
Victor Hugo Ayma Quirita

Collaborative Face Tracking: A
Framework for the Long-Term Face

Tracking

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Programa de Pós-graduação em Engenharia
Elétrica

Rio de Janeiro
December 2018

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



Victor Hugo Ayma Quirita

Collaborative Face Tracking: A Framework for
the Long-Term Face Tracking

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Enge-
nharia Elétrica of PUC-Rio in partial fulfillment of the require-
ments for the degree of Doutor em Engenharia Elétrica.

Advisor : Prof. Raul Queiroz Feitosa
Co-advisor: Dr. Patrick Nigri Happ

Rio de Janeiro
December 2018

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



 
 

 
Victor Hugo Ayma Quirita 

 

Collaborative Face Tracking: A framework for the long-term face 

tracking 
 

Thesis presented to the Programa de Pós-Graduação em Engenharia 
Elétrica of PUC-Rio, in partial fulfillment of the requirements for the 
degree of Doutor em Engenharia Elétrica. Approved by the undersigned 
Examination Committee. 

 
 

Prof. Raul Queiroz Feitosa 

Advisor 
Departamento de Engenharia Elétrica – PUC-Rio 

 
 

Dr. Patrick Nigri Happ 

Co-Advisor 
Departamento de Engenharia Elétrica – PUC-Rio 

 
 

Prof. Bruno Feijó 
Departamento de Informática – PUC-Rio 

 
 

Prof. Alberto Barbosa Raposo 
Departamento de Informática – PUC-Rio 

 
 

Prof. Ricardo Farias 
UFRJ 

 
 

Prof. Gilson Alexandre Ostwald Pedro da Costa 
UERJ 

 
 

Prof. Márcio da Silveira Carvalho 
       Vice Dean of Graduate Studies 

Centro Técnico Científico – PUC-Rio 
 

 
 

Rio de Janeiro, December 18th, 2018.                                                                            

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



All rights reserved.

Victor Hugo Ayma Quirita

The author received his bachelor’s degree in Electronic Engi-
neering at the Universidad Nacional de San Antonio Abad del
Cusco (UNSAAC) in 2011. He obtained his master’s degree
in Electrical Engineering with emphasis on Signal Processing
and Control at the Pontifícia Universidade Católica do Rio de
Janeiro (PUC-Rio) in 2014. Since then, he has been working
on the field of computer vision and pattern recognition.

Bibliographic data
Ayma Quirita, Victor Hugo

Collaborative Face Tracking: A Framework for the Long-
Term Face Tracking / Victor Hugo Ayma Quirita; advisor:
Raul Queiroz Feitosa; co-advisor: Patrick Nigri Happ. – Rio
de janeiro: PUC-Rio, Departamento de Engenharia Elétrica,
2018.

v., 81 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Rastreamento de ob-
jetos;. 3. Rastreamento de Faces;. 4. Detecção de Faces;. 5.
Fusão de Rastreadores. I. Feitosa, Raul Queiroz. II. Happ,
Patrick Nigri. III. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 620.11

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



To God, for the gift of life, mystery, and curiosity.

To Victor and Rina, for teaching me unwrapping the present.

To Andrés, Pao, and Isa, for appreciating such a present along with me.

To Diego and Daniel, interestingly, life is mostly about detecting and tracking.

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



Acknowledgments

For whom I am, the blame is all on you: Victor and Rina. It would take
more than a lifetime to recognize all your loving, effort, dedication and sacrifice
in contributing to my personal and professional growth. For that, and for what
that might trigger, I will always be grateful to you both. I’m about to become
a Doctor. Yay!

I’m especially grateful to my advisor, Prof. Raul Queiroz Feitosa, for
giving me the opportunity of learning and pursuing the most important goal
in my academic career, which demanded his patience, support, understanding
and encouraging words over these years of scientific research guidance.

My heartfelt thanks to my co-advisor, Ph.D. Patrick Nigri Happ, for
his undivided attention, critical thinking, and productive scientific discussions
during our meetings, which considerably contributed to the consequence of this
doctoral research.

I cannot forget to extend my gratitude to Prof. Gilson Alexandre Ostwald
Pedro da Costa, for his scientific perspective, advice, enthusiasm and encou-
raging words from the very beginning of this research.

There are few things in life as important as family, whose roots transcend
frontiers. I am deeply grateful to my siblings: Andres, Paola, and Isarina, whose
constant love and support were essential towards the conclusion of my research.
I would also like to thank Gladys and Grover, for helping my parents watering
and grow the plants in our early years. I offer my most sincere gratitude to
Maybee, Gerald and my family by extension, for their positive thoughts and
encouraging words in pursuing this goal.

I am grateful to my colleagues in the LVC, who have always been willing
to listen and help, and with whom I have shared exceptional coffee afternoons,
which most of the times were full of joy, anecdotes, and endless scientific
discussions. I am especially thankful to Pedro Achanccaray and Jose Bermudez
for their friendship during these years of personal and academic coexistence.

I only have words of appreciation for Walter and Martha, whose fri-
endship have made my stay in Rio de Janeiro warmer, and for Vidali and
Jossi, who have always been willing to share their positive thoughts so I could
get back on track. Thank you, guys.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001*.

This work would not have been possible without support of Pontifical
Catholic University of Rio de Janeiro (PUC-Rio).

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



Lastly, for all the experiences, learnings and friendships that I have
accumulated over the last years here, I have only one left thing to say:
"Obrigado, Rio de Janeiro, Cidade Maravilhosa."

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



Abstract

Ayma Quirita, Victor Hugo; Feitosa, Raul Queiroz (Advisor); Happ,
Patrick Nigri (Co-Advisor). Collaborative Face Tracking: A
Framework for the Long-Term Face Tracking. Rio de Janeiro,
2018. 81p. Tese de doutorado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Visual tracking is fundamental in several computer vision applications.
In particular, face tracking is challenging because of the variations in facial
appearance, due to age, ethnicity, gender, facial hair, and cosmetics, as well
as appearance variations in long video sequences caused by facial defor-
mations, lighting conditions, abrupt movements, and occlusions. Generally,
trackers are robust to some of these factors but do not achieve satisfactory
results when dealing with combined occurrences. An alternative is to com-
bine the results of different trackers to achieve more robust outcomes. This
work fits into this context and proposes a new method for scalable, robust
and accurate tracker fusion able to combine trackers regardless of their mo-
dels. The method further provides the integration of face detectors into the
fusion model to increase the tracking accuracy. The proposed method was
implemented for validation purposes and was tested in different configura-
tions that combined up to five different trackers and one face detector. In
tests on four video sequences that present different imaging conditions the
method outperformed the trackers used individually.

Keywords
Object Tracking; Face Tracking; Face Detection; Tracking Fusion
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Resumo

Ayma Quirita, Victor Hugo; Feitosa, Raul Queiroz; Happ, Patrick
Nigri. Rastreamento de Faces Colaborativo: Uma Metodo-
logia para o Rastreamento de Faces ao Longo Prazo. Rio de
Janeiro, 2018. 81p. Tese de Doutorado – Departamento de Enge-
nharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O rastreamento visual é uma etapa essencial em diversas aplicações
de visão computacional. Em particular, o rastreamento facial é considerado
uma tarefa desafiadora devido às variações na aparência da face, devidas
à etnia, gênero, presença de bigode ou barba e cosméticos, além de va-
riações na aparência ao longo da sequência de vídeo, como deformações,
variações em iluminação, movimentos abruptos e oclusões. Geralmente, os
rastreadores são robustos a alguns destes fatores, porém não alcançam re-
sultados satisfatórios ao lidar com múltiplos fatores ao mesmo tempo. Uma
alternativa é combinar as respostas de diferentes rastreadores para alcançar
resultados mais robustos. Este trabalho se insere neste contexto e propõe
um novo método para a fusão de rastreadores escalável, robusto, preciso
e capaz de manipular rastreadores independentemente de seus modelos. O
método prevê ainda a integração de detectores de faces ao modelo de fusão
de forma a aumentar a acurácia do rastreamento. O método proposto foi
implementado para fins de validação, tendo sido testado em diversas confi-
gurações que combinaram até cinco rastreadores distintos e um detector de
faces. Em testes realizados a partir de quatro sequências de vídeo que apre-
sentam condições diversas de imageamento o método superou em acurácia
os rastreadores utilizados individualmente.

Palavras-chave
Rastreamento de objetos; Rastreamento de Faces; Detecção de Faces;

Fusão de Rastreadores
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1
Introduction

Social organization has evolved over time. After nomads mastered farm-
ing and domestication, they changed their wandering nature for living in set-
tlements. The establishment of the first settlements led to the organization
and control of people interactions to ensure the proper use of shared resources.

As the settlements began to expand, there was a need for protection
mechanisms against harm from internal or external forces. Thus, guards
and sentinels were usually employed to watch and secure people and their
environment. With the passage of time, drawings of known criminals began
to be distributed, so that they could be recognized and hunted. Then, as
the technology advanced, automatic and semi-automatic solutions became
available to aid and alleviate the human efforts.

Nowadays, the explosion of population growth has complicated the con-
trol of human interactions. On the other hand, the evolution of knowledge al-
lowed the development of new technologies for information management, which
enables some level of control of social interactions and provides greater security
in political, monetary, technological and physical infrastructure contexts.

In this sense, computer vision scientists have been working for decades
on the development of methods that enable machines to understand the
world through the analysis of a single or paired still images (Jain et al.,
1995). However, the lack of temporal context for describing the complex world
dynamics limits their application, exposing the need to work with image
sequences, i.e., videos. Techniques based on video sequences are capable of
detecting and tracking changes associated with objects of particular interest.
They allow extracting meaningful information which are often used by law
enforcement applications, among others.

Over the past couple of decades there has been a rising interest in
collecting and processing data associated with human faces, driven mostly by
national and international security, law enforcement and facial authentication
issues. Moreover, face detection and recognition have proven to be valuable,
reliable and flexible biometric applications, based on image data, which is easy
to acquire in a non intrusive way (Li and Jain, 2005).

Over the years, face recognition has become a relatively well-solved
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problem, with a series of algorithms achieving a very high degree of accuracy
(Taigman et al., 2014; He et al., 2016; Liu et al., 2017; Ranjan et al., 2017; Wang
and Deng, 2018). Similarly, face detectors have been exhaustively studied in the
literature, achieving remarkable performance in locating faces within an image
(Zhang and Zhang, 2010; Zafeiriou et al., 2015). However, they lack associative
capabilities to assign and hold an identifier to a face of interest over time. In
order to solve this data association requirement, face trackers are designed
to estimate the state of a face of interest within a sequence of images. The
state might contain properties of the face, such as position, extent, velocity,
appearance, orientation, among others (Forsyth and Ponce, 2011), which helps
locating and following the target face over time.

In fact, face tracking is a particular case of visual object tracking, also
known as object tracking. This is the reason why the literature refers to a
face as being an object within the object tracking context. Typically, the face
tracking process starts with just one sample of a facial image in a given frame
of the video sequence. Then, a tracker creates a model of the target face and
incrementally updates it with the face variations perceived over the frames.
In this respect, a tracker should be able to correctly track a face indefinitely
as long as it remains visible. The literature attributes the name of long-term
tracking to this task (Kalal et al., 2012).

Although tremendous efforts have been made to produce robust and ac-
curate tracking algorithms, long-term tracking in real-world scenarios remains
challenging due to intrinsic and extrinsic factors that influence the appearance
of the object, consequently leading the trackers to drift away from the target
or to the loss of its track (Smeulders et al., 2014).

Intrinsic factors correspond to deformations caused by rigid (translation
and rotation) and non-rigid transformations and to inherent object properties
such as age, ethnicity, gender and facial hair, in the case of the face tracking.
External factors, which are often uncontrolled in real-world scenarios, corre-
spond to the movement of the camera during acquisition, to temporal and
spatial image resolutions, to image noise due to sensor’s characteristics, to
loss of information caused by three-dimensional space projection onto a bi-
dimensional image, to changes in illumination, to similarity in appearance and
to occlusions (Jain et al., 1995; Yilmaz et al., 2006; Magio and Cavallaro, 2011).

Comparative studies have shown that different trackers exhibit different
behaviors when facing some of the aforementioned problems, indicating that a
single tracker may not cope with all kinds of perturbations that occur during
the tracking process and generally master just one or few of them (Smeulders
et al., 2014; Wu et al., 2015; Li et al., 2016; Kristan et al., 2016). Additionally,

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



Chapter 1. Introduction 17

their results also suggest that there is a complementary behavior among
trackers, which might be exploited to increase overall tracking performance.

In this sense, several authors have proposed to exploit this complemen-
tary behavior by putting different trackers to work together in an ensemble.
Some authors have combined trackers’ estimates into a single and, expectedly,
more reliable estimate (Shearer et al., 2001; Leichter et al., 2006; Stenger et al.,
2009; Li et al., 2012; Bailer et al., 2014; Gao et al., 2014). To further improve
the overall tracking performance, other authors have proposed to enhance in-
dividual tracker’s performance by resubmitting the combined estimate back to
the trackers in the ensemble (Zhong et al., 2014; Biresaw et al., 2015; Leang
et al., 2015; Ayma et al., 2017). Somewhat different from the combination of
tracking estimates, few authors have incorporated prior knowledge of the ob-
ject, such as the inclusion of detectors, within the tracking process to correct
tracker’s trajectory (Kalal et al., 2010; Fan and Ling, 2017). Although a lot of
work have been made in the recent years, the long-term tracking and specially
the long-term face tracking is still an open problem.

In this work, we combine some of these ideas to propose a novel and
robust framework for the long-term face tracking in unconstrained scenarios,
specially scenarios that contain occluding objects and multiple-faces. The
main idea is to use the information provided by an offline face detector
to complement the trackers conforming an ensemble. This approach would
allow each tracker to adjust its tracking trajectory, recover from tracking
failures or recapture the track of the target face after short periods of
disappearance, improving, in this way, individual trackers and consequently the
unified tracking response. In a nutshell, the proposed framework comprises four
modules that operate over each frame of a video sequence. These modules are
responsible for: independently processing multiple tracking tasks of a particular
face; merging the different trackers’ estimates; running a face detection task in
attempt to locate the target face; and finally, combining the detector’s outcome
with the merged tracking estimate to produce the final estimate and then to
feed it back to each tracker in the ensemble.

1.1
Objectives

This thesis research aims to propose a framework for the long-term track-
ing of faces that provides accuracy and robustness in unconstrained scenarios,
specially those scenarios that contain occluding objects and multiple-faces, by
merging the outcomes from an ensemble of trackers and complementing it with
information delivered by an offline face detector.
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In pursuit of the general objective, the specific objectives are:

1. Conceive and develop an operational structure to allow trackers to
correct their state, update their facial appearance model, and re-initialize
themselves when necessary.

2. Design a collaborative scheme to allow individual execution of trackers,
a fusion of trackers’ estimates, the execution of a face detector, and the
combination between the face detector’s and fusion’s outcomes.

3. Conceive a verification mechanism to select the outcome from a pool of
detection outcomes that corresponds to the target face.

4. Design a feedback mechanism to update or re-initialize the trackers
individually based on the framework’s output.

5. Build a prototype in C++ that implements the proposed framework and
allows the scalability regarding the addition of different new trackers and
the replacement of the face detector and fusion methods.

6. Build a facial video dataset collection by selecting public single-face
and multiple-face video sequences and creating the reference annotations
when they are not available.

7. Evaluating the proposed framework and comparing its performance with
the individual trackers and the tracking fusion method adopted.

1.2
Thesis Contributions

The main contributions of this work are fourfold:

1. Propose, implement and evaluate a novel framework for the long-term
face tracking, which comprises an ensemble of generic object trackers and
face detectors.

2. Devise an association and verification mechanism that allows selecting
the target face among a set of candidates provided by a face detection
algorithm that enables the long-term face tracking.

3. Investigate decision-making alternatives to update or reset the trackers
that compose the ensemble based on the framework’s combined outcome.

4. Make available a face-specific tracking database, assembled by selecting
facial video sequences available in the literature and annotating their
references when they are not available.
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1.3
Thesis Organization

The remainder of this thesis is organized as follows. The next chapter
makes a review of the literature presenting the most relevant works related to
the face tracking problem, including the state-of-the-art on object detection
and tracking, as well as tracker fusion and combination of face trackers with
face detectors. Chapter 3 describes the proposed framework for the long-term
face tracking and its modules. Chapter 4 presents the experimental analysis
carried out to evaluate the proposed framework. Finally, Chapter 5 summarizes
the conclusions drawn from the experimental results and give directions for
future works.
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2
Related Works

Face tracking is fundamental for numerous applications in fields as
diverse as security, health, sports, digital gaming, marketing, and so on.
For example, face verification systems use face tracking methods to collect
facial data in order to validate the identity claimed by a person. In video
surveillance systems, face tracking algorithms provide facial data to analyze
facial expressions and, consequently, recognize suspicious behaviors.

Although face tracking, as its name suggests, works over the facial images
domain, it is a subfield of the visual object tracking; hence, it inherits all of
its properties and methods for the tracking task. Furthermore, this allows
regarding a face 1 as an object within the visual object tracking.

The vast quantity of published works on visual object tracking such as
books (Ballard and Brown, 1982; Magio and Cavallaro, 2011; Forsyth and
Ponce, 2011) surveys (Yilmaz et al., 2006; Yang et al., 2011; Smeulders et al.,
2014; Wu et al., 2015; Li et al., 2016; Kristan et al., 2016; Li et al., 2018)
journal papers, and conferences show that visual object tracking is a field of
great interest and remains in continuous development.

This chapter provides an overview of visual object tracking literature,
including related works that are considered the state-of-the-art in face detec-
tion, fusion of tracking algorithms and the collaboration between tracking and
detection algorithms.

2.1
Face Detection

Face detection refers to the process of locating the regions within an
image that encompass facial patterns. Typical face detection algorithms are
trained to learn facial patterns from a representative training set, which is
expected to gather most of the faces’ variability in unconstrained scenarios
(Zafeiriou et al., 2015; Zhang and Zhang, 2010; Yang et al., 2002).

Conventional face detection algorithms submit a set of image patches to a
binary classifier, which outcome tells whether a patch corresponds to a face or

1In this work, we acknowledge that a face is also an object in its most abstract form and
as such it uses the words face and object indistinctly.
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not. The set of image patches can be extracted using a sliding window which
is moved through the image at fixed position steps and scales (Forsyth and
Ponce, 2011). For example, Viola and Jones (2001) combined several weaker
binary classifiers into a cascade structure to discriminate if an image patch
corresponds to a face. Although the algorithm performs well in constrained
scenarios, it fails in the presence of faces with large angle variations, partial
occlusions and appearance changes caused by lighting conditions.

Aiming at improving Viola and Jones’s face detector, Li and co-authors
(2011) combined Speeded up Robust Features (SURF) with a cascade of weak
classifiers. Jun et al. (2013) proposed variants of the Local Binary Pattern
(LBP) and Gradient of Histograms (HOG) features, namely Local Gradient
Patterns (LGP) and Binary Histograms of Oriented Gradients (BHOG),
and a hybrid feature that combines the LBP, LGP, and BHOG via the
AdaBoost algorithm. Despite the efforts to produce robust face detectors, the
aforementioned methods still have problems when facing significant facial pose
variations, deformations, and occlusions.

Recent studies in areas related to face detection highlight the discrimina-
tive power of cascade classifiers, as well as the trade-off between the number of
the cascade stages and the quality of the features used to capture the variations
of the objects (Zafeiriou et al., 2015; Zhang and Zhang, 2010). In particular,
Convolutional Neural Networks (CNN) have shown a remarkable performance
in object detection tasks, mostly attributed to their capacity to learn objects’
representations. Li et al. (2015) introduced a CNN-based cascade classifier to
locate faces in an image. The classifier comprises three stages, containing two
CNN’s each. The first CNN in each stage refines candidate facial regions as
they pass through the cascade, whereas the second CNN performs a bounding
box correction, also known as bounding box calibration, for a better alignment
with the actual face in the image.

To improve the CNN-based face detectors’ performances, several authors
have proposed to learn correlated features with face detection in a simultaneous
manner, such as facial landmark location, head posture estimation, gender
recognition, among others. For example, the DNN face proposed by Zhang
et al. (2016) exploits the inherent correlation between face detection and
facial landmarks location via a deep cascade multitask framework. Analogous
to the method presented by Li et al. (2015), Zhang’s CNN architecture
comprises three stages, which refines candidate facial regions and calibrate
their corresponding bounding boxes. However, the final stage in Zhang’s
approach performs a landmark localization to improve its discriminative power.
In a similar manner, Ranjan et al. (2017) designed a CNN architecture to
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detect faces while locating facial landmarks, estimating the head posture
and recognizing the gender at the same time. The authors proposed to learn
common features for these tasks by fusing the feature maps throughout the
network using a separate fusion-CNN.

In short, face detectors have increasingly improved over time. The
emergence of deep learning based technologies and the availability of training
data covering a broader range of facial appearances has allowed the creation of
robust face detectors. Given its capacity to locate faces, modern face detectors
might operate over the frames of a video sequence to collect facial data, however
they lack mechanisms to associate the target face to a correspondent detection.
In this sense, tracking algorithms are required since they are specifically
designed to collect facial data and to track the changes related to a face of
interest.

2.2
Visual Object Tracking

In contrast to face detection, face tracking aims to estimate the state of
a face as new frames become available. This implies solving a data association
problem inherent to the tracking process: a tracker must ensure that a face
stays associated with a unique identifier along the frames of a video sequence.

Visual object tracking, or simply tracking, caught the community’s
attention with the seminal work of Lucas and Kanade on image registration
using matching techniques in the early 80’s (1981). The general idea was to
minimize the mismatch between a reference and a candidate template. The
major drawback of this and similar approaches are related to the use of a
single reference template, which aims to capture the appearance variations
of the object during tracking (Comaniciu et al., 2000; Baker and Matthews,
2004; Matthews et al., 2004). Furthermore, the object is often described by
color histograms or image patches, which are sensitive to illumination changes,
occlusions, abrupt motion, and changes in object’s size.

Nowadays, a typical tracker creates an appearance model of the target
object based on the information extracted from a bounding box given at the
beginning of the tracking process. This model is incrementally updated with
data available during the tracking. Although the appearance model is specific
to a tracker, it often gets affected by object’s deformations and fast movements,
occlusions and lighting variations, as well as image resolution and sensor noise,
among others factors. So, the success of a tracking algorithm depends on its
capacity to adapt to the changes in the object’s appearance that occur during
tracking.
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Several authors have explored the idea of using online techniques from
the machine learning field to learn the changes in the object’s appearance. The
literature categorizes such methods as discriminative and generative trackers.
While discriminative trackers train an online binary classifier to distinguish the
object from the background, generative trackers model the object appearance
during tracking disregarding background’s information. In both cases, an
incremental update with reliable data is crucial in order to prevent tracking
failures (Yang et al., 2011).

Discriminative trackers consider the task of tracking as a binary classi-
fication problem. The estimate of the object’s state, often represented by a
bounding box, corresponds to the location of the image patch that gets the
maximum classification score within a local neighborhood near to the previ-
ous state. It is important to note that discriminative trackers strongly depend
on designing features robust enough to represent the object’s appearance, as
well as the mining of reliable data for online classifier training. For example,
Collins et al. (2005) and Grabner et al. (2006) proposed methods to select
the best-suited features in an online manner. In addition to feature selection,
Babenko et al. (2011) explored multiple instance learning algorithms to re-
solve the uncertainty in self-generated training data. Moreover, Kalal et al.
(2012) proposed to combine a tracker and an online detector’s responses to
improve tracking performance, however both the tracker and the detector are
subjected to appearance variations present during tracking. Following this line,
Zhang and co-authors (2014) proposed to model the object’s appearance in a
compressed domain, resulting from the projection of image features to a ran-
domly chosen low-dimensional space. Hare et al. (2016) integrated the learning
and tracking process by using structured classification outcomes avoiding to
generate labeled data for training.

Generative trackers, on the other hand, aim at modeling the object’s ap-
pearance in a d-dimensional space using data available only during tracking.
Conventional generative tracking algorithms measure the similarity between
the model and a candidate image patch to estimate the state of the object
where the similarity measure is often a pre-defined matching function. For ex-
ample, Ross et al. (2008) designed a method that incrementally captures the
appearance variations by learning a low-dimensional subspace representation.
Mei and Ling (2009) estimate the object’s state by finding the lowest pro-
jection error between a candidate template and target templates on a sparse
space, spanned by the target and trivial templates. Henriques et al. (2015) em-
ployed non-linear mapping and trained an online linear ridge regression model
to predict the next state of the object. Recently, He and co-authors (2017) pre-
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sented a novel approach to improve tracking performance under illumination
changes and occlusions. The method analyzes a multi-region representation,
called local sensitive histograms, which relates pixels intensities and positions.

Although the use of hand-crafted features has led to considerable perfor-
mance improvements in the task of both discriminative and generative tracking
(Smeulders et al., 2014; Wu et al., 2015), the adoption of cutting-edge methods
for representation learning within the tracking process has presented promis-
ing results (Li et al., 2018). Recently, CNNs have proven to be powerful tools
to learn features calling the attention of the visual object tracking community.
For instance, Ma and co-authors (2015) presented a coarse-to-fine approach
for object tracking that combines the responses of a set of online learned cor-
relation filters which correspond to the 3rd, 4th, and 5th convolutional layers
of the VGG-Net (Simonyan and Zisserman, 2015). Their approach exploits the
CNN’s capability to encode relevant object’s information along the convolu-
tional layers of the network. The last convolutional layers of a CNN encode
the semantic information of the object being robust to significant changes in
appearance, while early layers capture spatial details which are suitable for a
precise object location.

Following the deep learning approach, Danelljan et al. (2016) proposed to
fuse the outputs of multiple convolutional layers into a joint learning framework
instead of dealing with separate correlation filters. This scheme integrates
multi-resolution deep feature maps into a learning process of continuous
convolution filters on the spatial domain, which produces a continuous-domain
confidence map of the object’s state.

In the recent past, some authors have extended the use of the CNN’s
within a siamese architecture to learn a matching function for tracking. The
matching function measures the similarity between a reference image of the
target object and a candidate image extracted from a new frame of a video
sequence. In this sense, the function provides a high score if the two images
correspond to the same object, or produces a low score, otherwise. For example,
Tao and co-authors (2016) employed a siamese network to learn a matching
function that returns the location of the most similar image candidate with
the reference. In this approach, they used data from several video sequences
to train the siamese network in an offline manner. Bertinetto et al. (2016)
proposed a similar approach using a fully convolutional network for a dense
search of the best image candidate.

As presented by the aforementioned methods, conventional and deep
learning based techniques perform well on the tracking of arbitrary objects
for short periods. However, they often fail in the presence of severe perturba-
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tions, such as occlusions, object’s transformations and image resolution, which
restricts them to operate on the long-term. The comparative studies of (Wu
et al., 2015; Smeulders et al., 2014; Kristan et al., 2016; Li et al., 2016) have
exposed the limitations of individual trackers to cope with these changes in
an object’s appearance showing that the occurrence of simultaneous perturba-
tions might decrease the tracking performance considerably. Moreover, their
results also suggest that different trackers have complementary behaviors, as
some trackers perform well in situations where others perform poorly. Thus,
the fusion of complementary trackers would improve significantly the accuracy
and robustness of the tracking process, specially under the effect of different
perturbations.

2.3
Tracking Fusion

Following the premise that a tracker ensemble would result in a more
robust performance than single trackers, several authors have proposed fusion
techniques over the years. Shearer et al. (2001) proposed to select one of the
estimates between a region-based tracker and an edge-based tracker according
to a confidence measure. However, it requires user intervention when possible
drifts are detected. Leichter et al. (2006) combined several tracking estimates
through the exchange of their final state pdf (probability density function).
The method is, however, limited to trackers of the same nature.

On a more general fusion framework, Stenger and co-authors (2009)
learned the error distributions of a collection of trackers from a representative
training set in order to select the best-suited trackers for a given application.
Nevertheless, the proposed approach is limited to the range of perturbations
present during training, and to a certain number of trackers. Similar to
Stenger and co-authors, Li et al. (2012) proposed a disagreement-based fusion
approach, which has also restrictions in terms of the number and type of
trackers. Bailer and co-authors (2014) combined the estimates of a set of
trackers through an offline trajectory optimization scheme, where tracking
results for a given video sequence were already known in advance.

The aforementioned methods attempt to fuse a set of tracking estimates
into a single and more reliable estimate. They are, however, limited to par-
ticular tracking designs or to specific offline training procedures. To overcome
these problems, Gao et al. (2014) proposed a method to fuse the estimates of
an ensemble of trackers, which is independent of their particular natures, i.e.,
trackers are treated as black boxes.

In short, the fusion of visual object tracking algorithms aims to improve
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the overall tracking accuracy by merging different tracker outputs. Although
these methods usually improve the accuracy of the final outcome, each tracker
is still subjected to failures often caused by error accumulation in its object’s
model, which makes its tracking estimates to drift away from the target.
In fact, the long-term tracking requires recovering from tracking failure or
reacquiring the target once it reappears in the camera’s field of view. (Li et
al., 2018; Wu et al., 2015; Smeulders et al., 2014; Kalal et al., 2012). Such
problems can be mitigated by feeding the tracker from time to time with
reliable training samples that might be provided by a unified response of an
ensemble of trackers, an object-specific detector or a combination of both. In
the next section, some methods based on this feedback process are presented.

2.4
Feedback Learning

Although the aforementioned Gao’s approach (2014) is fairly general,
it does not support updating the object’s representation of the individual
trackers, which can lead them to drift away from the target. In this direction,
some works include a feedback mechanism, based on the fusion output, to
provide more reliable training samples to eventually correct each tracker. Thus,
this technique enhances the individual tracker performance and, consequently,
the final result.

In this sense, Leang et al. (2015) evaluated different strategies for
updating or re-initializing trackers by combining fusion outputs and drift
predictors. Each tracker’s contribution is given by a binary confidence level,
which considers individual trackers’ performance in the previous and current
frames instead of the accumulated performance during tracking.

In the same line, Zhong and co-authors (2014) proposed a probabilistic
approach for the fusion of the trackers’ estimates. In their approach, the fused
tracking estimate is also used to update the trackers in the ensemble in order
to improve their accuracy. Biresaw et al. (2015) proposed a fusion framework
that enables individual tracker correction based on estimates provided by other
trackers, but the method is restricted to Bayesian trackers. Finally, Ayma and
co-authors (2017) have extended Gao’s fusion approach by resubmitting the
fusion’s estimate to the trackers that comprise an ensemble. A problem with
this approach is that, depending on the ensemble design, trackers with poor
performances may affect the results as much as well-behaved trackers, leading
to sub-optimal outcomes.

2.5
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Combining external Detectors with Trackers

The idea of combining visual object tracking and object detection algo-
rithms has been also explored in the literature. However, the inability of the
detectors to solve the data association problem has lead scientists to focus on
developing methods to ensure a correspondence between the target object with
only one of the detection outcomes.

Recently, Fan and Ling (Fan and Ling, 2017) presented a framework
that combines a fast operating tracker with a tracker’s estimate verifier to
perform the long-term object tracking. In this approach, the verifier is executed
periodically and in parallel with the tracker. Moreover, the verifier examines
the tracker’s estimates aiming for accuracy. Thus, in the case of a tracking
failure, the verifier adopts a detector behavior to provide the tracker with an
alternative tracking estimate to correct its state and continue with the tracking.

All the methods presented above in this chapter were developed to work
with arbitrary objects. In this sense, an object represents anything that is
of interest for a given application, such as products, cars, persons, among
others. Therefore, these tracking algorithms could be adapted to face tracking.
However, there are few works that focus on face tracking applications in the
literature. Some of them are presented in the next section.

2.6
Face Tracking

Combining some of the already presented ideas, Kalal et al. (Kalal et al.,
2010) proposed an scheme to track faces in a video sequence, using an offline
face detector and focusing on the development of a validator, which certifies
that the detector and the tracker outcomes correspond to the face of interest.

However, human faces are hard to control in real-world scenarios given its
highly deformable nature, which complicate the tracking process. To overcome
this inconvenience, some authors have wrapped around the face tracking
task into a continuous face landmark localization problem. The landmarks
correspond to fiducial face features, such as eyes, nose, mouth and so forth.
Usually, face landmark localization algorithms are based on deformable models,
which dates back to the work of Cootes et al., (2001). The deformable models
can be learned offline to fit a facial image (Xiong and De la Torre, 2013) or can
be incrementally updated to cope with face variations (Asthana et al., 2014).
Nevertheless, both approaches often need the intervention of a face detector
to produce reliable face tracking (Chrysos et al., 2018).

In this work, we want to improve the face tracking solutions by proposing
a new framework focused on long-term face tracking, called Collaborative
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Face Tracking. This framework combines some of the most prominent ideas
presented in this chapter such as the fusion of different trackers, the feedback
learning and the combination with a face detector. As far as we know, the
proposed framework is the first of its kind presenting all these characteristics
together to this aim. Additionally, the framework is flexible and scalable,
since any tracking algorithm can be included in the framework, as well as
any tracking fusion technique that accepts tracking estimates as input.
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Collaborative Face Tracking

In the long-term face tracking, trackers should continuously deliver
estimates about the state of the target face for long periods. However, face
tracking algorithms are sensitive to different kinds of variations that frequently
cause tracking failures such as changes in scene’s illumination, occlusions
caused by non-interest objects, resemblance among faces and deformations
proper to the face dynamical behavior.

In fact, tracking failures are a consequence of error accumulation in the
tracker’s appearance model as a result of the model’s update with inaccurate
data, usually derived from the aforementioned variations. This often lead the
trackers to lose or drift away from the target face, impairing in this way the
long-term face tracking. In order to avoid those errors, some trackers explore
different ways to constantly adjust their states estimates, update their facial
models or combine both alternatives.

In this work, we propose a framework architecture to enable the long-
term face tracking in unconstrained scenarios, including those where occlusions
and multiple-faces are present. Our framework relies on the assumption that
a consensus tracking estimate is more accurate and robust than individual
trackers’ estimates and can be used either to update or to re-initialize the
trackers in the ensemble. Furthermore, complementary information about the
face, provided by an offline face detector, may be used to refine the fusion
process, recover from tracking failure and recapture the target face after a
short disappearance.

The next sections in this chapter give an outlook of the framework
architecture and present its components in details, as well as the methods
that enable the trackers’ update and re-initialization.

3.1
Framework Overview

The Collaborative Face Tracking is a framework for the long-term track-
ing of faces that takes into consideration the outcomes from an ensemble of
trackers and from an offline face detector to produce a final tracking estimate,
which is supposed to be more accurate and robust than individual trackers’ es-
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timates. The framework comprises four modules: Tracking, Fusion, Inspection,
and Integration, organized in such a way that each tracker in the ensemble
benefits from the final tracking estimate (see Fig. 3.1). The trackers are incre-
mentally updated or re-initiated, depending on their agreement level with the
final tracking estimate.

The tracking process starts with the Tracking module, which is composed
of different trackers that will cooperate in an ensemble, initializing each tracker
with information about the initial state (position and extent) of the target face
in the first frame.

Next, for every incoming frame, a new estimation cycle is started. In
the first step, the tracking module executes each tracker in the ensemble to
produce a set of tracking estimates. These estimates are, in turn, processed by
the Fusion module, which produces a consensus estimate of the possible state
of the face (fusion estimate).

Simultaneously, the Inspection module, which is composed by an offline
face detector, analyzes the current frame, upon request, to provide an addi-
tional, and expectedly reliable, guess (inspection estimate) about the current
state of the face.

In the following, the Integration module combines the responses of both
the Inspection and Fusion modules to generate the final estimate of the face
state (integration estimate), which corresponds to the framework’s output.
Finally, the estimation cycle finishes once the Integration module forwards
the final tracking estimate back to the Tracking module, which uses it to
command each tracker in the ensemble to either update their models or re-
initiate themselves.

3.2
Tracking Module

This module is in charge of managing the trackers conforming the
ensemble, so they correctly operate within the framework. Most of the available
trackers have a similar operating structure: first, they estimate the state of the
target face for a given video frame, then they use this new estimate to update
their facial models, as well as to produce a state estimate of the target face in
the subsequent frame (refer to Figure 3.2(a)). However, this operating structure
might contribute to the creation of unstable trackers due to the insertion of
unreliable information into their facial models’ from the use of their very own
tracking estimates.

In order to ensure the correct framework’s execution, we propose to
extend the aforementioned operational structure by including a state correction
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Figure 3.1: Collaborative Face Tracking, a framework for the long-term track-
ing of faces.

stage in between the state estimation and the model updating stages, as
illustrated in Figure 3.2(b). In this way, the trackers benefit from reliable
information delivered by the Integration module. Specifically, given a tracker
in the ensemble, it first estimates the state of a target face in a given video
frame and, at the end of the estimation cycle, it uses the outcome from the
Integration module to correct the state of the target face (tracker’s correction)
and consequently update its facial model (tracker’s update). Moreover, the
tracker uses the corrected estimation as input in the estimation stage to
produce the subsequent tracking outcome.

This new processing chain enables two ways for tracker’s correction. In
the first approach, a tracker corrects its tracking estimate in position-only, i.e.,
partial correction; whereas, in the second approach, the tracker corrects its
position and extent, i.e., complete correction. The partial correction is defined
by the translation of the tracking estimate towards the final tracking estimate
provided by the Integration module, such that the center positions of the two
estimates correspond with each other. The complete correction, on the other
hand, involves replacing the tracker’s state estimate with the position and
extent of the integration estimate.

Although the outcome of the Integration module usually leads to a more
accurate estimate of the target face state, the bare updating of a tracker might
not be enough to bring it back to the correct track. In these scenarios, the
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Figure 3.2: Trackers’ operational structure. (a) Conventional operational struc-
ture. (b) Proposed operational structure.

tracker gets reinitiated. This process involves erasing the facial model and
all of the accumulated records about the target face states and then starting
over from scratch using the last estimate provided by the Integrator module
as the new initial state. From now on, we refer to this process as tracker’s
re-initialization.

The decision between updating or re-initializing a tracker is subjected
to an evaluation of its accumulated records about the state of the target face
over some consecutive frames. Formally, given a tracker in the ensemble, first,
the Tracking module measures the dissimilarity between an individual tracking
estimate and the final tracking estimate forwarded by the Integration module.
Next, the Tracking module stores the dissimilarity result into a cyclic buffer of
fixed size (sb) developed for the tracker, hereafter known as cyclic dissimilarity
buffer. Then, the module computes a predefined statistic (mean, median, etc.)
considering all the elements in the buffer and compares it against a predefined
re-initialization threshold (δr). Finally, the Tracking module commands the
tracker to update its facial model if the computed statistic is below δr;
otherwise, the tracker gets re-initiated.

It is worth noting that the Tracking module is scalable regarding the
number of trackers in the ensemble and flexible concerning their designs. Thus,
it is possible to include as many different trackers as desired.

3.3
Fusion Module

The fundamental idea behind the Fusion module, and actually behind
the whole framework, is that the cooperation among trackers with different
characteristics and capabilities would lead to a better estimate of the real
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state of the target face. So, the Fusion module takes the trackers’ estimates as
input and processes them together to generate the ensemble’s single outcome,
i.e., the fusion estimate.

In theory, this module is flexible in a way that any fusion method may
be applied to produce a single result from the collective of trackers. In fact,
the Fusion module solely demands the trackers’ estimates and does not require
any knowledge about the tracking algorithms in the ensemble, contributing in
this way to the framework’s scalability and flexibility.

In this work, we employed the fusion method proposed by Gao et al.
Gao et al. (2014), namely the Symbiotic Tracker Ensemble, to process and
merge the trackers’ estimates. We chose this approach because it exploits both
temporal and spatial relationships among trackers’ estimates to produce a
unified outcome. Furthermore, it disregards the trackers’ designs, considering
each tracker as a black box.

The Symbiotic Tracker Ensemble ponders the contribution of each tracker
in the ensemble to the fusion estimate by weighting the trackers according
to individual and collective evaluations of their behaviors, followed by a
combination stage.

The individual evaluation, which corresponds to the Intra-Tracker Cor-
relation stage in Figure 3.3, analyzes the tracker’s consistency over time to
provide an initial weight for each tracker, i.e., Initial credibility. To this end,
the Intra-Tracker Correlation evaluates the smoothness in the tracker’s trajec-
tory by relating its estimates from consecutive frames with its previous final
credibility, which is the weight computed by the Inter-Tracker Correlation
stage.

The collective evaluation, which corresponds to the Inter-Tracker Cor-
relation in Figure 3.3, measures the spatial congruence among the different
trackers’ estimates through multiple pair-wise trackers’ interactions. It takes
the initial trackers’ credibilities into account in order to produce the Final
credibilities, which correspond to the final trackers’ weights.

In the sequence, the Combination stage presented in Figure 3.3 computes
the Fusion estimate considering all the trackers’ estimates and their respective
Final credibilities.

Next, we describe a set of relationships between tracking estimates
used in both Intra-Tracker Correlation and Inter-Tracker Correlation stages,
followed by a brief explanation of how to compute both correlations and the
fusion estimate.

3.3.1
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Relationships Between Tracking Estimates

An important part of the Gao’s fusion approach is to quantify relation-
ships between two tracking estimates, R1 and R2, which can be represented by
two bounding boxes in the form R = (x, y, width, height).

For this purpose, Gao and coauthors introduce two similarity metrics,
formally:

– F (R1, R2): which measures the similarity between R1 and R2 as:

F (R1, R2) = 2× Pr(R1, R2)×Re(R1, R2)
Pr(R1, R2) +Re(R1, R2) (3-1)

where F (R1, R2) ∈ [0, 1], and Pr(R1, R2) and Re(R1, R2) represent
precision and recall, respectively.

– r(R1, R2): which quantifies the congruence between R1 and R2 according
to:

r(R1, R2) = exp(−D
2(R1, R2)
σ2 ) (3-2)

where r(R1, R2) ∈ [0, 1], D(R1, R2) represents the Euclidean distance
between the centers of R1 and R2, and σ is a controlling coefficient of
the width of the exponential function.

3.3.2
Intra-Tracker Correlation

The first stage of Gao’s fusion approach evaluates a tracker’s consistency
by assessing the changes in its trajectory. To this end, successive tracking
estimates are used to compute a temporal correlation measure, which defines
its initial credibility.

In a more formal way, given two consecutive tracking estimates Ri,n−1

and Ri,n, corresponding to the i-th tracker in the ensemble at (n − 1)-th and
n-th frames, respectively, the initial credibility Ci,n is defined by:

DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



Chapter 3. Collaborative Face Tracking 35

Ci,n = ξiζi + (1− ξi)Θ(Ri,n−1, Ri,n)Cf
i,n−1 (3-3)

where, ζi is a tracker’s prior credibility defined by the user, Cf
i,n−1 represents the

final credibility coefficient from a previous frame, ξi ∈ [0, 1] is a regularization
parameter that controls the participation of the tracker’s prior credibility, and
Θ(·) is a relation coefficient that assesses the trajectory smoothness of the i-th
tracker.

The relation coefficient Θ(·) can be computed using either F (·) or r(·)
similarity metrics, as presented earlier in the previous section.

3.3.3
Inter-Tracker Correlation

The second stage of the fusion approach computes a tracker’s confidence
by assessing its level of congruence with the remaining trackers in the ensemble
for a single frame. The individual trackers’ credibilities are estimated through
an iterative pair-wise correlation procedure among trackers’ estimates, as
presented in Equation 3-4:

Cs
i,n = ηiCi,n + 1− ηi

I − 1

j=I∑
j=1

Φ(Rj,n, Ri,n)Cs−1
i,n ,∀ i 6= j (3-4)

where, Cs
i,n represents the credibility coefficient for the i-th tracker after the

s iteration, ηi ∈ [0, 1] is a weighting coefficient that controls the importance
of the initial credibility Ci,n, I denotes the total number of trackers, Rj,n and
Ri,n are the tracking estimates at the n-th frame for the i-th and j-th trackers,
respectively, and Φ(·) is a relation coefficient between the i-th and j-th trackers
that measures the spatial congruence, which may be computed using either the
F (·) or r(·) similarity metric, as described earlier in this section.

Notice that after convergence the credibility coefficients Cs
i,n becomes the

final credibility coefficients Cf
i,n, which will be also used for the Intra-Tracker

Correlation at the n+ 1-th frame.

3.3.4
Estimates Combination

The last stage in the fusion approach computes the fusion estimate
Rfusion through a weighted sum of the trackers’ estimates Ri, formally:

Rfusion =
I∑

i=1
πiRi (3-5)

where the weighting coefficient πi for the i-th tracker is based on the final
credibilities coefficients as follows:
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πi =
Cf

i,n∑I
j=1 C

f
j,n

(3-6)

3.4
Inspection Module

Trackers are usually prone to drift away from the target face, especially
when the target face experiences abrupt changes in appearance. Face detectors,
on the other hand, determine accurately the position and dimensions of the
bounding box around a face

Thus, the inspection module occasionally exploits the outcome of an off-
line face detector to provide a potentially more accurate estimate of the state
of the target face.

Although offline face detectors have proven to be accurate at locating
faces in images, they are inappropriate for the task of tracking due to some
operational characteristics: they take considerably more time to process an
image compared to face tracking algorithms, they might deliver multiple
detection outcomes, and they lack associative capabilities to find the face being
tracked among the detection outcomes.

Under the aforementioned circumstances, the Inspection module peri-
odically provides reliable information about the state of the target face. In
this manner, it is possible to use the inspection estimate to improve the final
tracking estimate, as well as for updating the trackers and preventing possible
tracking failures.

The Inspection module checks if the detected face corresponds to the
target face. This is done by measuring the dissimilarity between the target
face and each of the detector’s outcomes. If the lowest computed dissimilarity
is below a given threshold the detected face is considered the right one.
Otherwise, the Inspector sends no inspection estimate to the Integration
module.

In this way, the Inspection module provides an alternative state estimate
of the target face that tends to represent a more accurate result than the fusion
estimate. These two estimates will be analyzed by the Integration module to
compute an improved tracking estimate, which will also be used to update the
tracking trajectory or to re-initialize the trackers. Therefore, the final tracking
estimate can help to prevent the drifting problem in the long-term tracking,
to recover from a tracking loss or to recapture the facial track after a short
disappearance of the target face.
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3.5
Integration Module

This module receives as input the fusion and the inspection estimates to
compute the final tracking estimate, which also corresponds to the framework’s
output. Moreover, the module activates the update or re-initialization of each
tracker in the ensemble by forwarding the final tracking estimate back to the
trackers in the Tracking module.

Although it is possible to use different schemes to combine the two inputs,
including the usage of a weighting parameter, in this work we assume that the
inspection estimate tends to be more reliable than the fusion estimate. Thus,
every time the Inspection module provides a valid outcome, the Integration
module selects the inspection estimate over its fusion counterpart to produce
the final tracking estimate. Otherwise, it holds on to the fusion estimate.

Finally, the estimation cycle finishes when the Tracking module receives
the final tracking estimate from the Integration module and applies the proper
correction and updates or re-initializes each tracker. It is important to notice
that this feedback mechanism (from the Integration module to the Track-
ing module) is crucial for the framework’s execution. The feedback enables a
tracker’s update or re-initialization to improve the individual trackers’ per-
formance and, consequently, the overall tracking accuracy. Either choice is
subjected to an evaluation over accumulated records of dissimilarity measures
that involve the trackers’ estimates and the integration estimate in some con-
secutive frames (see Section 3.2 for more information).
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4
Experimental Design and Results

This chapter presents an experimental analysis of the proposed Collabo-
rative Face Tracking Framework for long-term face tracking.

The first section presents the facial datasets used for the experiments,
which comprehend single-face and multiple-face scenarios. Next, we provide
information about the performance metric used to evaluate the framework’s
performance. Then, we detail the prototype implementation of the proposed
framework. Finally, we present the adopted protocols and analyze the results
of each set of experiments performed in this work.

4.1
Datasets

Throughout the development of this research, we have collected seventeen
facial video sequences from several public datasets, comprising a total of forty-
one subjects. Furthermore, we have annotated a set of facial references for
thirty-nine of them to evaluate the performance of our framework for long-
term face tracking.

Given our interest in evaluating the framework’s performance in adverse
conditions, we prioritized the collection of video sequences containing different
conditions, including multiple-faces. Furthermore, we manually annotated the
facial references when they were missing or were considered incorrect in such
way that most of the visible facial area is enclosed by a bounding box. Thus,
we tried to maintain these annotations uniform throughout the datasets by
keeping the bounding box centered with the target face: the superior and
inferior edges correspond to the middle forehead and the chin, respectively;
whereas the left and right edges correspond to the left and right cheekbones,
respectively.

The chosen video sequences offer challenging situations designed for face
tracking experiments with multiple variations in single-face and multiple-face
scenarios, as described next.

– The TB-Face dataset is a collection of eleven facial video sequences
for single-face tracking. The dataset is a selected subset of the public
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available TB-1001 visual object benchmark dataset proposed by Wu et
al. (2013) for the object tracking in general.

The subjects’ faces in the TB-Face dataset are subject to occlusions,
background clutters, lighting variations, motion blurriness, deformations,
in-plane and out-of-plane rotations, and low resolutions. Moreover, the
video sequences have between 134 and 892 frames, and the resolution
vary from (240x720) to (200x480) pixels.

The TB-100 dataset already includes reference annotations for the target
objects in the video sequences. However, the bounding box positions
and extents were not considered consistent throughout the dataset, as
illustrated by the red bounding box in Figure 4.1. In order to reduce the
impact of such variations upon our results, we generated new references
for all face images in the TB-Face dataset as depicted in white bounding
boxes in Figure 4.1.

Figure 4.1: Differences in the references’ annotations from the TB-100 Visual
Object Tracking Benchmark Dataset, in red, and the new annotations used
for TB-Face Dataset, in white. Each row corresponds to frame samples from
different video sequences, from top to bottom: FaceOcc1, FleetFace, and
Jumping.

1Available in: <http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html>.
Last accessed: November 18, 2018.

http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
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– The ChokePOINT2 dataset proposed by Wong et al. (2011), consists
of fifty-four video sequences designed primarily for people identification
in real-world scenarios. The video sequences were recorded using a three
camera array installed above two indoor gates to record people as they
walk through them.

The dataset has twenty-five different subjects in gate one and twenty-nine
in gate two. In forty-eight sequences, the subjects walk one after another
and in the remaining six the subjects simulate crowded scenarios, which
are suitable for face tracking in multiple-face scenarios .

Moreover, the subjects’ faces in the dataset experience variations in
illumination, deformations, in-plane and out-of-plane rotations, motion
blurriness, severe occlusions and resemblance among faces. Furthermore,
the video sequences comprise between 757 and 5750 frames, recorded at
a frame rate of 30fps and an image resolution of 800x600 pixels.

Since we already have another dataset for single-face scenarios, we
are primarily focused on analyzing the framework’s performance in
multiple-face scenarios. In addition, because the reference annotations
are not provided with the dataset, we have selected only a single
video sequence (P2E_S5_C2) from the six crowd-like video sequences
available. This video sequence is composed of twenty-three subjects and
we have manually annotated the positions and extents for each appearing
face along the sequence, which are treated individually, as illustrated in
Figure 4.2.

– The LITIV3 dataset, proposed by Bouachir and Bilodeau (2015), com-
prises a set of four facial video sequences recorded in an indoor environ-
ment and emulating both single-face (two video sequences) and multiple-
face (two video sequences) scenarios for face tracking.

The subjects’ faces in the video sequences undergo severe occlusions,
background clutter, resemblance among faces, illumination variations,
deformations, in-plane, and out-of-plane rotations. The video frames were
recorded at 15 fps with 320x240 pixels of resolution. Additionally, each
sequence has between 229 to 608 frames.

In addition to the video sequences, the dataset offers reference (position
and extent) annotations of a particular face among those present in the

2Available in: <http://arma.sourceforge.net/chokepoint/>. Last accessed: Novem-
ber 18, 2018.

3Available in: <http://www.polymtl.ca/litiv/en/codes-and-datasets>. Last ac-
cessed: November 18, 2018.

http://arma.sourceforge.net/chokepoint/
http://www.polymtl.ca/litiv/en/codes-and-datasets
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Figure 4.2: Reference annotations for the crowded scenario in the P2E_S5_C2
video sequence from the ChokePOINT Dataset. Each row corresponds to frame
samples with annotations of different subjects. From top to bottom rows
reference annotations for subjects four, nine and twenty-two, respectively.

video sequences, as depicted in Figure 4.3. Thus, in this dataset, we have
only considered this subject as a target.

Figure 4.3: Reference annotations from the LITIV Dataset. First and second
row images correspond to sample frames of the target subject in the jp1 and
jp2 video sequences, respectively.
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– The Multiple Faces4 dataset built by Maggio et al. (2007), hereafter called
MOTINAS, is composed of three video sequences with multiple-faces.

The subjects in the video sequences appear and disappear at will from
the camera’s field of view, and repeatedly occlude each other. Further-
more, the faces in the video sequences present in-plane and out-of-plane
rotations, deformations, and movement speed variations. The video se-
quences have between 488 and 1277 frames, recorded at 25 fps, with an
image resolution of 640 x 480 pixels.

Reference annotations are not available with this dataset. So, we have
manually annotated the references (position and extent) for all the three
faces in the first sequence and for only one face in the two remaining
video sequences. Figure 4.4 presents some frame samples with their
corresponding annotations.

Figure 4.4: Reference annotations from the MOTINAS Dataset. Each row
corresponds to frame samples with annotations for subject one in a different
video sequence. From top to bottom: MultiFaceFast, MultiFaceFrontal, and
MultiFaceTurning video sequences.

4Available in: <http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html>. Last ac-
cessed: November 10, 2018

http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
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Table 4.1 summarizes the video sequences selected for the experiments.
It offers relevant information such as the datasets each video sequence belongs
to, the number of subjects present in the video sequence (NS) and how many
of them have reference annotations (NSA), the number of frames (NF), and,
finally, the frames resolutions (FR).

Although we have collected seventeen facial video sequences, we have
facial references for forty one subjects throughout the video sequences, as it
can be seen by summing the NSA column of Table 4.1. It is worth to mention
that we are accounting every appearance in a different video as a new subject,
since it does not matter which subject it is. In this manner, we could validate
the framework’s performance over a set of forty one cases for each experiment
proposed in this work.

Table 4.1: Video sequences per dataset summary.
DATASET SEQUENCES NS NSA NF FR

TB-FACE

BlurFace 1 1 493 640x480
Boy 1 1 602 640x480
David 1 1 470 320x240
David2 1 1 537 320x240

FaceOcc1 1 1 892 352x288
FaceOcc2 1 1 812 320x240
FleetFace 1 1 707 720x480
Freeman1 1 1 326 360x240
Jumping 1 1 313 352x288
Man 1 1 134 241x193
Trellis 1 1 569 320x240

ChokePOINT P2E_S5_C2 23 23 808 800x600

LITIV jp1 4 1 608 320x240
jp2 4 1 229 320x240

MOTINAS
MultiFaceFast 3 3 488 720x576

MultiFaceFrontal 4 1 1277 720x576
MultiFaceTurning 4 1 1007 720x576

NS stands for the number of subjects in a video sequence; NSA refers to the
number of subjects with reference annotations; NF indicates the number of
frames; and FR stands for the frame resolution.

4.2
Evaluation Metrics

In the reported experiments, we have evaluated the framework’s per-
formance based on the area under the curve score (AUC) computed from a
set of intersection-over-union error scores (eIoU(·)). The AUC measures the
framework’s performance in a global way, producing a single accuracy score
per evaluated video sequence. The eIoU(·), on the other hand, quantifies the
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framework’s performance in a local fashion. It generates an accuracy score per
evaluated video frame.

We chose the eIoU(·) over other evaluation metrics, because it is sensitive
to the difference in sizes between a pair of bounding boxes, relating both
spatial congruence (position) and spatial extent (size) into a single measure.
Essentially, the eIoU(·) measures the dissimilarity between a tracking estimate,
Rn, and its corresponding facial reference, Rref

n , at a given frame n. Formally:

eIoU(Rref
n , Rn) = 1− Area(Rref

n

⋂
Rn)

Area(Rref
n

⋃
Rn)

(4-1)

where, Rn and Rref
n are defined by separate bounding boxes, Area(·) is the area

operator, ⋂ and ⋃ represent the intersection and union operators between the
pair of bounding boxes, respectively. Notice that eIoU(·) takes values in the
range between 0 and 1.

The eIoU(·) is good at quantifying the framework’s tracking accuracy
given a video frame, however it does not express the framework’s behavior
throughout the frames in a video sequence. Alternatively, statistics computed
from a set of eIoU(·) scores (i.e., mean, median and so on) can be used to depict
the framework’s performance tendency in a per video sequence evaluation.
Nevertheless, these measures do not explicitly tell whether the tracking was
successful along the frames of a video sequence or not. A success plot, on the
other hand, relates the tracking accuracy with the number of frames in which
the target face is considered to be correctly tracked.

Given a video frame, a target face is assumed to be correctly tracked, if
the eIoU(·) is below a pre-defined threshold e0. Thus, the success plot, p(e0), is
built by computing the proportion of frames where the eIoU(·) is below e0, for
different values of e0, formally:

p(e0) = |{eIoU |eIoU < e0}|
NF

(4-2)
where, {·} is a set of frames within a video sequence satisfying the numerator’s
condition, |·| represents the cardinality operator of a set and NF stands for
the total number of frames in the video sequence.

Thus, the performance metric adopted in this work is computed consid-
ering the success plot p(e0). Specifically, we have used the area under the curve
(AUC) defined by the plot of p(e0) throughout the experiments.

4.3
Framework Prototype

In order to assess the performance of the proposed framework and the
ideas presented in this work, we built a prototype according to the guidelines
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described in Chapter 3. The prototype was implemented in C++ using
some libraries for computer vision and machine learning algorithms such as
OpenCV5 3.2.0, DLib6 19.15, Caffe7 2.0 (Jia et al., 2014), as well as Eigen8

3.3.4 for linear algebra computations.
The prototype, which is available upon request in the project’s9 website,

operates in batch mode and executes the modules within the framework in a
sequential manner on an Intel(R) Core(TM) i7-3930K, 3.20GHz CPU machine
with 32GB of RAM running Windows 7. A parallel and more efficient version
is expected in the near future. Next, we detail the methods that take part in
the implemented prototype.

4.3.1
Tracking Module

The ensemble of trackers implemented within the Tracking module com-
prises five different trackers that operate individually in a sequential manner.
We have selected these trackers according to their achieved performances on
several tracking evaluations (Smeulders et al., 2014; Wu et al., 2015; Kristan
et al., 2016) and to their unique characteristics, which can be exploited by the
framework to improve the face tracking performance.

Furthermore, we adjusted the trackers to fit the operating scheme de-
scribed in Section 3.2: first, the trackers estimate the state of the target face
and wait for the Integration module to deliver the final outcome; next, the
trackers use the final tracking estimate to correct their tracking states; finally,
the trackers update or re-initialize their facial models accordingly to the Inte-
gration module command.

Next, we briefly describe the trackers used in our experiments. For more
details, please refer to their respective original works.

– Tracking-Learning-Detection (TLD) is a tracking framework conceived
to perform the long-term tracking of arbitrary objects, e.g., faces (Kalal
et al., 2012). It combines a tracker with an online detector to acquire and
exploit temporal information about the target object, thus, overcoming
the possible appearance variations during tracking.

5Available in: <https://opencv.org/>. Last accessed: November 18, 2018.
6Available in: <http://dlib.net/>. Last accessed: November 18, 2018.
7Available in: <http://caffe.berkeleyvision.org/>. Last accessed: November 18,

2018.
8Available in: <http://eigen.tuxfamily.org/index.php?title=Main_Page>. Last

accessed: November 18, 2018.
9Available in: <http://www.lvc.ele.puc-rio.br/projects/FaceTracking/home.

html/>. Last accessed: December 05, 2018.

https://opencv.org/
http://dlib.net/
http://caffe.berkeleyvision.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.lvc.ele.puc-rio.br/projects/FaceTracking/home.html/
http://www.lvc.ele.puc-rio.br/projects/FaceTracking/home.html/
DBD
PUC-Rio - Certificação Digital Nº 1413517/CA



Chapter 4. Experimental Design and Results 46

As the name suggests, TLD decomposes the long-term tracking task
into three stages, namely: Tracking, which produces an estimate of the
object’s state in incoming frames; Learning, that validates the detector’s
behavior by analyzing the tracking and detection outcomes, moreover,
it produces reliable data for detector’s training; and Detection, which
locates the object in the current frame to correct the tracking trajectory
or to re-start the tracker after tracking failure.

– Kernelized Correlation Filters (KCF), proposed by Henriques et al.
(Henriques et al., 2015), is an online generative tracker of arbitrary
objects that exploits what the authors call as a Circulant Matrix to
extract thousands of training samples in the frequency domain, and uses
a linear ridge regression model to capture the appearances of the object.

– Structured Output Tracking with Kernels (STRUCK), conceived by
Hare et al. (Hare et al., 2016), is an online discriminative tracking
algorithm that aims to predict the transformation (state) of an object
through consecutive frames of a video sequence, while generating training
samples. In essence, the STRUCK tracker prioritizes the quality of the
training samples over the quantity, which would enable the update of a
variant of a Support Vector Machine with reliable data.

– Locality Sensitive Histograms (LSH), formulated by He et al. (He et
al., 2017), is an adaptive tracking algorithm that focuses on handling
changes in appearance as a consequence of variations in illumination and
occlusions. To this end, LSH uses a floating-point value histogram which
accounts for the influence of every pixel in the image over the regions
within the target that describe the object’s appearance.

– Fast Compressive Tracker (CT), proposed by Zhang et al. (Zhang et
al., 2014), is a discriminative tracking algorithm that uses an adaptive
Naive Bayes binary classifier in a low-dimensional subspace to distinguish
between the object and the background. CT performs a projection of the
high-dimensional feature space on a randomly chosen low-dimensional
space which contains sufficient information to reconstruct the original
pattern.

Except for the TLD tracker, which we implemented from scratch, we have
used publicly available implementations of the KCF10, STRUCK11, LSH12 and

10Available in: <http://www.robots.ox.ac.uk/~joao/circulant/>. Last accessed:
November 25, 2018.

11Available in: <http://www.samhare.net/research/struck>. Last accessed: Novem-
ber 25, 2018.

12Available in: <http://www.shengfenghe.com/publications.html>. Last accessed:
November 25, 2018.

http://www.robots.ox.ac.uk/~joao/circulant/
http://www.samhare.net/research/struck
http://www.shengfenghe.com/publications.html
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CT13 trackers to build the Tracking module.
In the experiments, the trackers were set to operate with their default

parameters. Although the Tracking module allows a partial (position) or total
(position and extent) correction of the trackers’ state estimates, as described
in Section 3.2, we commanded the trackers to perform only partial state
corrections. We made this decision to establish a uniform operation, since the
CT, LSH and STRUCK process a video frame using a single-scale procedure,
whereas the KCF and TLD use a multiple-scale scheme.

Regarding the trackers’ update and re-initialization procedures, it is
possible to define different methods to choose between this two options. In
this work, we consider the trackers’ recent history to make a decision. So, for
each tracker in the ensemble, a dissimilarity score between the tracker estimate
and the final tracking estimate is computed according to the Equation 4-1.
Next, its respective recent dissimilarity score is stored into its associated cyclic
dissimilarity buffer in a first in, first out (FIFO) approach. Finally, the average
value from its cyclic dissimilarity buffer is computed and compared against to
a pre-defined re-initialization threshold δr to decide whether the tracker should
be updated or re-initialized.

By varying the size (sb) of the cyclic dissimilarity buffer, a tracker might
be given a chance to correct its behavior (tracker update) before a more drastic
resolution (tracker re-initialization) is performed. We have empirically tested
different values of sb, but we only report in this work values of sb in the set
{1, 16, 32}, since those were considered relevant to the framework performance.

Regarding the re-initialization threshold δr, we considered three different
scenarios: a conservative, a volatile and a flexible one. In the conservative
scenario, a tracker corrects its behavior by updating its facial model in every
frame, so δr was set to 1.0. Conversely, in the volatile scenario, a tracker gets
re-initialized by starting a new facial model in every processed frame. Thus,
δr was fixed to 0.0. Finally, the flexible scenario offers a tradeoff between a
tracker’s update and re-initialization. Here, δr was set to 0.7 according to
empirical experiments.

In case of tracker’s update, a tracker proceeds to incorporate information
about the target face on the last evaluated frame into its facial model. In case
of tracker’s re-initialization, a tracker proceeds to erase all the accumulated
information about the target face until then. This procedure involves deleting
all records in its facial model, clearing its historical behavior in the fusion
algorithm (specifically its associated credibility coefficients), and emptying its

13Available in: <http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm>. Last ac-
cessed: November 25, 2018.

http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
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cyclic dissimilarity buffer. After this, the tracker starts from scratch with
new information about the initial state of the target face, creating a new
facial model and re-starting the cyclic dissimilarity buffer with information
concerning the last evaluated frame. Finally, the Tracking module asks the
Fusion module to re-establish the fusion parameters regarding the tracker in
the fusion algorithm.

4.3.2
Fusion Module

The Fusion module is built upon the Symbiotic Tracking Ensemble
proposed by Gao et al. (2014). The Fusion module merges the five tracking
estimates from the Tracking module into a single outcome.

The relation coefficients Θ(·) and Φ(·) described in Section 3.3, which
measure the temporal and spatial congruence in the intra-tracker and inter-
tracker correlation stages, respectively, allow four variants (rr, rF , Fr, and
FF ) of Gao’s approach, regarding the similarity metrics of Equations 3-1 and
3-2. In our experiments, however, we used the FF variant, which has shown the
best fusion results according to the authors’ report in visual object tracking
tasks.

Furthermore, we followed the Gao’s recommendations to configure the re-
maining fusion parameters. So, for all the participant trackers, their associated
prior credibilities Ci were set to 1 and their regularization parameters ξi and
ηi were set to 0.1 and 0.1, respectively. Thus, we consider in our experiments
all the trackers equally reliable.

4.3.3
Inspection Module

We built the Inspection module to support the cooperation between an
offline face detector and a face validation algorithm according to the guidelines
in Section 3.4.

Although the Inspection module accepts any offline face detector to be
part of the framework, we chose to work with the MTCNN Face Detection and
Alignment (MTCNN) algorithm, proposed by Zhang et al. (2016), because
it is robust to different imaging conditions, occlusions, and large head posture
variations. Furthermore, it provides a low rate of false face detections.

The MTCNN conducts face detection and alignment to boost detection
performance. The face detector is organized in a three-stage Convolutional
Neural Network. The first two stages deliver candidate regions with a high
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probability of containing a face. The third stage performs additional face
landmark localization to reduce false positives detections.

Several implementations of the MTCNN are available on the internet,
including in the authors’ homepage. We used a C++ implementation14 due to
the programming language compatibility with the framework.

As for the face validation algorithm, we employed a variant of the ResNet
network proposed by He et al. (2016), which is a Deep Convolutional Neural
Network architecture designed for image recognition, named DNN-Face. The
DNN-Face, which is available15 within DLib’s library, was conceived to group
facial images that belong to a subject into a hypersphere of a certain radius (set
to 0.6 in this case). The DNN-Face’s deep architecture considers twenty-nine
out of the thirty-four convolutional layers that constitute the ResNet network.

In our work, the DNN-Face extracts representative descriptors from facial
images, which are used to compute the dissimilarity scores and find the target
face in the detection outcomes, as described in Section 3.4. So, given a reference
facial image that corresponds to the target face collected at the beginning of
the tracking task, the process of retrieving the target face from the pool of
detections goes as follows. First, the Inspection module normalizes the faces by
aligning them to a standard pose and resampling them to a fixed image size of
150x150 pixels. Next, it extracts features from all the normalized faces. Finally,
it computes the dissimilarity scores by measuring the distances between the
reference face image and each of the detections in the feature space.

The valid face, which should correspond to the target face, is the
detection with the lowest dissimilarity score, which must be below a pre-
defined threshold. In this work we set this threshold to 0.6 based on empirical
experiments.

In this research, we have also evaluated the impact of the Inspection
module over the Fusion and Tracking modules by restricting the use of the
MTCNN face detector to every k frames. In our experiments k took values
between 1 and 64. In this manuscript, we report the results for those values
of k that have shown a significant difference in the final tracking performance,
which are 1, 16 and 32.

4.3.4
14Available in: <https://github.com/wowo200/MTCNN>. Last accessed: Novemeber 18,

2018.
15Available in: <https://github.com/davisking/dlib/blob/master/examples/dnn_

face_recognition_ex.cpp>. Last accessed: November 18, 2018.

https://github.com/wowo200/MTCNN
https://github.com/davisking/dlib/blob/master/examples/dnn_face_recognition_ex.cpp
https://github.com/davisking/dlib/blob/master/examples/dnn_face_recognition_ex.cpp
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Integration Module

As already mentioned in Section 3.5, the Integration module may adopt
different ways to combine the fusion estimate, provided by the Fusion module,
with the inspector estimate, supplied by the Inspection module, to produce
the final tracking estimate.

Throughout this research, we have assumed that the Inspection module
produces more reliable estimates than the Fusion module. Thus, if the Inspec-
tion module is active and provides a valid estimate of the target face state
(inspection estimate), then the Integration module sets the the inspection es-
timate as the final tracking estimate. Otherwise, the Integration module sets
the fusion estimate as the final estimate.

Finally, the Integration module forwards the final tracking estimate back
to the Tracking module, so the trackers may update or re-initialize their facial
models.

4.4
Experimental Protocol

4.4.1
Framework’s Configurations

Next, we present the set of framework’s configurations tested in our
experiments.

– inspection-only: in this configuration, there are no trackers involved, but
just a detector operating within the Inspection module. So, its outcome,
when produced, is supposed to correspond to the target face. In other
words, this configuration puts the Inspection module to work on the
face tracking task. We simulated this configuration by activating the
Inspection and Integration modules in our framework, as depicted in
Figure 4.5(a).

– single tracking: this is the stand-alone tracker solution. This configuration
was simulated by enabling the Tracking, Fusion and Integration modules
in our framework. However, we only activate a single tracker within
the Tracking module, as shown in Figure 4.5(b), which makes the final
tracking estimate to correspond to the tracking estimate.

– tracking ensemble: here, the outcomes of a committee of trackers are
consolidated into a single consensus outcome. This configuration, which
basically corresponds to the Gao’s fusion approach, was obtained by
enabling the Tracking, Fusion and Integration modules in our framework,
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as illustrated in Figure 4.6(a). In this configuration, the Tracking module
comprises multiple trackers. Moreover, Integration does not feedback the
final estimate.

– tracking ensemble + feedback: this setting corresponds to our prior work
(Ayma et al., 2017), which aimed at improving the fusion method pro-
posed by Gao et al. through the addition of the feedback process. So, in
this configuration, the Integration module disregards the Inspector out-
put and forwards the fusion estimate back to the Tracking module. This
setting was obtained by activating the Tracking, Fusion and Integration
modules in our framework, as well as the feedback mechanism, as shown
in Figure 4.6(b).

– collaborative single tracking: in this case, a single tracker benefits from
the framework structure, which includes the face detector present in the
Inspection module. We simulated this configuration by activating all the
modules and the feedback mechanism in our framework, whereby just a
single tracker is enabled in the Tracking module, as depicted in Figure
4.7(a). It basically corresponds to the whole framework, but with only a
single tracker being used.

– collaborative tracking: this setting corresponds to the entire framework
operation, as described in the foregoing sections. In this configuration,
the Fusion module consolidates the outcomes of multiple tackers into a
single consensus outcome, which is replaced by the inspection estimate
whenever the Inspection module retrieves the target face from the set
of detections produced by the face detector. The Integration module
forwards the final tracking estimate to the Tracking module to either
updating or re-initializing the trackers. We simulated this configuration
by enabling all the components in the framework, as depicted in Figure
4.7(b).

Notice that the trackers are either updated or re-initialized according
to the re-initialization threshold δr described in Section 3.5. Furthermore, as
established in Section 4.3.1, δr took the following values 0.0, 0.7 and 1.0, which
enabled three variants in both the collaborative individual tracking and the
collaborative tracking configurations.

In the first variant, the volatile one (δr = 0.0), the trackers always
get re-initialize. Conversely, in the second variant, which corresponds to the
conservative one (δr = 1.0), the trackers are always forced to update their
models. Finally, the last variant, called hereafter flexible (δr = 0.7), allows a
tradeoff between trackers’ updating and re-initialization.
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(a) (b)

Figure 4.5: Collaborative Face Tracking: inspection–only (a) and single tracking
(b) configurations.

(a) (b)

Figure 4.6: Collaborative Face Tracking: tracking ensemble (a) and tracking
ensemble + feedback (b) configurations.

4.4.2
Experiments

Based on the aforementioned framework’s configurations, we have de-
signed three main experiments to assess the framework’s performance in ad-
verse conditions, especially in single-face and multiple-face scenarios, including
occlusions.

– On the Collaborative Tracking – Inspection Module Validation: this
experiment aims to assess the Inspection module ability to find and
validate the target face among the outcomes provided by the face
detector.
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Figure 4.7: Collaborative Face Tracking: collaborative single tracking (a) and
collaborative tracking (b) configurations.

In this experiment, the framework’s prototype operates according to
the inspection-only configuration. Furthermore, the Inspection module
should continuously intervene in the framework’s prototype execution for
its proper evaluation, so we set the frequency of the Inspector operation
k = 1.

– On the Collaborative Tracking with a Single Tracker : this experiment
aims to evaluate the impact of incorporating information provided by the
face detector about the target’s face state into a tracker’s facial model.

Here, the framework’s prototype operates according to three configura-
tions: inspection-only, single tracking and collaborative single tracking.
The latter was applied with its three variants: volatile, conservative and
flexible. Moreover, to assess the influence of the face detector on a track-
ing algorithm, the frequency of the Inspection module operation was
varied from continuous to sporadically, by setting k = 1 and k = 32,
respectively.

– On the Collaborative Tracking with an Ensemble of Trackers: this exper-
iment aims to assess the framework performance by complementing the
consensus output of the Fusion module with information delivered by the
face detector in the Inspection module.

In this experiment, the framework’s prototype operates according to
the single tracking, tracking ensemble and tracking ensemble + feedback
configurations, as well as the collaborative tracking configuration in its
volatile, conservative and flexible variants. Furthermore, the Inspection
module operates in a continuous, periodic and sporadically ways, i.e., in
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every k = 1, k = 16 and k = 32 frames, and the size of the trackers’
cyclic dissimilarity buffers varies according to sb = 1, sb = 16 and sb = 32
positions-length.

4.5
Results

This section provides an analysis of the framework’s performance on
the face tracking problem regarding the results obtained at executing the
framework’s prototype according to the experimental protocol described in
the foregoing sections of this Chapter.

In all the experiments, the tracking process started with the first bound-
ing box found by the face detector, which corresponds to the initial state of
the desired target face in a given video sequence. Furthermore, this bounding
box is used by the Inspection module to collect the reference facial image for
the face validation procedure.

We performed the analysis of the results in each experiment from
two perspectives which relate to the single-face and multiple-face scenarios.
Moreover, in agreement with the reference annotations, we only considered
the frames containing a visible target face for evaluating the framework’s
performance.

4.5.1
On the Collaborative Tracking – Inspection Module Validation

In this experiment, we expressed the Inspection module performance in
terms of the correct and incorrect responses rates, which relate to the hit
and miss occurrences of the target face. A correct response occurs when the
Inspection module provides a state estimate that corresponds with the target
face state, i.e., position and extent, in a given video frame. An incorrect
response, on the other hand, takes place when the Inspection module delivers
a non-related outcome to the target face state, which might occur in two ways:
the Inspection module provides a state estimate that does not correspond to
the target face, or it does not provide a state estimate at all (non-response).

Tables 4.2 and 4.3 summarize the Inspection module performance for
single-face and multiple-face video sequences, respectively. Both tables present
the correct response rate (CRR) and the two possible incorrect responses rates
that result from the erroneous state estimate (ERR) and the non-response rate
(NRR), along with the number of frames where the target face remains visible
(VF). Furthermore, we included the non-detection rate of the face detector
(NDR), which is a related to NRR: while NRR refers to the Inspection Module,
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NDR is related to the face detector. Thus, the NRR comprehends the cases
where the face detector does not detect any face (NDR) and the cases where
none of the detected faces were considered valid. Moreover, for the sequences
with multiple faces in Table 4.3, we concatenated the number of the respective
subject next to the sequences’ names.

Table 4.2 shows that for the single-face video sequences, the Inspection
module often produced a state estimate that matched the target face state,
scoring an CRR of 0.82 on average. Additionally, the EER was 0 for all the
sequences, showing that the Inspector module does not provide any wrong
estimate to the framework in the single-face scenario.

Table 4.2: Inspection module performance’s summary for datasets whose video
sequences contain a single face.

DATASET SEQUENCE VF CRR ERR NRR NDR

TB-FACE

BlurFace 493 0.99 0.00 0.01 0.00
Boy 602 0.63 0.00 0.37 0.02
David 471 0.91 0.00 0.09 0.00
David2 537 0.81 0.00 0.19 0.18

FaceOcc1 892 0.82 0.00 0.18 0.14
FaceOcc2 812 0.56 0.00 0.44 0.43
FleetFace 707 0.77 0.00 0.23 0.19
Freeman1 326 0.78 0.00 0.22 0.20
Jumping 313 0.88 0.00 0.12 0.09
Man 134 0.99 0.00 0.01 0.00
Trellis 569 0.88 0.00 0.12 0.07
Average 0.82 0.00 0.18 0.12

CRR, ERR and NRR stands for the Inspection module correct response
rate, erroneous response rate and non-response rate, respectively; NDR
represents the non-detection rate of the face detector; and VF refers to the
number of video frames where the target face remains visible.

Despite the Inspection module overall good performance, it achieved
a CRR of only 0.63 and 0.56 for the Boy and FaceOcc2 video sequences,
respectively. The Inspection module performance for the FaceOcc2 video
sequence is a result of a non-response by the face detector (NDR of 0.43),
i.e., the face detector did not find any faces in almost half of the frames due
to the severe occlusions and large head posture variations experienced by the
target face. Figure 4.8 shows some video frames in which the face detector
failed at locating faces, producing an Inspection module failure. On the other
hand, the low performance in the Boy video sequence is mostly related to the
face validation procedure in the Inspection module, which was not able to
validate the target face in most of the video frames (NRR of 0.37) despite the
face detector good performance (NDR of 0.02). Figure 4.9 presents some video
frames examples in which the face validation algorithm failed at validating
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the target face from the set of detection outcomes illustrated by the bounding
boxes in yellow.

Figure 4.8: Video frames examples of the FaceOcc2 sequence in which the
face detector did not provide any outcome, producing a non-response by the
Inspection module.

Figure 4.9: Video frames examples in which the face validation algorithm in
the Inspection module failed at validating the target face in the Boy video
sequence. The bounding boxes in yellow depict the face detection outcomes.

Table 4.3 shows that the Inspection module was capable of accurately
deliver an inspection estimate that corresponded to the target face in the
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MOTINAS and LITIV datasets achieving a CRR near to 1.0. It is also worth
to note that the Inspection module did not deliver any wrong estimate for
these datasets, since the ERR was equal to 0.

Table 4.3: Inspection module performance’s summary for datasets whose video
sequences contain multiple faces.

DATASET SEQUENCE VF CRR ERR NRR NDR

MOTINAS

MultiFaceFast_1 356 0.99 0.00 0.01 0.00
MultiFaceFast_2 394 0.96 0.00 0.04 0.00
MultiFaceFast_3 444 0.99 0.00 0.01 0.00

MultiFaceFrontal_1 958 0.98 0.00 0.02 0.00
MultiFaceTurning_1 778 0.91 0.00 0.09 0.00

Average 0.97 0.00 0.03 0.00

LITIV
jp1_1 551 0.88 0.00 0.12 0.00
jp2_1 216 0.99 0.00 0.01 0.00
Average 0.93 0.00 0.07 0.00

ChokePOINT

P2E_S5_C2_1 128 0.90 0.05 0.05 0.00
P2E_S5_C2_2 103 0.71 0.20 0.09 0.00
P2E_S5_C2_3 66 0.92 0.00 0.08 0.00
P2E_S5_C2_4 135 0.56 0.18 0.27 0.00
P2E_S5_C2_5 51 0.53 0.04 0.43 0.00
P2E_S5_C2_6 90 0.98 0.02 0.00 0.00
P2E_S5_C2_7 146 0.55 0.26 0.19 0.00
P2E_S5_C2_8 130 0.15 0.50 0.35 0.00
P2E_S5_C2_9 124 0.55 0.28 0.17 0.00
P2E_S5_C2_10 117 0.41 0.20 0.39 0.00
P2E_S5_C2_11 135 0.76 0.04 0.20 0.00
P2E_S5_C2_12 169 0.37 0.43 0.20 0.00
P2E_S5_C2_13 134 0.78 0.13 0.09 0.00
P2E_S5_C2_14 190 0.42 0.42 0.17 0.00
P2E_S5_C2_15 115 0.65 0.11 0.23 0.00
P2E_S5_C2_16 161 0.67 0.27 0.06 0.00
P2E_S5_C2_17 103 0.95 0.03 0.02 0.00
P2E_S5_C2_18 120 0.45 0.15 0.40 0.00
P2E_S5_C2_19 148 0.17 0.38 0.45 0.00
P2E_S5_C2_20 204 0.97 0.00 0.03 0.00
P2E_S5_C2_21 142 0.94 0.02 0.04 0.00
P2E_S5_C2_22 183 0.70 0.03 0.27 0.00
P2E_S5_C2_23 143 0.63 0.00 0.37 0.00

Average 0.64 0.16 0.20 0.00
CRR, ERR and NRR stands for the Inspection module correct response rate, erroneous

response rate and non-response rate, respectively; NDR represents the non-detection rate
of the face detector; and VF refers to the number of video frames where the target face
remains visible.

Considering the ChokePOINT dataset, the Inspection module performed
significantly worse achieving an average CRR of 0.64. The worse cases were
for subjects 8 (CRR of 0.15) and 19 (CRR of 0.17). In average, the estimates
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were incorrectly delivered for 16% of the frames (ERR of 0.16) while in 20% of
the frames, all the detections were considered invalid (NRR = 0.20 and NDR
= 0.00). We believe that this poor performance was related to the reference
facial images collected at the beginning of the tracking process and used for
the face validation procedure of the detection outcomes. In the MOTINAS
and LITIV datasets, the subjects presented facial images in an approximately
frontal pose with good resolution at the beginning of the tracking process,
as illustrated in Figure 4.10(a) and Figure 4.10(b), respectively. The subjects
from the ChokePOINT dataset, on the other hand, presented facial images with
poorer resolution. Furthermore, just a few of them had facial images in a nearly
frontal posture at the beginning of the tracking, as it can be observed in Figure
4.11. Since the Figure presents the subjects sorted descendingly according to
the CRR scores in Table 4.3, it is possible to note some correspondence trend
between higher CRR scores and near-frontal face positions.

(a) (b)

Figure 4.10: Reference templates per video sequences, containing good resolu-
tion facial images in nearly frontal postures of subjects from the MOTINAS
dataset (a) and the LITIV dataset (b).

Figure 4.11: Reference images, containing facial images of the subjects from the
ChokePOINT dataset with poorly resolutions. From the top-left to the bottom-
right, the subjects (numbers in white) are sorted descendingly according to the
CRR score in Table 4.3 which tends to correspond to the changing from near
frontal postures.

In this sense, intrigued by the poor performance shown by the Inspection
module over the ChokePOINT dataset, we conducted a test to check if our
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assumption was correct. Thus, we investigated the impact of using only near
frontal faces as the reference facial images for the face validation procedure.
To this end, we executed another experiment for the subjects with associated
CRR scores below to 0.6, specifically subjects 4, 5, 7, 8, 9, 10, 12, 14, 18 and
19. In this new experiment, the tracking process was only started when those
subjects presented facial images in a near frontal posture. Visual examples are
shown in Figure 4.12, where it is possible to compare the new and the original
reference facial images for the validation procedure. It is important to mention
that this selection was made through visual analysis and led to a reduction in
the number of available frames of the video sequences corresponding to those
subjects.

(a)

(b)

Figure 4.12: Reference facial images of the subjects (numbers in white) from
the ChokePOINT dataset: (a) shows profile facial images; (b) presents facial
images in a near frontal posture.

Similarly to Table 4.3, Table 4.4 summarizes the performance of the In-
spection module for the ChokePOINT dataset concerning the selected subjects
in the new experiment, called FRONTAL REFERENCE. By examining Table
4.4, it is possible to notice a significant improvement of 0.34 in CRR average
score at validating the target faces. A rigorous evaluation of the table regarding
subjects 8 and 19, which were the worse cases, depicts a gain in performance
of 0.43 and 0.75 over the original 0.15 and 0.17, respectively. Furthermore,
subject 5 presented a perfect CRR score, with a gain of 0.47 over the original
0.53 score, but for almost half of the evaluated video frames. Moreover, the
ERR went from 0.28 to 0.09, reducing by one-third the amount of incorrect
estimates.
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Table 4.4: Inspection module performance’s summary for the ChokePOINT
dataset. The table presents the performance results related to the subjects
whose facial images in the reference templates (ORIGINAL) were replaced
with facial images having a nearly frontal posture (FRONTAL REFERENCE).

SEQUENCE ORIGINAL FRONTAL REFERENCE
VF CRR ERR NRR VF CRR ERR NRR

P2E_S5_C2_4 135 0.56 0.18 0.27 105 0.80 0.18 0.02
P2E_S5_C2_5 51 0.53 0.04 0.43 23 1.00 0.00 0.00
P2E_S5_C2_7 146 0.55 0.26 0.19 137 0.76 0.08 0.16
P2E_S5_C2_8 130 0.15 0.50 0.35 115 0.58 0.20 0.22
P2E_S5_C2_9 124 0.55 0.28 0.17 101 0.63 0.16 0.21
P2E_S5_C2_10 117 0.41 0.20 0.39 68 0.79 0.00 0.21
P2E_S5_C2_12 169 0.37 0.43 0.20 137 0.60 0.26 0.15
P2E_S5_C2_14 190 0.42 0.42 0.17 155 0.66 0.05 0.30
P2E_S5_C2_18 120 0.45 0.15 0.40 96 0.85 0.00 0.15
P2E_S5_C2_19 148 0.17 0.38 0.45 125 0.92 0.02 0.06

Average 0.42 0.28 0.30 0.76 0.09 0.15
CRR, ERR and NRR stands for the Inspection module correct response rate, erroneous

response rate and non-response rate, respectively; NDR represents the non-detection rate
of the face detector; and VF refers to the number of video frames where the target face
remains visible.

These results show that the face detector performs remarkably well at
locating faces; however, it fails when the faces undergo severe occlusions and/or
large head posture variations. The results tend to indicate that the Inspection
module performs considerably well at finding and validating the target face
from the set of detection outcomes delivered by the face detector. However,
the target face validation procedure strongly depends on the reference facial
image used for measuring the similarity with the detection outcomes. The
results also suggest that the resolution of the facial images might drastically
affect the performance of the target face validation procedure, hence, the
Inspection Module performance as well. Furthermore, the results evidence a
strong dependence on the facial images postures: the more frontal is the posture
in the reference facial image, the higher the chances that the Inspection module
finds the target face.

4.5.2
On the Collaborative Tracking with a Single Tracker

As described in Section 4.4.1, this experiment aimed to evaluate a
tracker’s behavior at considering information from the face detector during
the tracking process. Here, we compared the average AUC(eIoU) scores of
the inspection-only and single tracking configurations, as well as the average
AUC(eIoU) scores of the three variants of the cooperation between a tracker
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and the face detector, which are the volatile, conservative and flexible variants
of the collaborative single tracking.

Figure 4.13 exhibits the framework’s performance expressed in terms of
the average AUC(eIoU) scores for the single-face video sequences from the TB-
Face dataset. In Figure 4.13(a), the inspection-only and collaborative single
tracking configurations results correspond to the framework’s execution with
a continuous Inspection module participation (k = 1) and a cyclic dissimi-
larity buffer of size sb = 1. The figure shows that each tracker in the single
tracking configuration presents a different performance. Except for the KCF,
the remaining trackers obtain inferior scores than the inspection-only config-
uration. Moreover, all the three variants of the collaborative single tracking
configuration performed similarly and outperformed both the inspection-only
and tracking individual configurations.
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Figure 4.13: Framework’s performance on single-face video sequences from the
TB-Face dataset. The graphics present the average AUC(eIoU) scores obtained
by combining the face detector with each tracker for an intervention of the
Inspection module at every k = 1 (a) and k = 32 (b) frames.

On the other hand, the inspection-only and the collaborative single
tracking configurations results, shown in Figure 4.13(b), are consequence of
Inspection module participation at only every k = 32 frames. This makes
the inspection-only configuration to present poor results, since in most of the
frames it does not deliver any outcome. The three variants of the collaborative
single tracking also present a drop in performance when compared to the k = 1
experiment (Figure 4.13(a)), however it still perform better than the trackers
in the tracking individual configuration, showing that even with a reduced
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participation it can improve the tracking performance. Another observation
is the variation of the collaborative individual tracking variants which has
a similar trend as the single trackers, as expected given the intermittent
participation of the Inspection module. Furthermore, the flexible variant
outperforms the other two variants.

Figure 4.14 shows the framework’s performance based on the average
AUC(eIoU) scores for video sequences containing multiple faces from the
MOTINAS dataset. Figure 4.14(a), exhibits the results of the inspection-
only and collaborative single tracking configurations, obtained by executing
the Inspection module at every frame. The figure shows that three variants
of the collaborative single tracking configuration performed similarly, and
considerably outperformed the single tracking configuration. Moreover, the
inspection-only configuration behaved slightly inferior to the three collaborative
single tracking configuration variants.
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Figure 4.14: Framework’s performance on multiple-face video sequences from
the MOTINAS dataset. The graphics present the average AUC(eIoU) scores
obtained by combining the face detector with each tracker for an intervention
of the Inspection module at every k = 1 (a) and k = 32 (b) frames.

By limiting the Inspection module operation frequency to every k = 32
frames, the collaborative single tracking configuration presented a drop in
performance, as illustrated in Figure 4.14(b). Nevertheless, the three variants
of the collaborative single tracking configuration were superior to the single
tracking and to the inspection-only configurations. The latter presented a very
low performance, because in most of the frames the Inspection module did not
deliver any estimate due to its low operation frequency. We can also note that
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the flexible variant presented a slightly better performance, in average, than
the other two variants,

Figures 4.13(a) and 4.14(a) show that the collaborative single tracking
configuration performed better than the inspection-only configuration in the
TB-Face and MOTINAS datasets, respectively. Indeed, the gain in perfor-
mance for the TB-Face dataset that relates both configurations is significantly
greater than the gain in performance for the MOTINAS dataset. This differ-
ence in the performances’ gains is a consequence of the non-response by the
Inspection module, which according to Tables 4.2 and 4.3 are of 18% and 3% of
the times for the TB-Face and MOTINAS datasets, respectively. This means
that the trackers benefit from the face detector in almost all the processed
video frames in the MOTINAS dataset.

These results indicate that the framework and the individual tracking
algorithms benefit from the information provided by the face detector, which
comes from the Inspection module. In fact, through the analysis of the low
frequency Inspection module operation (k = 32), it is possible to note that the
feedback present in the collaborative single tracking configuration is working
and it enhances the trackers’ performances, since their average AUC(eIoU)
scores are considerable superior than the other configurations. Moreover, the
more the Inspection module participates in the framework’s execution, the
better and more consistent is the overall tracking performance among the
individual trackers.

Is worth mentioning that the Inspection module supports the Tracking
module by providing information about the target face state coming from the
face detector; this information is used by the Tracking module to improve the
trackers.

4.5.3
On the Collaborative Tracking with an Ensemble of Trackers

This experiment aimed to assess the framework’s performance with all
of its features enabled, as described in Section 4.4.1. Here, we compared the
average AUC(eIoU) scores of the volatile, conservative and flexible variants of
the collaborative tracking configuration, which correspond to the framework’s
complete solution, against the tracking ensemble, tracking ensemble + feedback
and the single tracking configurations.

Figure 4.15 presents the average AUC(eIoU) scores for the video se-
quences containing single-faces from the TB-Face dataset, while Figures 4.16,
4.17 and 4.18 present the results on the video sequences containing multiple-
faces, considering LITIV, MOTINAS, and ChokePOINT datasets, respectively.
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Although we preliminary conducted several experiments varying the tracker’s
cyclic dissimilarity buffer size (sb), in accordance to Section 4.4.1, on the fol-
lowing analysis we present only the results that correspond to sb = 1 and
sb = 32, as there is no significative difference in using intermediary sb values.
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Figure 4.15: Framework’s performance on single-face video sequences from the
TB-Face Dataset. The graphics present the AUC(eIoU) results obtained by
combining trackers and complementing their fusion with a face detector; all of
them for an intervention of the Inspector module at every k = 1, k = 16 and
k = 32 frames, and a re-initialization buffer of size sb = 1 (a) and sb = 32 (b).

In all cases, the tracking ensemble + feedback configuration achieved bet-
ter performance than its tracking ensemble counterpart, showing the impor-
tance of the feedback mechanism in the framework. Nevertheless, the tracking
ensemble + feedback configuration was worse than the best performing individ-
ual tracker, except for the MOTINAS dataset. Although these results suggest
that resubmitting the fusion estimate back to the trackers might be beneficial
for the face tracking in general, the bare trackers’ updating with information
delivered by the tracking fusion algorithm might not be enough to build ro-
bust facial models within the trackers: some of the trackers might still perform
poorly, negatively influencing the fusion process.

The results also confirm that the inclusion of the face detector brought
substantial performance gains. We observe that the collaborative tracking
configuration performed better, if not similar, to their tracking ensemble +
feedback counterpart. However, the performance of its three variants tends
to decrease as the participation of the Inspection module gets restricted, by
setting k = 16 and k = 32. Interestingly, in most of the datasets, the volatile
variant showed to be inferior to the conservative variant, whereas the flexible
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Figure 4.16: Framework’s performance on multiple-face video sequences from
the LITIV Dataset. The graphics present the AUC(eIoU) results obtained by
combining trackers and complementing their fusion with a face detector; all of
them for an intervention of the Inspector module at every k = 1, k = 16 and
k = 32 frames, and a re-initialization buffer of size sb = 1 (a) and sb = 32 (b).
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Figure 4.17: Framework’s performance on multiple-face video sequences from
the MOTINAS Dataset. The graphics present the AUC(eIoU) results obtained
by combining trackers and complementing their fusion with a face detector;
all of them for an intervention of the Inspector module at every k = 1, k = 16
and k = 32 frames, and a re-initialization buffer of size sb = 1 (a) and sb = 32
(b).

variant was the best among them. The difference in performance among these
variants might be related to the trackers’ re-initialization procedure, regarding
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Figure 4.18: Framework’s performance on multiple-face video sequences from
the ChokePOINT Dataset. The graphics present the AUC(eIoU) results ob-
tained by combining trackers and complementing their fusion with a face de-
tector; all of them for an intervention of the Inspector module at every k = 1,
k = 16 and k = 32 frames, and a re-initialization buffer of size sb = 1 (a) and
sb = 32 (b).

the minimum number of frames required for the trackers’ to build a stable
facial model, the facial states used in the trackers’ re-initializations, or the
quality of the image used in the trackers’ re-initializations.

Figure 4.19 presents a subset of video frames of the MultiFaceFast and
jp2 video sequences from the MOTINAS and LITIV datasets, respectively.
The video frames contain the responses of the collaborative tracking(flexible)
and tracking ensemble + feedback configurations, as well as the responses
of the best performing tracker in the single tracking configuration with a
continuous Inspection module intervention (k = 1). The figure shows that
collaborative tracking(flexible) was the only configuration capable of recovering
from a tracking failure caused by a severe occlusion over the target faces, which
correspond to the individuals wearing black t-shirts.

In addition, the results suggest that the inclusion of the cyclic dissimilar-
ity buffer does not offer considerable improvements in the face tracking using
the collaborative tracking configuration. We noticed that the volatile variant
remained inferior independent on the participation (different values of k) of the
Inspection module in the framework prototype execution, whilst the flexible
variant was the best performing one, getting closer to the conservative variant,
as the ciclyc dissimilarity buffer size increases. The reason for this behavior
is that by increasing the trackers’ cyclic dissimilarity buffer sizes, the trackers
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(a)

(b)

Figure 4.19: Video frames examples of the MultiFaceFast and jp2 video
sequences from the MOTINAS (a) and LITIV (b) datasets. The figure illustrate
the responses of the collaborative tracking(flexible) and tracking ensemble +
feedback configurations, as well as the responses of the best performing tracker
in the single tracking configuration with a continuous Inspection module
intervention (k = 1).
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became more conservative in re-initializing their facial models, which led to an
update-variant-like behavior.

Moreover, when considering the constant execution of the Inspection
module (k = 1), the collaborative tracking performed better than all of
the other configurations, except for the ChokePOINT dataset. Following the
analysis made in 4.5.1, we attribute it to the reference image used for the target
face validation in the Inspection module. In fact, for the ChokePOINT dataset,
the results corresponding to the flexible variant of the collaborative tracking
configuration presented a curious increase in performance once the Inspection
module intervention was restricted to every k = 16 frames. We relate this
behavior to the high incorrect responses rates produced by the Inspection
module, as discussed early on the validation experiment in Section 4.5.1. In
our framework, an incorrect response from the Inspector module might lead a
tracking to jump from the target face to another face, leading to an incorrect
facial state estimate. Thus, as the Inspection module incorrect response rate
decreases, the overall face tracking performance increases.

In this sense, we discuss, in the following, the results regarding the
facial image used as a reference for the face target validation procedure in
the Inspection module. We focus our discussion on the ChokePOINT dataset,
which has already presented problems in respect to this cases, as already
described in 4.5.1.

On the reference facial image for the target face validation

The three variants of the collaborative tracking configuration have shown
better performances than the other tested configurations. The only exception
was for the ChokePoint dataset, in which the best performing tracker from
the single tracking configuration. We believe that this fact is a consequence of
the target face validation procedure in the Inspection module, which primary
task is to find the target face from the set of detection outcomes provided
by the face detector. As already discussed in Section 4.5.1, the target face
validation algorithm strongly depends on the facial image used as a reference.
Moreover, its performance improves as the reference face approximates to a
frontal posture, and decreases as it deviates from it.

Contrary to the tracking process in the TB-Face, LITIV and MOTINAS
datasets, the tracking of some of the subjects in the ChokePOINT dataset
started in frames where the target faces were far from having a frontal posture,
which influenced in the overall tracking performance. Thus, to measure the
impact of using facial images in nearly a frontal posture in the tracking process
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within our framework, we conducted another experiment, which forces the
framework to start the face tracking in frames where the faces of interest were
in an almost frontal posture to the camera.

Similar to the original experiment on the ChokePOINT dataset, Figure
4.12 shows the performance results for the best tracker in the single tracking
configuration, the fusion method from the tracking ensemble + feedback
configuration and the three variants of the collaborative tracking configuration
in the original experiment (indicated in black) and their analog variants for
this new experiment (indicated in red): *volatile, *conservative and *flexible.

Although the results in the new experiment corresponding to the
*volatile, *conservative and *flexible variants from the collaborative tracking
configuration follow their respective original results tendency, there is a no-
table performance gain with respect to their original counterparts: volatile,
conservative and flexible. Moreover, for the uninterrupted Inspection module
operation (k = 1), the three variants outperformed the best tracker in the
single tracking configuration. However, as its operation frequency decreases
(k = 16 and k = 32), only the flexible variant remains superior to the best
tracker in the single tracking configuration. These results reinforce our intu-
ition that using a facial image in a nearly frontal posture as a reference for the
target face validation procedure within the Inspection module actually helps
on the framework performance and, hence, on the overall face tracking.
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Figure 4.20: Framework’s performance comparison on multiple-face video
sequences from the ChokePOINT datasets using non-frontal and nearly frontal
facial images as reference templates. The graphics present the AUC(eIoU)
results for an Inspection module intervention at every k = 1, k = 16 and
k = 32 frames and a re-initialization buffer of size sb = 1 (a) and sb = 32 (b).
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Finally, these results corroborate the inclusion of a face detector within
the face tracking fusion offers significant gains in performance, specially in
scenarios where the target face undergoes severe occlusions and has high
resemblance among faces.

In this set of experiments, we have perceived that the best results
correspond to the continuous operation of the Inspection module. However,
comparable results can be obtained by allowing a regular operation frequency
of this module at every 16 frames. Such behavior leaves space to explore
new ways of enabling the face detector within the framework, for example,
to activate the Inspection module only when one of the trackers begins to
behave poorly or when the trackers diverge from each other.
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5
Conclusions

In this research, we have presented a new framework for long-term face
tracking, called Collaborative Face Tracking, which tends to be more robust
to unconstrained imaging conditions and scenarios than individual trackers
and ensembles, achieving superior performance by exploiting the cooperation
among tracking algorithms, a tracking fusion process and a face detector,
through a feedback learning mechanism.

The framework is organized into four modules: Tracking, Fusion, Inspec-
tion and Integration, which enables a cooperation scheme among trackers,
tracking fusion algorithms and face detectors of any kind. Moreover, the mod-
ules’ prime requirements are to accept and produce a rectangular bounding
box as input and output, which allows a high flexibility degree.

The Tracking module admits any number of different tracking algorithms,
despite their specific designs. To ensure a proper overall framework’s execution,
the trackers must only meet an operational processing chain regarding the
target facial state prediction and correction, to later enable the facial model
update or re-initialization. These modifications allow the trackers to work in
an ensemble and to produce independent tracking estimates about the target
face state.

The Fusion module allows the use of any tracking fusion algorithm that
operates over the trackers’ outputs from the Tracking module, which are
represented only by rectangular bounding boxes. The resulting bounding box
produced by the fusion procedure provides a more accurate estimation of the
target face state.

The Inspection module allows the cooperation between any face detector
and a target face validation procedure of any kind to provide a reliable facial
state estimate of the target face. While the face detection algorithm is in
charge of locating faces within the video frame being processed, the target face
validation is used to find the target face from the pool of detection outcomes.
The face validation procedure allows the framework to recover from tracking
failures by adjusting the tracking trajectory, or recapturing the target face
after a tracking loss. It is important to mention that the Inspection module
may be executed in a given operation frequency, reducing the computational
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costs.
Finally, the Integration module combines the Fusion and Inspection

modules outcomes to provide the final tracking estimate. Furthermore, it uses
this estimate to improve individual tracker performance through a feedback
process to the Tracker Module. Then, the Tracker module measures the level
of discrepancy between the final and a tracker estimate and send a command
to update or re-initialize its facial model. A tracker’s update involves adding
new information about the target face into the tracker’s facial model, whereas
the re-initialization involves erasing its facial model and starting a new one
from scratch based on the last processed frame.

We implemented the Collaborative Face Tracking in a software prototype
using the C++ programming language. The prototype allows a batch mode
execution of a set of video sequences. In order to validate the framework’s
prototype, we conducted a set of experiments upon facial video sequences
corresponding to four facial tracking-specific datasets, namely, the TB-Face,
LITIV, MOTINAS, and ChokePOINT datasets. The datasets offer challenging
facial tracking conditions, emphasizing severe occlusions, in video sequences
containing single and multiple faces. Furthermore, we produced reference
annotations of the target faces for some of the subjects in the video sequences
for the TB-Face, MOTINAS and ChokePOINT datasets, which can be reused
by other researchers.

The experimental analysis demonstrated that the combination of multi-
ple trackers reduces tracking drifts. Furthermore, the integration of the track-
ing process with a face detector substantially improves face tracking accuracy,
specially in multiple-face scenarios, where the framework was able to recover
from tracking failures and to recapture the target face after a tracking loss,
severe occlusions, and subjects short time disappearances.

The results attested that combining the trackers’ updating and re-
initialization led to better performance than solely performing updating or re-
initialization on every frame. In our experiments, the trackers were commanded
to update or re-initialize based on their prior performance and a given re-
initialization threshold δr. We also included a cyclic dissimilarity buffer to
manage the update/re-initialization process. However, the results showed that
collecting performance data of the trackers do not bring a significant difference
in the overall framework’s performance.

Throughout the experiments, we assessed the impact of executing the
Inspection module every k−th video frames for different values of k. The results
showed that the framework performed better when Inspection module always
participated in the framework’s execution, i.e., k = 1, which might not be
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favorable for real-time applications. However, the results also suggest that it is
possible to obtain similar results for higher values of k, which might represent
a good balance between tracking accuracy and processing speed.

As stated in our experiments, the proposed framework outperformed
different configurations like single trackers and ensembles, showing its benefits.
However, the accuracy considering its absolute results is still not so high
for some of the datasets, showing that these sequences are actually very
challenging. In this sense, it is also important to note that the framework
might be improved by simply adding new trackers, different fusion methods
and different face detectors and validating algorithms.

Finally, although the Collaborative Face Tracking is focused to perform
the long-term face tracking, its architecture enables the possibility of expanding
the framework to another application fields. In theory, by replacing the face
detector with a task-specific detector and the face-specific validation procedure
with other general or task-specific purpose, the framework could be deployed
in the tracking of pedestrians, cars, and so on.

5.1
Framework’s Performance Remarks

The methods tested in our experiments were set to operate with their
default parameter values, which might have prevented them to achieve their
optimal performances. Investigating the best set of parameters of each method
within the framework constitutes a separate work that goes beyond the scope
of this work and can be investigated in future works.

Throughout the experiments, the Inspector module was set to collect a
reference image of the target face at the beginning of the tracking, which is
used to find the target face from the detection outcomes via a face validation
procedure. A reference image having a facial image far from a frontal posture
restrains the Inspection module capability to measure how similar a candidate
and the reference templates are, making the Inspection module less effective.

5.2
Future Research

During the development of this research, we have identified some possible
directions to continue with the improvement of this work in short and long
terms.

We have designed our framework in a way that it allows the inclusion
of any tracking algorithm. However, as this work evolved, we considered
five conventional trackers to asses the performance of the framework: three
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discriminative and two generative trackers of general purpose. So, it is natural
to include more trackers of other natures to explore the framework performance
in its full potential. In this respect, a possibility could be to include Neural
Networks-based tracking techniques, for instance.

Furthermore, we expect that the differences in the trackers’ designs yield
to an improvement of the trackers’ performances, and therefore to the overall
framework’s performance. So, we propose to evaluate the impact of executing
the Tracking module with a different combination and number of trackers each
time.

In this work, we have compared the framework’s performance against
those from the individual trackers’, which is a good indicator of improvement.
However, it would be interesting to include other tracking fusion algorithms for
comparison in our analysis as an alternative to further validate our framework.

Regarding the target face validation procedure in the Inspection module,
further research on the collection of the reference facial image could be carried
out. For example, one option could be to collect facial images of the target
face with each processed frame until one of the images presents a near frontal
posture. Another option could be to use the first facial image to generate an
alternative facial image that is frontal.

Another interesting field for research relates to the prototype’s efficiency.
The framework’s structure allows investigating concurrent programming meth-
ods at different levels in the prototype for its faster execution. For instance, at
an inter-module level, the Tracking and Fusion modules could be executed con-
currently with the Inspector module to save time. At an intra-module level, the
Tracking module, for example, offers many ways of concurrency: an alternative
could be exploiting the trackers’ execution per task within the processing chain
described in Section 3.3. Finally, we also envisage a concurrency at a method
level, which relates to the optimization of the methods, especially the tracking
algorithms, using multiple processors or GPUs.

In particular, evaluating methodologies oriented to the tracking of faces
is difficult as there is a lack of face-specific datasets with reliable reference
annotations. In this research, we have collected a set of facial video sequences,
furthermore we have annotated the references for some of the appearing faces.
We expect to extend and make the annotations of the remaining faces in the
video sequences available in the future.
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