Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: COLLABORATIVE FACE TRACKING: A FRAMEWORK FOR THE LONG-TERM FACE TRACKING
Autor: VICTOR HUGO AYMA QUIRITA
Colaborador(es): RAUL QUEIROZ FEITOSA - Orientador
PATRICK NIGRI HAPP - Coorientador
Catalogação: 22/MAR/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51931&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51931&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.51931
Resumo:
Visual tracking is fundamental in several computer vision applications. In particular, face tracking is challenging because of the variations in facial appearance, due to age, ethnicity, gender, facial hair, and cosmetics, as well as appearance variations in long video sequences caused by facial deformations, lighting conditions, abrupt movements, and occlusions. Generally, trackers are robust to some of these factors but do not achieve satisfactory results when dealing with combined occurrences. An alternative is to combine the results of different trackers to achieve more robust outcomes. This work fits into this context and proposes a new method for scalable, robust and accurate tracker fusion able to combine trackers regardless of their models. The method further provides the integration of face detectors into the fusion model to increase the tracking accuracy. The proposed method was implemented for validation purposes and was tested in different configurations that combined up to five different trackers and one face detector. In tests on four video sequences that present different imaging conditions the method outperformed the trackers used individually.
Descrição: Arquivo:   
COMPLETE PDF