conference on Network Computing and

Information Security (NCIS), Volume 1, pp. 48-51.

Chen, S., et. al., 2010. Side-channel leaks in web applications: A reality today, a

challenge tomorrow. IEEE Symposium on Security and Privacy, pp. 191-206.

Claes, W. et al., 2000. Experimentation in software engineering: an introduction.

s.l.:Springer Science & Business Media.

Cloutier, J; Vignesh, M., 2015. Windows Enforcement of SHA1 Certificates.

[Online]

Available at:

https://social.technet.microsoft.com/wiki/contents/articles/32288.windows-

enforcement-of-sha1-certificates.aspx

[Accessed on 21 06 2018].

Coron, J., et. al., 2005. Merkle-Damgård Revisited: How to Construct a Hash

Function. Heidelberg - Germany, s.n.

Coskun, B; Memon, N., 2006. Confusion/diffusion capabilities of some robust

hash functions. IEEE 40th Annual Conference on Information Sciences and

Systems, 03, pp. 1188-1193.

Cruz, G, et. al., 2010. IMPLEMENTAÇÃO DE CRIPTOGRAFIA APLICADA À

COMUNICAÇÃO DE MENSAGENS SMS E MMS COM ESTEGANOGRAFIA EM

TELEFONIA MÓVEL. Algarve - Portugal, s.n.

Daemen, J; Kitsos, P., 2008. The self-synchronizing stream cipher moustique, new

stream cipher designs. s.l., Springer, p. 210–223.

Dahab, R; López, J., 2007. O AES - Advanced Encryption Standard. In: Técnicas

criptográficas modernas: algoritmos e protocolos. Campinas - Brazil: Instituto de

Computação, pp. 16-20.

Dahab, R; López, J., 2007. Gerenciamento de Chaves. In: Técnicas criptográficas

modernas: algoritmos e protocolos. Campinas - Brazil: Instituto de Computação,

pp. 40-41.

Dahab, R; López, J., 2007. O DES - Data Enryption Standard. In: Técnicas

criptográficas modernas: algoritmos e protocolos. Campinas - Brazil: Instituto de

Computação , p. 13.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

143

Dahab, R; López, J., 2007. Protocolos para Identificação Forte. In: Técnicas

criptográficas modernas: algoritmos e protocolos. Campinas - Brazil: Instituto de

Computação, p. 49.

Dahal, R., et. al., 2013. Performance Analysis of SHA-2 and SHA-3 finalists.

International Journal on Cryptography and Information Security (IJCIS), 3(3),

pp. 720-730.

Damgård, I., 1988. Collision free hash functions and public key signature

schemes. s.l., D. Chaum and W.L. Price, Eds., Springer-Verlag, p. 203–216.

Damgård, I., 1989. A design principle for hash functions. Springer - CRYPTO,

Volume 435 of LNCS, pp. 416-427.

de Magalhães, K., 2014. Lattice-Based Predicate Encryption. Doctoral

dissertation, PhD thesis, University of Campinas ed. Campinas, SP, Brazil:

UNICAMP.

Demirkan, H; Goul, M., 2013. Taking value-networks to the cloud services:

security services, semantics and service level agreements. s.l., Springer, pp. 51-

91.

Dinur, I., et. al., 2013. Collision attacks on up to 5 rounds of SHA-3 using

generalized internal differentials. In: International Workshop on Fast Software

Encryption. Heidelberg - Germany: Springer, pp. 219-240.

Dobbertin, H., et. al., 1996. RIPEMD-160: A strengthened version of RIPEMD.

In: FSE 1996. LNCS. Heidelberg - Germany: Springer, pp. 71-82.

Dougherty, C., 2008. "Vulnerability Note VU#836068 MD5 vulnerable to

collision attacks", Pittsburgh - USA: CERT Carnegie Mellon University Software

Engineering Institute.

Ebrahim, M., et. al., 2013. Symmetric Algorithm Survey: A Comparative

Analysis. International Journal of Computer Applications, 61(20).

Eckersley, P; Burns, J., 2010. An Observatory for the SSLiverse. [Online]

Available at: https://www.eff.org/files/DefconSSLiverse.pdf

[Accessed on 16 07 2018].

Egele, M., et. al., 2013. An empirical study of cryptographic misuse in android

applications. New York, NY, USA pp. 73-84, s.n., pp. 73-84.

El-Razouk, H., et. al., 2014. New Implementations of the WG Stream Cipher.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems V.22 N.9, pp.

1865-1878.

Elzouka, H., 2006. A New Robust and Secure Steganographic System for

Greyscale Images, Alexandria: Computer Engineering Department. Arab

Academy for Science and Technology.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

144

Elzouka, H. A. S. A., 2008. FPGA based implementation of robust watermarking

system. s.l., IEEE, pp. 1274-1278.

Feistel, H., 05. Cryptography and Computer Privacy. Scientific American, 1973,

pp. V 228, No 5, pp. 15-23.

Ferguson, N., 1999. Impossible differentials in Twofish. Counterpane Systems,

Volume 19.

Ferguson, N., et al., 2010. The Skein hash function family, s.l.: Submission to

NIST (round 3).

Ferguson, N., et. al., 2010. In: Cryptography Engineering: Design Principles and

Practical Applications. Hoboken - USA: Wiley Publishing, pp. 63-64.

Feynman, R., 1982. Simulating Physics with Computers. International Journal of

Theoretical Physics, pp. 467-488.

Fontaine, C., 2011. Self-Synchronizing Stream Cipher. Encyclopedia of

Cryptography and Security, pp. 1175-1176.

Fontaine, C., 2011. Synchronous Stream Cipher. Encyclopedia of Cryptography

and Security, pp. 1274-1275.

Giry, D; Quisquater, J., 2017. BlueKrypt - Cryptographic Key Lenght

Recomendation. [Online]

Available at: https://www.keylength.com/en/compare/

[Accessed on 06 06 2018].

Google, 2014. Intent to Deprecate SHA-1 certificates. [Online]

Available at: https://groups.google.com/a/chromium.org/d/msg/blink-dev/2-

R4XziFc7A/i_JipRRJoDQJ

[Accessed on 21 06 2018].

Gordon, L. A; Loeb, M. P., 2001. Using information security as a response to

competitor analysis systems. s.l., ACM, pp. 70--75.

Gordon, L. A; Loeb, M. P., 2004. The economics of information security

investment. In: Economics of Information Security. s.l.:Springer, pp. 105-125.

Gordon, L; Loeb, M., 2002. The economics of information security investment.

s.l., ACM, pp. 438-457.

Grisenthwaite, R., s.d. ARMv8 Technology Preview. [Online]

Available at: https://www.arm.com/files/downloads/ARMv8_Architecture.pdf

[Accessed on 19 02 2019].

Grover, L., 1996. A fast quantum mechanical algorithm for database search.

Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212.

Gunther, C. G., 1990. An identity-based key-exchange protocol. Advances in

Cryptology EUROCRYPT, LNCS 434(89), p. 29–37.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

145

Guo, J., et. al., 2013. Cryptanalysis of HMAC/NMAC-whirlpool. In: International

Conference on the Theory and Application of Cryptology and Information

Security. Heidelberg - Germany: Springer, pp. 21-40.

Håstad, J., et. al., 1999. A Pseudorandom Generator from any One-way Function.

SIAM Journal on Computing, 28(4), pp. 1364-1396.

Heys, H., 2002. A Tutorial on Linear and Differential Cryptanalysis. Cryptologia,

26(3), pp. 189-221.

Huang, K., Chiu, J; Shen, S., 2013. A Novel Structure with Dynamic Operation

Mode for Symmetric-Key Block Ciphers. International Journal of Network

Security & Its Applications, 5(1), p. 17.

Huang, Z., et. al., 2001. Hash - based Encryption Scheme. Communications

Technology n.7, pp. 87-89.

IBM Crypto Development Team, 2015. Introduction to IBM z Systems

Cryptography and the Ecosystem around z Systems Cryptography. [Online]

Available at:

https://www.ibm.com/developerworks/community/files/form/anonymous/api/libra

ry/77ca416f-4e0e-4689-83a1-22a30b828c26/document/9a5a15b8-8cc1-485d-

b64f-f4f1379d9440/media

[Accessed on 19 02 2018].

Intel Corporation, 2013. Intel® SHA Extensions. [Online]

Available at: https://software.intel.com/en-us/articles/intel-sha-extensions

[Accessed on 21 06 2018].

Intel Corporation, s.d. Intel® Core™ i5-6400T Processor. [Online]

Available at:

https://www.intel.com/content/www/us/en/products/processors/core/i5-

processors/i5-6400t.html

[Accessed on 19 02 2018].

Jin, Z. et al., 2017. A New and Practical Design of Cancellable Biometrics: Index-

of-Max Hashing. arXiv preprint arXiv:1703.05455.

Joux, A., 2004. Multicollisions in iterated hash functions. Application to cascaded

constructions. In: Annual International Cryptology Conference. Heidelberg -

Germany: Springer, pp. 306-316.

Jueneman, R., 1983. Analysis of certain aspects of output feedback mode. In:

Advances in Cryptology. Boston - USA: Springer, pp. 99-127.

Juniper Networks, 2017. What is the difference between the Tunnel and Transport

modes in ESP?. [Online]

Available at:

https://kb.juniper.net/InfoCenter/index?page=content&id=KB5302&actp=META

DATA

[Accessed on 04 06 2019].

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

146

Kahn, D., 1967. The Codebreakers: The Story of Secret Writing. New York:

Macmillan Publishing Co..

Kam, J; Davida, G., 1979. Structured design of substitution-permutation

encryption networks. IEEE Transactions on Computers, Volume 10, pp. 747-753.

Kasunic, M., 2005. Designing an effective survey, Pittsburgh - USA: Carnegie-

Mellon Univeristy Software Engineering Institute.

Kelsey, J; Schneier, B., 2005. Second preimages on n-bit hash functions for much

less than 2n work. s.l., Springer, p. 474–490.

Kerchhoff, A., 1883. La Cryptographie Militaire. [Online]

Available at: http://www.petitcolas.net/kerckhoffs/crypto_militaire_1.pdf

[Accessed on 11 06 2016].

Khovratovich, D., et. al., C., 2012. Narrow-Bicliques: cryptanalysis of full IDEA.

In: Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Heidelberg - Germany: Springer, pp. 392-410.

Khovratovich, D., Nikolić, I; C., R., 2010. Rotational rebound attacks on reduced

Skein. In: nternational Conference on the Theory and Application of Cryptology

and Information Security. Heidelberg - Germany: Springer, pp. 1-19.

Kim, J., et. al., 2006. On the security of HMAC and NMAC based on HAVAL,

MD4, MD5, SHA-0 and SHA-1. In: International Conference on Security and

Cryptography for Networks. Heidelberg - Germany: Springer, pp. 242-256.

Krawczyk, H., et. al., 1997. RFC-2104: HMAC: Keyed-Hashing for Message

Authentication, s.l.: IETF.

Kumari, S., et. al., 2012. Cryptanalysis and security enhancement of Chen et al.’s

remote user authentication scheme using smart card. s.l., Springer, pp. 60-75.

Kumari, S; Khan, M., 2014. Cryptanalysis and improvement of ‘a robust smart-

card-based remote user password authentication scheme’. s.l., Wiley Online

Library, pp. 3939-3955.

Lai, X; Massey, J., 1990. A proposal for a new block encryption standard. In:

Workshop on the Theory and Application of of Cryptographic Techniques. Berlin

- Germany: Springer, pp. 389-404.

Lardinois, F., 2019. IBM unveils its first commercial quantum computer. [Online]

Available at: https://techcrunch.com/2019/01/08/ibm-unveils-its-first-commercial-

quantum-computer/

[Accessed on 05 06 2019].

Lazar, D. et. al., 2014. Why does cryptographic software fail? A case study and

open problems. s.l., s.n.

Lee, C., et. al., 2006. Security enhancement on a new authentication scheme with

anonymity for wireless environments. s.l., IEEE, pp. 1683-1687.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

147

Lenstra, A; Verheul, E., 2001. Selecting Cryptographic Key Sizes. In: Journal of

Cryptology. s.l.:International Association for Cryptologic Research, pp. 255-293.

Linaker, J. et al., 2015. Guidelines for conducting surveys in software

engineering, Rio de Janeiro - Brazil: COPPE-RJ.

Lipmaa, H., et. al., 2000. Comments to NIST concerning AES Modes of

Operations: CTR-Mode Encryption, Berkeley - USA: University of California

Berkeley.

Li, S., et. al., 2003. A New Message Digest Codes Generating Algorithm. Journal

of Computer Research and Development v.40 n.3, pp. 413-416.

Luby, M; Rackoff, C., 1988. How to Construct Pseudorandom Permutations from

Pseudorandom Functions. SIAM Journal on Computing, 17(2), pp. 373-386.

Lui, H., 2018. What Is the Future of Ecommerce in 2018 and Beyond? 10 Trends.

[Online]

Available at: https://www.shopify.com/enterprise/the-future-of-ecommerce

[Accessed on 05 06 2018].

Mahfouf, M., et. al., 2002. Fuzzy model-based predictive control using an ARX

structure with feedforward. In: Fuzzy sets and systems. s.l.:s.n., pp. 39-59.

Mahon, A., 2003-2007. THE HISTORY OF HUT EIGHT. [Online]

Available at: http://www.ellsbury.com/hut8/hut8-000.htm

[Accessed on 29 06 2018].

Manger, J., 2001 pp. 230-238. A chosen ciphertext attack on RSA optimal

asymmetric encryption padding (OAEP) as standardized in PKCS# 1 v2.0.

Heidelberg - Germany, s.n.

McKinney, E. H., 1966. Generalized birthday problem. The American

Mathematical Monthly v. 73 n. 4,, pp. 385-387.

McLaren, D; Agyeman, J., 2015. Sharing Cities: A Case for Truly Smart and

Sustainable Cities. Massachusetts - USA: MIT Press.

Mendel, F., et. al., 2009. he rebound attack: Cryptanalysis of reduced Whirlpool

and Grøstl. In: Fast Software Encryption. Heidelberg - Germany: Springer, pp.

260-276.

Merkle, R., 1989. One way hash functions and DES. Springer CRYPTO, Volume

435 of LNCS, p. 428–446.

Metzge, P; Simpson, W., 1995. IP authentication using keyed MD5, s.l.: IETF,

RFC 1828.

Metzge, P; Simpson, W., 1995. IP authentication using keyed SHA, s.l.: IETF,

RFC 1852.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

148

Mitchell, J., et. al., 1998. Finite-State Analysis of SSL 3.0. USENIX Security

Symposium, 01, pp. 201-216.

Mitchell, K; Kim, E., 2017. AMD RYZEN™ CPU OPTIMIZATION. [Online]

Available at: http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-

content/uploads/2017/03/GDC2017-Optimizing-For-AMD-Ryzen.pdf

[Accessed on 21 06 2018].

Morris, C., 1993. Navy Ultra's Poor Relations. In: Codebreakers: The inside story

of Bletchley Park. Oxford: Oxford university Press, p. 235.

Mouha N, P. B., 2013. Towards finding optimal differential characteristics for

ARX: Application to Salsa20., s.l.: Cryptology ePrint Archive, Report 2013/328.

Mozilla Security Blog, 2014. "Phasing Out Certificates with SHA-1 based

Signature Algorithms. [Online]

Available at: https://blog.mozilla.org/security/2014/09/23/phasing-out-

certificates-with-sha-1-based-signature-algorithms/

[Accessed on 21 06 2018].

Musa, S., 2016. Smart City Roadmap. [Online]

Available at: https://www.academia.edu/21181336/Smart_City_Roadmap

[Accessed on 05 06 2018].

National Security Agancy/Central Security Service/Information Assurence

Directorate, 2016. Commercial National Security Algorithm Suite and Quantum

Computing FAQ. [Online]

Available at: https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-

Computing-FAQ.pdf

[Accessed on 06 06 2018].

NIST - National Institute of Standards and Technology, 2015. Secure Hash

Standard (SHS). [Online]

Available at:

https://csrc.nist.gov/csrc/media/publications/fips/180/4/final/documents/fips180-

4-draft-aug2014.pdf

[Accessed on 21 06 2018].

NIST Computer Security Division's (CSD) Security Technology Group (STG),

2012. Block Cipher Modes, Gaithersburg - USA: NIST.

NSA - National Security Agency, 2016. Algorithms to Support the Evolution of

Information Assurance Needs. [Online]

Available at:

https://www.iad.gov/iad/customcf/openAttachment.cfm?FilePath=/iad/library/ia-

guidance/ia-solutions-for-classified/algorithm-

guidance/assets/public/upload/Algorithms-to-Support-the-Evolution-of-

Information-Assurance-Needs.pdf&WpKes=aF6woL7fQp3dJieMru6YSQnL

[Accessed on 02 05 2018].

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

149

Ohtahara, C., et. al., 2010. Preimage attacks on step-reduced RIPEMD-128 and

RIPEMD-160. In: International Conference on Information Security and

Cryptology. Heidelberg - Germany: Springer, pp. 169-186.

Pascal, J., 2001. On the Complexity of Matsui's Attack, Lausanne - Swiss: Swiss

Institute of Technology.

Patrick, K. N., 2008. Method of comparing documents possessed by two parties.

USA, Patente Nº 7,337,319.

Peyravian, M., et. al., 1999. Hash-based encryption system. s.l., Elsevier, pp. 345-

350.

Preneel, B., 2003. Analysis and Design of Cryptographic Hash Functions.

s.l.:Diss. PhD thesis, Katholieke Universiteit Leuven. pp. 18.

Preneel, B., 2003. Applications of HASH Functions. In: Analysis and design of

cryptographic hash functions. Leuven - Nethherlands.: Doctoral dissertation,

Katholieke Universiteit te Leuven, p. 19.

Preneel, B., 2007. An Introduction to Modern Cryptography. The History of

Information Security: A Comprehensive Handbook, pp. 565-592.

Preneel, B., et. al., 1998. Principles and Performance of Cryptographic

Algorithms. [Online]

Available at: http://www.drdobbs.com/algorithm-alley/184410756

[Accessed on 12 06 2018].

Rayan, A. M., et. al., 2016. Provably Secure Encryption Algorithm based on

Feistel Structure. International Journal of Computer Applications, Volume I, p.

139.

RedHat Inc., 2019. Securing Virtual Private Networks (VPNs) Using Libreswan.

[Online]

Available at: https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/security_guide/sec-

securing_virtual_private_networks

[Accessed on 04 06 2019].

Rijman, V., 1997. Cryptanalysis and design of iterated block ciphers. Leuven -

Belgium: Doctoral Dissertation.

Rogaway, P., 2002. Nonce-Based Symmetric Encryption, Davis - USA: Dept. of

Computer Science, University of California.

Rogaway, P; Shrimpton, T., 2004. Cryptographic hash-function basics:

Definitions, implications, and separations for preimage resistance, second-

preimage resistance, and collision resistance. Berlin-Heidelberg, Springer, pp.

371-388.

ROSEMBERG, M., 2014. SRAP - A new Authentication Protocol for Semantic

Web Applications MsC. Thesis. Rio de Janeiro. Retrieved from:

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

150

http://www.dbd.puc-rio.br/pergamum/tesesabertas/1221733_2014_completo.pdf:

Pontifícia Universidade Católica do Rio de Janeiro, Dep. of Informatics.

Rueppel, R. A., 1986. "Stream ciphers." Analysis and Design of Stream Ciphers..

Berlin Heidelberg: Springer pp 5-16..

Sasaki, Y; Aoki, K., 2009. Finding preimages in full MD5 faster than exhaustive

search. In: nnual International Conference on the Theory and Applications of

Cryptographic Techniques. Heidelberg - Germany: Springer, pp. 134-152.

Schneier, B., 1993. Description of a New Variable-Length Key, 64-Bit Block

Cipher (Blowfish). [Online]

Available at:

https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html

[Accessed on 18 06 2018].

Schneier, B., 1996. Counter Mode. In: Applied cryptography: protocols,

algorithms, and source code in C (Second Edition). New York: John Wiley &

Sons, Inc., pp. 178-179.

Schneier, B., 1996. Using one-Way Hash Functions. In: Applied cryptography:

protocols, algorithms, and source code in C (Second Edition). New York: John

Wiley & Sons, Inc., p. 296.

Schneier, B. et al., 2000. The Twofish Team’s Final Comments on AES. [Online]

Available at: https://www.schneier.com/academic/paperfiles/paper-twofish-

final.pdf

[Accessed on 18 06 2018].

Schwartz, M., 2011. Stolen Digital Certificates Compromised CIA, MI6, Tor.

[Online]

Available at: http://www.darkreading.com/attacks-and-breaches/stolen-digital-

certificates-compromised-cia-mi6-tor/d/d-id/1099964?

[Accessed on 24 07 2018].

Sekar G, P. B., 2009. Improved distinguishing attacks on HC-256. In:

International Workshop on Security. Heidelberg - Germany: Springer, pp. 38-52.

Shahzad, R., 2012. Lecture3a symmetric encryption. [Online]

Available at: https://www.slideshare.net/rajakhurram/lecture3a-symmetric-

encryption02

[Accessed on 12 06 2018].

Shannon, C., 1949. Communications Theory of Secrecy Systems. Bell System

Thecnical Journal, 28(4), pp. 656-715.

Shor, P., 1997. "Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer". SIAM Journal on Computing,

26(5), p. 1484–1509.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

151

Shrimpton, T; Stam, M., 2008. Building a collision-resistant compression function

from non-compressing primitives. In: International Colloquium on Automata,

Languages, and Programming. Heidelberg - Germany: Springer, pp. 643-654.

Stallings, W., 2011. Block Cipher Operation. In: Cryptography and Network

Security Principles and Practice Fifth Edition. s.l.:Prentice Hall, pp. 196-197.

Stallings, W., 2011. Classical Encryption Techniques. In: Cryptography and

Network Security Principles and Practice Fifth Edition. New York - USA:

Prentice-Hall, pp. 33-35.

Stallings, W., 2011. Cryptographic Hash Functions. In: Cryptography and

Network Security Principles and Practice Fifth Edition. New York - USA:

Prentice-Hall, pp. 340-342.

Stallings, W., 2011. Public-Key Cryptography and Message Authentication. In:

Network Security Essentials: Applications and Standards (4th edition). Boston -

USA: Prentice Hall, pp. 78-79.

Stallings, W., 2011. RC4. In: Network Security Essentials: Applications and

Standards (4th edition). Boston - USA: Prentice Hall, pp. 234-236.

Stallings, W., 2011. SYMMETRIC CIPHER MODEL. In: Cryptography and

Network Security Principles and Practice Fifth Edition. s.l.:Prentice Hall, p. 33.

Stamp, M; Low, R., 2007. FEAL-4 Differential Attack. In: Applied Cryptanalysis:

breaking Ciphers in the Real World. Hoboken - USA: Wiley & Sons, pp. 170-

177.

Stamp, M; Low, R., 2007. FEAL-4 Linear Attack. In: Applied Cryptanalysis:

breaking Ciphers in the Real World. Hoboken - USA: Wiley & Sons, pp. 177-

182.

Stamp, M; Low, R., 2007. Introduction. In: Applied Cryptanalysis: breaking

Ciphers in the Real World. Hoboken - USA: Wiley & Sons, pp. 1-4.

Stevens, M. et al., 2017. The first collision for full SHA-1, Amsterdam -

Netherlands: CWI Amsterdam - Google Research.

Su, S., et. al., 2016. A provably secure non-iterative hash function resisting

birthday attack. In: Theoretical Computer Science v.654. s.l.:Elsevier, pp. 128-

142.

Tesink, S., et. al., 2005. Improving csirt communication through standardized and

secured information exchange, s.l.: Tilburg Master Thesis.

Tews, E., Weinmann, R; Pyshkin, A., 2007. Breaking 104 Bit WEP in Less Than

60 Seconds, s.l.: Cryptology ePrint Archive, Report 2007/120.

The Ministry of Internal Affairs and Communication of Japan and The Ministry of

Economy, Trade and Industry of Japan, 2003. e-Government recommended

ciphers list. [Online]

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

152

Available at: http://www.cryptrec.go.jp/english/images/cryptrec_01en.pdf

[Accessed on 21 06 2018].

Tsudik, G., 1992. Message authentication with one-way hash functions. In:

INFOCOM'92. Eleventh Annual Joint Conference of the IEEE Computer and

Communications Societies. s.l.:IEEE, pp. 2055-2059.

Tsunoo Y, et. al., 2007. Differential cryptanalysis of Salsa20/8. Workshop Record

of SASC 2007 Vol. 28.

Turner, S; Chen, L., 2011. RFC-6151: Updated Security Considerations for the

MD5 Message-Digest and the HMAC-MD5 Algorithms, s.l.: IETF.

Vanhoef, M; Piessens, F., 2015. All Your Biases Belong To Us: Breaking RC4 in

WPA-TKIP and TLS, Washington DC - USA: KU Leuven.

Vernam, G., 1926. Cipher printing telegraph system for secret wire and radio

telegraph communications. Journal American Institute of Electrical Engineers

Vol. XLV, pp. 109-115.

Votipka, D. et al., 2019. Understanding security mistakes developers make:

Qualitative analysis from Build It, Break It, Fix It, College Park, MD, USA:

University of Maryland.

Vû, H., 2012. MD5 Length Extension Attack Revisited. [Online]

Available at: http://vudang.com/2012/03/md5-length-extension-attack/

[Accessed on 27 06 2018].

Wang, R., et. al., 2011. Robust authentication and key agreement scheme

preserving the privacy of secret key. s.l., Elsevier, pp. 274-280.

Wang, X. et al., 2009. Cryptanalysis on hmac/nmac-md5 and md5-mac. In:

Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Heidelberg - Germany: Springer, pp. 121-133.

Wu, H., 2004. A New Stream Cipher HC-256. In: International Workshop on Fast

Software Encryption. Heidelberg - Germany: Springer, pp. 226-244.

Xian, L; Tingthanathikul, W., 2004. Advanced Encryption Standard (AES) in

Counter Mode, s.l.: s.n.

Xie, T., et. al., 2013. Fast Collision Attack on MD5. [Online]

Available at: https://eprint.iacr.org/2013/170.pdf

[Accessed on 21 06 2018].

Yeh, Y., et. al., 2001. RC hash function. s.l., Taylor & Francis, pp. 297-306.

Zhou, Y; Feng, D., 2005. Side-Channel Attacks: Ten Years After Its Publication

and the Impacts on Cryptographic Module Security Testing.. IACR Cryptology

ePrint Archive, p. 388.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

153

Zuccherato, R., 2014. Authentication Token. In: Encyclopedia of cryptography

and security. s.l.:Springer Science & Business Media, pp. 23-24.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Annex 1 Survey Participants Consent Form

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Annex 2 Controlled Experiment Subject Characterization
Form

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

156

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Annex 3 Controlled Experiment Tasks

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

158

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

159

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

Annex 4 Controlled Experiment Feedback Form

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

161

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

162

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

163

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

164

Feedback Form Answers

Task 1

Participant's
Number

Submission
Date

Which
Algorithm did
you choose?

What motivated you to
choose that algorithm?

4 2018-08-31
14:53:33

AES/CBC AES/CBC is the most practical
unless the project context

requires another algorithm.

3 2018-08-31
14:39:51

AES/ECB
Default

never used the Cipher Class
before. It was the simplest to

implement.

1 2018-08-31
14:31:43

AES/CBC Easiest algorithm to find
documentation and examples

5 2018-08-31
14:11:35

AES/CBC the first algorithm found
during a query in Google

2 2018-08-31
14:00:15

AES/CBC Apear to be the most simple
to implement. Had used AES

before.

6 2018-08-20
20:23:53

AES/CBC I quickly read about them and
saw that important
institutions used it

9 31/08/2018
15:20

AES/CBC first algorithm found in a
query

7 31/08/2018
15:13

DES No specific reason

12 31/08/2018
15:09

AES/ECB
Default

First found in a query

8 31/08/2018
15:04

AES/CBC First algorithm found in a
query

11 31/08/2018
15:00

AES/ECB
Default

First algorithm found in a
search engine query

10 20/08/2018
19:41

AES Eu já ouvi falar nele, não
conhecia os outros.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

165

Participant's
Number

Submission
Date

Did you copied
and pasted any

code from
forums,

documentations
or examples?

If you copied
code from

any source,
did you

check the
code for any
vulnerability

?

How do you
classify the

difficulty level
of the task?

4 2018-08-31
14:53:33

Yes Yes Easy, even
though I had

some
difficulty,

easily
overcame

3 2018-08-31
14:39:51

Yes Yes Complicated. I
experienced

some
difficulty and I
needed some

effort to
overcome

1 2018-08-31
14:31:43

Yes No Complicated. I
experienced

some
difficulty and I
needed some

effort to
overcome

5 2018-08-31
14:11:35

Yes No Easy, even
though I had

some
difficulty,

easily
overcame

2 2018-08-31
14:00:15

Yes No Complicated. I
experienced

some
difficulty and I
needed some

effort to
overcome

6 2018-08-20
20:23:53

Yes Yes Easy, even
though I had

some
difficulty,

easily

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

166

overcame

9 31/08/2018
15:20

Yes Yes Very easy. I
did not have
any difficulty

7 31/08/2018
15:13

Yes No Easy, even
though I had

some
difficulty,

easily
overcame

12 31/08/2018
15:09

Yes No Easy, even
though I had

some
difficulty,

easily
overcame

8 31/08/2018
15:04

Yes No Too difficult. I
was unable to
complete the

task

11 31/08/2018
15:00

Yes No Easy, even
though I had

some
difficulty,

easily
overcame

10 20/08/2018
19:41

Yes No Complicated. I
experienced

some
difficulty and I
needed some

effort to
overcome

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

167

Task 2

Participant's
Number

Submission
Date

Why do you think the
researchers asked you to
use AES-CTR algorithm?

Did you copied
and pasted any

code from forums,
documentations

or examples?

4 2018-08-31
14:53:33

Do not know Yes

3 2018-08-31
14:39:51

To examine the volume of
code necessary to perform

the task

Yes

1 2018-08-31
14:31:43

Because of the difficulty
level to use AES-CTR,
which does not give a

good result. It's not safe.

Yes

5 2018-08-31
14:11:35

Comparison with AES/CBC Yes

2 2018-08-31
14:00:15

Comparison with the
previous task

No

6 2018-08-20
20:23:53

I have no idea. Yes

9 31/08/2018
15:20

Because it is more difficult
to be broken.

Yes

7 31/08/2018
15:13

Not idea Yes

12 31/08/2018
15:09

Do not know Yes

8 31/08/2018
15:04

did not complete the task No

11 31/08/2018
15:00

Because it is more
complicated than the

default AES

Yes

10 20/08/2018
19:41

Eu não sei, mas acredito
que possa ser porque o
AES puro sempre gera o

mesmo "Hash" enquanto
o AER/CTR gera "Hashes"

diferentes para uma
mesma entrada. E desta
forma tendo o mesmo

comportamento do HX.

Yes

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

168

Task 3

Participant's
Number

Submission
Date

Did you opt to modify
the properties of the HX

algorithm?

Why?

4 2018-08-31
14:53:33

No wanted to examine the
results with the default

values.

3 2018-08-31
14:39:51

No The default values were
well suited to the task.

1 2018-08-31
14:31:43

No Decided to trust the
default values

5 2018-08-31
14:11:35

No only changed the
masterKey, which is

necessary.

2 2018-08-31
14:00:15

No Consulting JAVADOC,
found the default
values adequated

6 2018-08-20
20:23:53

No If possible, I do not
know how to do it.

9 31/08/2018
15:20

No unfamiliarity with both
the Class and with

cryptographic
algorithms

7 31/08/2018
15:13

No did not specify

12 31/08/2018
15:09

No did not specify

8 31/08/2018
15:04

No Convenience

11 31/08/2018
15:00

No Did not specify

10 20/08/2018
19:41

No Ao meu ver as
propriedades padrão já

eram as melhores
opções. Gostei muito

dos Hints do Javadocs,
ajudou bastante.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

169

Participant's
Number

Submission
Date

How do you classify the
difficulty level of the

task? 3

What did you think of
the JAVADOC

documentation of the
class HX?

4 2018-08-31
14:53:33

Very easy. I did not have
any difficulty

Very good. It does not
need any other

information

3 2018-08-31
14:39:51

Very easy. I did not have
any difficulty

Good. It's what is
expected from a

JAVADOC

1 2018-08-31
14:31:43

Easy, even though I had
some difficulty, easily

overcame

Acceptable. I was able
to understand, but it

lacks further technical
information

5 2018-08-31
14:11:35

Very easy. I did not have
any difficulty

Very good. It does not
need any other

information

2 2018-08-31
14:00:15

Very easy. I did not have
any difficulty

Good. It's what is
expected from a

JAVADOC

6 2018-08-20
20:23:53

Easy, even though I had
some difficulty, easily

overcame

Good. It's what is
expected from a

JAVADOC

9 31/08/2018
15:20

Easy, even though I had
some difficulty, easily

overcame

Acceptable. I was able
to understand, but it

lacks further technical
information

7 31/08/2018
15:13

Easy, even though I had
some difficulty, easily

overcame

Good. It's what is
expected from a

JAVADOC

12 31/08/2018
15:09

Easy, even though I had
some difficulty, easily

overcame

Good. It's what is
expected from a

JAVADOC

8 31/08/2018
15:04

Very easy. I did not have
any difficulty

Good. It's what is
expected from a

JAVADOC

11 31/08/2018
15:00

Very easy. I did not have
any difficulty

Very good. It does not
need any other

information

10 20/08/2018
19:41

Easy, even though I had
some difficulty, easily

overcame

Good. It's what is
expected from a

JAVADOC

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

170

Participant's
Number

Submission
Date

Please feel free to
comment your answer

What did you think
of the set of

methods of the HX
class?

4 2018-08-31
14:53:33

Found the methods self-
explanatory enough. The

JAVADOC was not needed.

Well suited to the
goals of the class

3 2018-08-31
14:39:51

Found some methods,
without the JAVADOC

Well suited to the
goals of the class

1 2018-08-31
14:31:43

Took some time to
understand what the
objective of the hash

algorithm. Found some
grammatical errors. For
some reason taught the

setHashAlgorithm() method
would also set the

masterKey.

Suited to the goals of
the class

5 2018-08-31
14:11:35

Liked the JAVADOC. Undecided. I can't
evaluate.

2 2018-08-31
14:00:15

 Suited to the goals of
the class

6 2018-08-20
20:23:53

I did not use the JAVADOC. Undecided. I can't
evaluate.

9 31/08/201
8 15:20

Lack code examples Suited to the goals of
the class

7 31/08/201
8 15:13

 Suited to the goals of
the class

12 31/08/201
8 15:09

 Suited to the goals of
the class

8 31/08/201
8 15:04

Needed examples. The
documentation did not

specify if the methods were
static or not.

Well suited to the
goals of the class

11 31/08/201
8 15:00

Not difficulties whatsoever
to use the Class

Well suited to the
goals of the class

10 20/08/201
8 19:41

 Well suited to the
goals of the class

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

171

Final Questions

Participant's
Number

Submission
Date

Assuming the algorithms of
the Cipher class and the HX

Class are safe, which do
you prefer?

Why?

4 2018-08-31
14:53:33

Cipher The source code of
the Cipher class is
not available. In

information
security, it is
important to

disclose sensitive
algorithms for

public knowledge.

3 2018-08-31
14:39:51

HX Simplest to use and
the cleanest the
code produced.

1 2018-08-31
14:31:43

HX The easiest to use

5 2018-08-31
14:11:35

HX Found HMAC/CTR
the strongest cipher

mode

2 2018-08-31
14:00:15

Cipher Slower to execute

6 2018-08-20
20:23:53

I do not know I do not have the
knowledge need to

evaluate both of
them.

9 31/08/2018
15:20

HX Easier to use than
the others

7 31/08/2018
15:13

HX Simplest to use

12 31/08/2018
15:09

HX Because HX is
encapsulated.

8 31/08/2018
15:04

HX Simplicity in the use

11 31/08/2018
15:00

HX Much more easy to
use

10 20/08/2018
19:41

HX Achei muito mais
fácil de utilizar.
Pouco código e

produz um
resultado

satisfatório.

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

172

Participant's
Number

Submission
Date

What was your impression of
the tasks?

What was your
impression of
experiment's

forms?

4 2018-08-31
14:53:33

liked the opportunity to
remember some cryptography

concepts, such as padding.

Well suited for
the experiment

3 2018-08-31
14:39:51

Positive, since he had few
knowledge of cryptography.

Well suited to
the experiment

proposal.

1 2018-08-31
14:31:43

Cool and Easy. Even though
unexperienced with the

Cipher Class, it was easy to
find examples.

Meticulous. The
researchers
could have

asked which
Cryptography

API the
developers were

familiar with.

5 2018-08-31
14:11:35

precise and direct questions,
simple enough to accomplish

the experiment goal.

Too complex
and to detailed,

but good.

2 2018-08-31
14:00:15

Simple tasks that required
only the basic knowledge of

cryptography

Simple an direct
questions. On-

line forms would
be appreciated.

6 2018-08-20
20:23:53

It seems simple, but I did not
get the objective of them.

They are clear
and simple

9 31/08/2018
15:20

7 31/08/2018
15:13

12 31/08/2018
15:09

8 31/08/2018
15:04

11 31/08/2018
15:00

10 20/08/2018
19:41

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

173

Participant's
Number

Submission
Date

Do you have any suggestions for the
researchers?

4 2018-08-31
14:53:33

3 2018-08-31
14:39:51

1 2018-08-31
14:31:43

Record the screen during the experiment.

5 2018-08-31
14:11:35

check his code before the evaluation of the
feedback form answers.

2 2018-08-31
14:00:15

On-line forms, feedback forms after each task.
To record the execution of the tasks

6 2018-08-20
20:23:53

I wish to, but unfortunately, I have not the
experience or knowledge

9 31/08/2018
15:20

7 31/08/2018
15:13

12 31/08/2018
15:09

8 31/08/2018
15:04

11 31/08/2018
15:00

10 20/08/2018
19:41

DBD
PUC-Rio - Certificação Digital Nº 1421616/CA

