Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: INVERSE OPTIMIZATION VIA ONLINE LEARNING
Autor: LUISA SILVEIRA ROSA
Colaborador(es): MARCO SERPA MOLINARO - Orientador
Catalogação: 02/ABR/2020 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47321&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47321&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.47321
Resumo:
We demonstrate how to learn the objective function and constraints of optimization problems while observing its optimal solution over multiple rounds. Our approach is based on Online Learning techniques and works for linear objective functions under arbitrary feasible sets by generalizing previous work. The two algorithms, one to learn objective function and other to learn constraints, converge at a rate of O (1 on t root) that allow us to produce solutions as good as the optimal in a few observations. Finally, we show the efficacy and possible applications of our methods in a significant computational study.
Descrição: Arquivo:   
COMPLETE PDF