Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ITERATIVE METHODS FOR ROBUST CONVEX OPTIMIZATION
Autor: THIAGO DE GARCIA PAULA S MILAGRES
Colaborador(es): MARCO SERPA MOLINARO - Orientador
Catalogação: 24/MAR/2020 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47228&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=47228&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.47228
Resumo:
Robust Optimization is a common paradigm to consider uncertainty in the parameters of an optimization problem. The traditional way to find robust solutions requires solving the robust counterpart of an optimiza- tion problem, which, in practice, can often be prohibitively costly. In this work, we study iterative methods to approximately solve Robust Convex Optimization problems, which do not require solving the robust counter- part. We use concepts from the Online Learning framework to propose a new algorithm that performs constraint aggregation, and we demonstrate theoretical convergence guarantees. We then develop a modification of this algorithm that, although without such guarantees, obtains better practical performance. Finally, we implement other classical iterative methods from the Robust Optimization literature and present a computational study of their performances.
Descrição: Arquivo:   
COMPLETE PDF