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Abstract

Milagres, Thiago; Molinaro, Marco (Advisor). Iterative Methods
for Robust Convex Optimization. Rio de Janeiro, 2019. 72p.
M.Sc. Dissertation – Departamento de Informatica, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

Robust Optimization is a common paradigm to consider uncertainty
in the parameters of an optimization problem. The traditional way to find
robust solutions requires solving the robust counterpart of an optimiza-
tion problem, which, in practice, can often be prohibitively costly. In this
work, we study iterative methods to approximately solve Robust Convex
Optimization problems, which do not require solving the robust counter-
part. We use concepts from the Online Learning framework to propose a
new algorithm that performs constraint aggregation, and we demonstrate
theoretical convergence guarantees. We then develop a modification of this
algorithm that, although without such guarantees, obtains better practical
performance. Finally, we implement other classical iterative methods from
the Robust Optimization literature and present a computational study of
their performances.

Keywords
Robust Optimization; Online Convex Optimization; Convex Opti-

mization; Iterative Methods; Constraint Aggregation; Online Learning;
Multiplicative Weights Update;
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Resumo

Milagres, Thiago; Molinaro, Marco. Métodos Iterativos para
Otimização Convexa Robusta. Rio de Janeiro, 2019. 72p. Dis-
sertação de Mestrado – Departamento de Informatica, Pontifícia
Universidade Católica do Rio de Janeiro.

Otimização Robusta é uma das formas mais comuns de considerar in-
certeza nos parâmetros de um problema de otimização. A forma tradicional
de achar soluções robustas consiste em resolver a contraparte robusta de
um problema, o que em muitos casos, na prática, pode ter um custo com-
putacional proibitivo. Neste trabalho, estudamos métodos iterativos para
resolver problemas de Otimização Convexa Robusta de forma aproximada,
que não exigem a formulação da contraparte robusta. Utilizamos conceitos
de Online Learning para propor um novo algoritmo que utiliza agregação
de restrições, demonstrando garantias teóricas de convergência. Desenvol-
vemos ainda uma modificação deste algoritmo que, apesar de não possuir
tais garantias, obtém melhor performance prática. Por fim, implementamos
outros métodos iterativos conhecidos da literatura de Otimização Robusta
e fazemos uma análise computacional de seus desempenhos.

Palavras-chave
Otimização Robusta; Otimização Convexa Online; Otimização Con-

vexa; Métodos Iterativos; Agregação de Restrições; Online Learning;
Multiplicative Weights Update;
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1
Introduction

1.1
Motivation

Data used as input for optimization problems is often subject to uncer-
tainty. Such uncertainty could have multiple sources, such as measurement
errors. Even more alarmingly, in some cases the data comes from an external
forecasting model, with its own sources of errors. An example is the pricing
optimization setting, in which the forecasted demand passed as input could
come from an entirely separate model.

While in practice such uncertainties are often ignored and deterministic
optimization methods are used, a study made by Ben-Tal and Nemirovski
[1] demonstrates why this may not be a good idea. They use data from the
NETLIB collection, a well known library for Linear Programming problems,
and show that by applying a small perturbation of about 0.1% on the data,
the solutions x∗ that were previously considered optimal not only become
suboptimal, but often highly infeasible to the point of being practically useless.

In this context, there is a whole field of study, known as Sensitivity
Analysis, which as defined in [2] focuses on identifying “how the uncertainty in
the output can be apportioned to different sources of uncertainty in the model
input”. Mulvey et al. [3] argue that such methods are reactive, since they do
not generate new recommendations, but rather serve to study the impact of
perturbations in solutions that were already recommended.

More proactive approaches are needed: methods that are able to generate
good solutions in an uncertain environment. In the field of Optimization
under Uncertainty, there are many different frameworks that aim to deal
with this problem. We highlight the two that are most notorious: Stochastic
Optimization and Robust Optimization.

Stochastic Optimization, which is not the focus of this work, assumes
that the uncertain parameters are stochastic, and have a distribution that is
either known or can be estimated. Given these distributions, it seeks to find
policies that are feasible for (almost) all the possible scenarios. One drawback
in this approach is that in many applications, such probability distributions
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Chapter 1. Introduction 13

on the parameters are unknown and hard to estimate. Moreover, when there
are many uncertain parameters the number of possible scenarios can grow too
quickly. Nevertheless, many problems have been successfully modeled using
this framework [4–7].

Robust Optimization, unlike Stochastic Optimization, does not rely on
a stochastic model for the uncertainty. Rather, the perturbations are assumed
to be restricted to given uncertainty sets. The RO approach then generates a
solution that is optimal against the worst possible realization of the uncertainty
sets. This makes this paradigm especially suitable when significant violations
cannot be tolerated even with low probability, such as in engineering structures
(one intuitive example is the case of bridge construction, as discussed in [8])

Robust Optimization has been successfully applied in several fields,
such as portfolio optimization [9–11], logistics and supply chain management
[12–14], healthcare [15], marketing [16], scheduling [17], Statistics and machine
learning [18–21] and, more recently, Data-driven Robust Optimization [22,23].
Some of these applications are covered in the surveys [24,25].

Since the RO framework will be at the core of this project, we will now
define it formally and in more details.

1.2
Robust Optimization

The goal of Robust Optimization is to find optimal solutions that are
feasible for all possible realizations of the given uncertainty sets. One way to
think about this idea is that the paradigm finds the best possible solutions
while being pessimistic about nature (i.e., assuming it will behave in the worst
possible way).

This is typically done by solving the robust counterpart, a reformulation
of the original problem that takes into account all possible realizations of the
uncertainty set.

More formally, consider the following convex program:

minimize
x

f0(x)

subject to fi(x, ūi) ≤ 0, i = 1, . . . ,m

x ∈ X

where x ∈ Rn is a vector of decision variables, fi are convex functions, X is a
convex set and the parameters ūi ∈ RK are fixed. From here on, we will refer
to this convex problem, with fixed parameters ūi, as the nominal problem.

Its robust counterpart is given by:
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Chapter 1. Introduction 14

minimize
x

f0(x)

subject to fi(x, ui) ≤ 0, ∀ui ∈ Ui, i = 1, . . . ,m

x ∈ X

(1-1)

where the parameters ui ∈ RK are no longer fixed, but constrained to be in
the uncertainty sets Ui ⊆ RK .

It is known that assuming the objective function to be linear and certain
can be done without loss of generality. This is because, if the objective function
is in fact subject to uncertain parameters u0 ∈ U0, formulation (1-1) can be
rewritten with an auxiliary variable t:

minimize
x

t

subject to f0(x, u0)− t ≤ 0 ∀u0 ∈ U0,

fi(x, ui) ≤ 0, ∀ui ∈ Ui, i = 1, . . . ,m

x ∈ X

(1-2)

We can also assume without loss of generality that the uncertainty set
has the form of a cartesian product: U = U0×U1×· · ·×Um (see [26] for further
discussion on this point, and a proof).

Is it not clear, a priori, when problem (1-2) is tractable. In fact, as noted
in [25], in its current form it seems intractable if the uncertainty sets are
continuous, since it contains infinitely many constraints. The classical approach
is to reformulate problem (1-2) using the idea that in order for the solution to
be feasible for any realization ui of the uncertainty Ui, it suffices to be feasible
for its worst case. The tractability of this reformulated problem largely depends
on the shape of the uncertainty set chosen, as well as on the complexity of the
nominal problem, as we will see in more details in Section 1.2.1.

1.2.1
Choice of the uncertainty set and related works

This section will provide a brief overview regarding some of the classical
works on Robust Optimization, and explore the relationship between the
tractability of the robust counterpart of an optimization problem and the
chosen class of uncertainty sets. For a more detailed description of the most
commonly used uncertainty sets, see e.g., the study made by Li and Floudas
[27].

The first work to explicitly consider uncertain hard constraints in Mathe-
matical Programming was made by Soyster in 1973 [28]. It explores Robust
Linear Optimization, when the nominal problem is itself a linear program,
with constraints expressed as Ax ≤ b, x ≥ 0. Soyster considers a specific case
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in which the columns of matrix A are uncertain and known to belong to given
uncertainty sets Kj ⊆ RK . Defining aj as the j−th column of matrix A, these
linear constraints can then be written as:

n∑
j=1

xjaj ≤ b ∀(aj ∈ Kj, j ∈ [n]), x ≥ 0

Which is, in fact, equivalent to the linear system:

A∗x ≤ b, x ≥ 0; where A∗ij = sup
aj∈Kj

(aj)i (1-3)

As discussed in [29], while this reformulation has the benefit of resulting
in an LP, it is way too conservative: by considering column-wise uncertainty,
its robust counterpart has a matrix A∗ in which each entry is, simultaneously,
as bad as it possibly could be. As a result, this reformulation gives up too
much in optimality in order to ensure robustness for cases that are extremely
unlikely in real-life situations.

Decades later, a successful attempt to reduce such conservatism, by
tackling the more general case of row-wise uncertainty, appeared in a series
of papers from Ben-Tal and Nemirovski [1, 8, 26, 29, 30] and, simultaneously
and independently, El-Ghaoui et al. [19, 31]. In some of these works, the
nominal problem is no longer assumed to be linear, only convex. Their focus
is mainly on the case of ellipsoidal uncertainties, i.e., the uncertainty sets are
assumed to be ellipsoids. The reason to use such uncertainty sets is not only
that it is a mathematically convenient way of approximating more complex
sets: in [29], Ben-Tal and Nemirovski propose an interesting motivation for
ellipsoidal uncertainties based on statistical considerations, using a robust
portfolio optimization problem to illustrate their point. A separate study by
Dokka and Goerigk [32] performed an experimental comparison of several
uncertainty sets on the robust shortest path problem with real-life instances,
and concluded that the ellipsoidal uncertainty set is among the best options
in terms of trade-off between robustness and optimality.

One problem with these approaches is the known fact that, when using
ellipsoidal uncertainties, the robust counterpart problem belongs, in general,
to a different, harder class of optimization problems than its nominal version.
We will present two practical cases on this matter in Chapter 7, in which we
perform computational experiments. As examples, it is known that:

– The robust counterpart of an LP (linear program) with ellipsoidal
uncertainty sets is an SOCP (second-order cone program)

– The robust counterpart of a convex QCQP (quadratically constrained
quadratic program) with a single ellipsoidal uncertainty set is an SDP

DBD
PUC-Rio - Certificação Digital Nº 1721467/CA



Chapter 1. Introduction 16

(semidefinite program) [24,26]

– The robust counterpart of an SDP with ellipsoidal uncertainty sets is
NP-Hard [26,33]

In general, the situation is even worse: even a convex QCQP with
polyhedral uncertainty is already NP-Hard.

In a celebrated work, Bertsimas and Sim [13] proposed a method that,
considering polyhedral uncertainty, reformulates a linear program into a robust
counterpart that is still itself linear. A parameter Γ is introduced and can then
be used to calibrate the trade-off between optimality and conservatism. While
this work is still very important for the RO field (since it provides an efficient
way to solve robust linear programs and even robust discrete [34] programs
with a reasonable uncertainty set that can be tuned by the practitioner), it
still does not handle the more general case we are interested here, where the
nominal problem must only be convex, not necessarily linear, and where the
uncertainty sets do not have to be polyhedra.

The following situation is presented thus far: the complexity of the
robust counterpart is heavily dependent on the uncertainty sets chosen, and,
in many practical cases, uncertainty sets that would make sense in real-life
applications have to be avoided in order to ensure tractability. Meanwhile,
recent connections are being made between Robust Optimization and fields
with heavy usage of big data such as Machine Learning and Statistical Learning
(see, e.g., [20,21,35], and, especially, [23], a recent work in Data Driven Robust
Optimization in which Bertsimas et al. argue, e.g., in Chapters 1 and 2.1, that
cutting-set or online optimization methods often have better performance than
attempts to solve the problem directly). This motivates the need for iterative
methods able to (approximately) solve robust problems without needing to
work with its robust counterpart. By approximately solving we mean finding
solutions that are guaranteed to not violate any of the robust constraints by
more than a tolerance ε given as input. These methods will be the core of
Chapter 4 (where some of these existing ideas will be described in depth) and
the rest of the chapters from then on.

As evidence for the success of these iterative approaches, Bertsimas et
al. [36] show that iterative approaches often perform better than reformula-
tion even for polyhedral uncertainty sets. In their Practical Guide to Robust
Optimization, Gorissen et al. [25] also advocate for the use of these methods
whenever a reformulation into a tractable robust counterpart is not readily
possible.
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1.3
Our Contributions

We now briefly describe our two main contributions.
The first is mostly a theoretical one. As we will see in Chapter 4, Ben-Tal

et al. show in [33] how to approximately solve robust problems by repeatedly
solving the nominal problem, withm uncertain constraints, while updating the
uncertainty parameters with a first-order method. In Chapter 5, we present the
Single-row based RO, an algorithm that, in each iteration, needs to solve an
easier version of the nominal problem, in which all the uncertain constraints
are aggregated into one. In Theorem 1 we prove that this algorithm does
not need much more iterations than the one presented in [33] in order to
converge, and has the advantage that each iteration can be much less costly.
Our algorithm uses ideas from the Multiplicative Weights Update framework
[37], to be presented on Sections 3.2.4 and 3.3.

The second contribution is an expansion on the ideas explored in pre-
vious chapters to create an algorithm that, instead of focusing on theoretical
guarantees, aims to achieve good practical performance. It uses ideas from the
Single-row based RO (our own theoretical algorithm) and from Mutapcic and
Boyd’s [38], and is able to achieve interesting results by iteratively solving a
modified version of the nominal problem that starts with only one constraint
and slowly grows in size until convergence is achieved. We then implemented
several other algorithms presented in the literature [33, 38, 39], as well as the
reformulation into robust counterpart approach, and show that our procedure
can be competitive in practice, especially when the nominal problem is itself
not easy to solve and when its constraints have varying levels of slackness.

1.4
Organization

This work is organized as follows. Chapters 2 and 3 are two support
chapters, and present the mathematical tools that the reader must be com-
fortable with in order to understand the models developed in later chapters.
Chapter 2 focuses on convexity, defines convex functions and gives examples of
convex sets, which is useful to better understand the usage of uncertainty sets
in Robust Optimization. Chapter 3 presents the Online Convex Optimization
framework and some of its most famous algorithms.

In Chapter 4, we present three of the most notable works in the literature
of iterative methods to approximately solve Robust Optimization.

Chapters 5 and 6 present our contributions, as discussed in Section 1.3.
Finally, in Chapter 7 we perform computational experiments with robust LPs
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and robust QCQPs.

DBD
PUC-Rio - Certificação Digital Nº 1721467/CA



2
Preliminaries I: Convexity

In this chapter, we will start by defining convexity itself, and will give
several examples of convex sets. Finally, we will define convex functions. This
chapter can be skipped by the reader already familiar with theoretical concepts
in convexity, but is highly recommended otherwise.

2.1
Convex sets

A set S is convex if all the points of a line segment between any two
points of S lie in S. More formally, if x, y ∈ S, then:

θx+ (1− θ)y ∈ S ∀θ ∈ [0, 1] (2-1)

As natural examples, we note that any affine set is also convex. Therefore,
the empty set, a single point and the whole space Rn are convex sets.

We will now see two examples of convex sets, which will be useful in
future chapters. Proofs for each case, as well as more detailed examples, can
be seen in [40].

2.1.1
Euclidean balls and ellipsoids

Let r be the radius of a ball and xc ∈ Rn its center. An Euclidean ball
in Rn can be represented in any of the following ways:

B(xc, r) = {x : ||x− xc||2 ≤ r}

B(xc, r) = {x : (x− xc)T (x− xc) ≤ r2}

B(xc, r) = {xc + ru : ||u||2 ≤ 1}

Related to the Euclidean balls is the family of ellipsoids:

E = {x : (x− xc)TP−1(x− xc) ≤ 1}

where P is a symmetric and positive definite scaling matrix, that serves to
determine how the ellipsoid extends in each direction of xc. The lengths of the
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semi-axes of E are given by
√
λi, with λi being the eigenvalues of P .

Another way to represent an ellipsoid is the following:

E = {xc + Au : ||u||2 ≤ 1}

where A is square and nonsingular.
Finally, we note that the ellipsoid is a generalization of the euclidean

ball. Indeed, a ball is an ellipsoid with P = r2I

2.1.2
Norm balls and norm cones

Let || · || be any norm on Rn. It can in fact be shown that any norm ball
(and not just the Euclidean ball), given by the set:

{x : ||x− xc|| ≤ r}

is convex.
Further, it also holds that the norm cone associated with the norm || · ||,

given by the set:
{(x, t) : ||x|| ≤ t} ≤ Rn+1

is convex.
As noted in [40], the second-order cone, which is frequently referred to

in the convex optimization field and which we will explicitly make use of in
future chapters, is simply the norm cone for the Euclidean norm:

{(x, t) ∈ Rn+1 : ||x||2 ≤ t}

2.2
Convex functions

Let S be a convex set, as defined in (2-1). A function f : S → R is convex
if for any x, y ∈ S, the following holds:

∀ θ ∈ [0, 1], f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y) (2-2)
It is worth noting that when f is convex, −f is concave. Finally, for affine

functions, the inequality in (2-2) naturally becomes an equality, and hence all
affine functions are convex and concave.

Convex functions are especially important in the optimization field
because a local minimum of a convex function is also a global minimum (and
analogously, a local maximum of a concave function is a global maximum).
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3
Preliminaries II: Online Convex Optimization

In this chapter, we introduce the Online Convex Optimization framework.
Then, we will go into classic algorithms to solve this problem, namely Follow-
the-Leader and Online Gradient Descent. We also present the Multiplicative
Weights Update, showing how it can be useful to efficiently solve a special case
of the OCO problem.

3.1
Online Convex Optimization

We now discuss the Online Convex Optimization (OCO) framework, first
introduced by Zinkevich in [41]. It can be seen as a generalization of the
problem of prediction with expert advice [42,43].

In online convex optimization, an online player chooses, at each step, a
point xt in a set X , which is assumed to be non-empty, bounded, closed and
also convex. At the time of such decision, the associated outcome is unknown to
the player. After xt is chosen, a concave gain function f t : X → R is revealed,
and thus the gain incurred to the player for his decision is f t(xt).

The goal of the player is to maximize the total gain, given by:

T∑
t=1

f t(xt)

In this model, f t can even be chosen by an adversarial. It is important to
note, however, that in this model all information about f t is revealed after
the decision, which means that the player also sees the gains of other possible
decisions he could have taken (the model where only the value f t(xt) is revealed
is the bandit model, see, e.g., the recent book [44]).

Let T be the total number of game iterations. Then, the total gain of
the choices made by the player is given by ∑T

t=1 f
t(xt), and the total gain of a

given static solution x ∈ X is ∑T
t=1 f

t(x). In order to be able to measure the
performance of an algorithm in this setting, the decisions made by the player
are compared to the best possible static decision, giving rise to the concept of
regret R:

RT = max
x∈X

T∑
t=1

f t(x)−
T∑
t=1

f t(xt) (3-1)
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Chapter 3. Preliminaries II: Online Convex Optimization 22

The pseudocode in 1 describes the protocol of this game.

Algorithm 1 Online Convex Optimization
for i = 1 to T do

Player chooses xt ∈ X
Player receives concave gain function f t : X → R
Player suffers gain f(xt)

end for

Intuitively, one would like to achieve a sublinear regret, i.e., R ∈ o(T ),
which implies that the algorithm is effectively learning.

We will now see classic algorithms for the OCO problem, and their
guarantees on the regret.

3.2
Algorithms for Online Convex Optimization

3.2.1
Follow the Leader

The Follow the Leader (FTL) algorithm takes, at each step, what is
perhaps the most natural, intuitive decision: it chooses the solution which
maximizes the accumulated gain, considering all previous gain functions.
Algorithm 2 summarizes this greedy approach.

Algorithm 2 Follow the Leader
x1 chosen arbitrarily
for i = 1 to T do

xt = argmaxx∈X
∑t−1
s=1 fs(x)

end for

It is known that FTL’s regret is upper bounded by the cumulative
difference between the gains of xt and xt+1:

RT ≤
T∑
t=1

(
f t(xt)− f t(xt+1)

)
(3-2)

The proof is found in [45].
In some special cases, such as when the gain functions are strongly convex

or when the gains are i.i.d. (independent and identically distributed), FTL is
known to perform greatly, achieving a O(log T ) regret. [46] [47]
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However, this is not the case in general. In fact, this algorithm is known
to fail in a worst-case scenario. A common example used to demonstrate the
main drawback of the Follow the Leader algorithm is the following:

Let f 1(x) = x
2 , and f

t(x) =

−x if t ∈ {2, 4, 6, 8, . . . }

x if t ∈ {3, 5, 7, 9, . . . }
Suppose that we have a playing set x ∈ [−1, 1]. In this case, the FTL

strategy will forever alternate between −1 and 1, and make a mistake at every
step. In t = 2, FTL will play x = 1, because this solution maximizes f 1(x) = x

2

(the only gain function seen so far), and since f 2(x) = −x, it will receive a gain
of −1. Then, in t = 3, it will play x = −1 in order to maximize the function
−x

2 , but will then observe gain function f 3(x) = x and again receive gain of
−1. The total gain, therefore, will be no bigger than (−T + 1), while the total
gain for the best static solution (x = 0) will be zero. The regret is thus Ω(T ).

As discussed in [45], the reason why FTL fails in this example is the lack
of stability. Intuitively, the solution xt shouldn’t shift so drastically, from −1
to 1, when a single new gain function f t is recognized by the player. As an
example, from equation (3-2) we can see that if FTL is completely stable, i.e.,
xt+1 = xt always holds, the regret is zero. This also informally illustrates why
FTL performs well when xt is “close” to xt+1, and hence this drawback is not
explored. A natural attempt to fix this problem was to add a regularization
term, which gave origin to an algorithm with vastly different guarantees, the
Follow the Regularized Leader.

3.2.2
Follow the Regularized Leader

The Follow the Regularized Leader (FTRL) is a modification of the FTL
algorithm that aims to generate more stable solutions over time. While the FTL
chose solutions that maximized the cumulative gain on all previous rounds,
the FTRL maximizes the same gain plus a regularization function evaluated
on such solution, R : X → R. Algorithm 3 illustrates this setting.

Algorithm 3 Follow the Regularized Leader
x1 = argminx∈XR(x)
for i = 1 to T do

xt = argmaxx∈X
(∑t−1

s=1 fs(x)−R(x)
)

end for

A natural question that remains is how to correctly choose the regularizer
function R. As we will see, in order to achieve good theoretical guarantees on
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the regret, R should be strongly convex (for a formal definition and more on
strong convexity, see e.g. [48, 49]). Apart from this requirement, intuitively
there is a trade-off: it should be effective in preventing the solutions from
varying too dramatically, but the regularization losses shouldn’t grow too large
as to dominate the gains of the decisions made by the player. In this context,
we will now see two famous algorithms that arrive from the FTRL and their
regularizers.

3.2.3
Online Gradient Ascent

The Online Gradient Ascent algorithm [41], as the name suggests, is an
online version of the famous Gradient Ascent algorithm. It consists of, at each
iteration, taking a step from the current point in the direction of the gradient
of the current gain function. We note that its most notorious version is in
fact the Gradient Descent, in which the goal is to minimize a cost function,
and therefore the steps are taken in the direction against the gradient. We
will define the Online Gradient Ascent because, in this work, we are mostly
interested in using the OCO framework for maximization, but the results are
analogous.

After a step in the direction of the current gradient is taken, the updated
point could fall outside of the convex set, a projection operation may have to be
performed in order to ensure feasibility. The projection step consists of finding
the closest point in the convex set from the updated solution. In general, this
is a Convex Optimization problem, and its efficiency largely depends on the
shape of the convex set (see e.g. [40], Chapter 8.1).

Algorithm 4 illustrates this strategy. We denote ΠX (y) as the projection
of y onto set X , i.e.

ΠX = min
x∈X
||y − x||

Algorithm 4 Online Gradient Ascent
x1 ∈ X , learning rate η
for i = 1 to T do

yt+1 = xt + η∇ft(xt)
xt+1 = ΠX (yt+1)

end for

It should be noted that the algorithm as designed in [41] in fact supports
an adaptive learning rate, instead of a fixed one. Works have been done
focusing on how to exploit this flexibility to improve efficiency in some specific
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cases, such as strong convexity [50]. However, since the optimal asymptotic
guarantees can already be achieved with a fixed learning rate, this will be our
focus in this project.

In order to define which value of η should be used to achieve optimal
guarantees, we first need to define two parameters. G, an upper bound on the
`2 norm of the gradients of the gain functions:

G : max
t∈[T ]
||∇ft(xt)||2 ≤ G (3-3)

and D, an upper bound on the `2 diameter of the convex set X :

D : max
x,y∈X

||x− y||2 ≤ D (3-4)

Both G and D can sometimes be calculated analytically, as we will show
in an example in Section 4.3.

Given these parameters, it is known [41] that if we set η = D
G
√
T
, the

regret is guaranteed to have the following upper bound:

RT ≤ GD
√
T (3-5)

which is o(T ).
The Online Gradient Descent is directly connected to the FTRL para-

digm: in fact, OGD is equivalent to the FTRL with regularization function
R(x) = 1

2η ||x||
2
2. More details on this equivalence and the proof can be seen in

[51].

3.2.4
Multiplicative Weights Update

The Multiplicative Weights Update (MWU) is a framework that unifies
methods previously discovered in different fields, such as AdaBoost in Machine
Learning [52], Plotkin et al.’s method to approximately solve packing and
covering LPs fast [53] in Optimization, and Game Theory. A survey was
published by Arora et al [37] discussing these applications and several others.

This framework is suitable for a setting that can be described as follows:
at each time step, a decision maker is presented with m possible decisions, and
must choose a decision from the set. After the decision is made, all the gains
are revealed, and the player receives the gain of the decision chosen. Once
again, the objective is to maximize the sum of gains over time.

As in the general OCO framework, the goal is to perform almost as well
as the best possible fixed decision. To achieve this objective MWU maintains a
probability distribution pt over the set of decisions (so one can think that
the action at time t is sampled from the distribution pt). Intuitively, this
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probability distribution evolves over time so as to skew the distribution in
favor of the decision that have been better so far.

The algorithm is described in [37] as follows:

Algorithm 5 Multiplicative Weights Update (MWU)
Step η ≤ 1

2

Initial weight of each decision, w1
i = 1

for t = 1, 2, . . . , T do
Compute probability distribution over set of decisions:

pt = {wt1/φt, . . . , wtm/φt}

where φt = ∑m
i=1w

t
i

Given probability distribution pt, choose decision
Observe gain of each decision: mt

i ∈ [−ρ, ρ] ∀i ∈ [m]
Increase gain of good decisions by updating their weight as follows:

wt+1
i = wti(1 + ηmt

i) ∀i ∈ [m]

end for

The by now standard guarantee of MWU is the following.

Lemma 1 (Theorem 2.5 of [37]) If for all t ∈ [m] we have mt ∈ [−1, 1]m

and T ≥ lnm, then the MWU algorithm (with η =
√

lnm
T

) satisfies the following
for every i ∈ [m]:

T∑
t=1
〈mt, pt〉 ≥

T∑
t=1

mt
i − 2

√
T lnm. (3-6)

Notice that if the gains are in the interval [−ρ, ρ], we can simply run the
MWU over the gains scaled by 1

ρ
to obtain the following.

Corollary 1 If for all t ∈ [m] we have mt ∈ [−ρ, ρ]m and T ≥ lnm, then
running the MWU algorithm over the gain vectors mt

ρ
produces pt’s that satisfy

for every i ∈ [m]
T∑
t=1
〈mt, pt〉 ≥

T∑
t=1

mt
i − 2ρ

√
T lnm. (3-7)

The parameter ρ is called the width of the problem. We note that if ρ, or
a reasonable upper bound for it, cannot be known or estimated before running
the algorithm, the so-called “doubling trick” can be used. This method consists
of starting with a reasonably small guess for ρ̂ and, whenever a gain larger than
this estimate is observed, the estimate is doubled, i.e., ρ̂← 2 · ρ̂. The resulting
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regret is worse only by a constant multiplicative factor. More details on the
doubling trick can be seen in the Section 2.3.1 of Shalev-Shwartz’s book on
OCO [45].

3.3
Application of the MWU framework in Convex Programming

We will now describe how the Multiplicative Weights Update framework
described in Section 3.2.4 can be used to approximately solve a Convex
Optimization Problem. From now on, we will refer to this algorithm as the
MWU-Based CP. This method is inspired by Plotkin et al. [53] and is described
in the survey made by Arora et al. [37]. It consists of running the MWU
framework while, at each iteration, calling a feasibility oracle that aggregates
the m constraints of the nominal proble into one.

Consider the following feasibility problem: Given a convex set X and
convex functions fi’s, find a ε-feasible solution to

fi(x) ≤ 0, i = 1, . . . ,m

x ∈ X ,
(3-8)

or assert that no such feasible solution exists; by ε-feasible solution x we mean
one where fi(x) ≤ ε for all i ∈ [m]. We assume that for every x ∈ X and every
i ∈ [m], fi(x) ∈ [−ρ, ρ] for some parameter ρ (called the width of the instance).

For that we will apply the MWU framework, thinking of the constraints
as experts. We assume the existence of an oracle that given a fixed distribution
p̄ over [m], finds a point x̄ ∈ X satisfying

m∑
i=1

p̄ifi(x̄) ≤ 0, (3-9)

or asserts that none exists (one can work with approximate oracles as well).
The algorithm for approximate solving the convex program is the following:
For each t = 1, . . . , T , we start with a distribution pt and run the oracle with
p̄ = pt to obtain a point xt ∈ X feasible for (3-9) (if such exists); then compute
the gain vector mt := (f1(xt), . . . , fm(xt)) and feed it to the algorithm from
Corollary 1 to update the distribution, obtaining pt+1. At the end of the T
iterations, the algorithm returns the average of the solutions x1+...+xT

T
(if in

any iteration the oracle returns “infeasible”, then the original system (3-8) is
also infeasible).

The advantage of this algorithm is the following: We can think of X as
a set of “easy” constraints. As an example, in the context of a minimization
problem, if its optimal value is known to be OPT (or guessed, such as in a
binary search setting), X could be the set of point with value at most OPT .
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For such simple sets, it should be much faster to check feasibility as in (3-9)
once than to solve (3-8) directly.

Using the guarantee from Corollary 1, we can bound the number of
iterations T needed in order for this algorithm to return an ε-feasible solution
to (3-8).

Lemma 2 Suppose (3-8) is feasible. Then if T ≥ 4ρ2 lnm
ε2 , the solution returned

by the algorithm described above is ε-feasible for it.

Prova. By the definition of the oracle, and recalling the definition of the gain
vectors, we have that for all t ∈ [T ] 〈mt, pt〉 ≤ 0. Then employing Corollary 1
we get that for every i ∈ [m]

0 ≥
T∑
t=1
〈mt, pt〉 ≥

T∑
t=1

mt
i − 2ρ

√
T lnm =

T∑
t=1

fi(xt)− 2ρ
√
T lnm ≥

T∑
t=1

fi(xt)− Tε,

where the last equation uses the definition of T . Rearranging, dividing through
by T , and using Jensen’s inequality, we get that for every i ∈ [m]

fi(x
1+...+xT

T
) ≤ 1

T

T∑
t=1

fi(xt) ≤ ε.

This concludes the proof. �
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4
Iterative Methods for Robust Optimization

In Chapter 1 we mentioned the idea of using iterative methods to
(approximately) solve the robust version of an optimization problem using
only its nominal version, since solving the nominal problem is usually much
easier than solving its robust problem directly.

We will now cover important previous works done on this topic. We focus
in the case where the constraints are convex functions of the decision variables
and concave functions of the uncertainty parameters.

4.1
Overview

Before describing each algorithm, we will provide a brief overview of their
differences.

The first method we will study is a cutting-set method developed by
Mutapcic and Boyd [38]. It starts by solving the nominal optimization problem,
and then performs a maximization on the uncertainties of each constraint in
order to find scenarios that violate the current solution. All these scenarios are
added to the nominal problem as new constraints, and the process is repeated
until a solution is found such that no new scenario violates the constraints by
more than a tolerance ε. The problem solved to find xt in each iteration is
therefore an extension of the nominal problem, with more constraints than the
original version.

Secondly, we study the Dual-Subgradient method by Ben-Tal et al. [33],
which instead of running a full maximization (as defined in Equation (4-2)) on
the noises at each iteration, updates the uncertainty parameters with a first-
order procedure, such as the OGD we have seen in Section 3.2.3. Solutions xt

are found by solving an approximated version of the nominal problem, with
m constraints and current values of the noises uti. Ben-Tal et al. are able to
provide guarantees of convergence of the averaged solution, x̄ = 1

T

∑
t x

t.
The last method we will study from the literature is the Online First-

Order method (OFO), developed recently by Ho-Nguyen and Kilinc-Karzan
[39]. Their goal is to achieve the following improvement on the Dual-
Subgradient method: in order to find a new solution xt in each iteration,
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instead of solving an optimization problem with m uncertain constraints in
each iteration, they propose to use first-order procedures, such as OGD, as is
done to update the noises. They also provide guarantees for the convergence
of the average solution. We note two possible drawbacks in this framework:

1. After a first-order procedure, as explained in Section 3.2.3, a projection
is needed in order to ensure feasibility of the updated solution. If the set
X does not have a very favourable structure, this projection could itself
be costly. An example is if the set X has many linear constraints (that
are not uncertain): in this case, the projection would consist of solving an
optimization problem of minimizing a distance subject to several linear
constraints.

2. Since a full optimization on xt is never performed, this method requires
knowledge of the optimal value of the robust problem (which we will call
OPT) in advance. Since this is usually not the case, a binary search to
find OPT is needed, as will be explained in Section 4.4.

Finally, we will present our algorithm, Single-row based RO, in Chapter
5. We show that we can adapt ideas from the MWU framework seen in Sections
3.2.4 and 3.3 and from the Dual-Subgradient method [33] to run a procedure
similar to the Dual-Subgradient, but that in each iteration finds a solution
xt by solving a way smaller version of the nominal problem, with only one
aggregated constraint that represents the m uncertain ones (as illustrated in
Equation (1-row oracle)). We are still able to provide guarantees of convergence
that are not much worse than these of [33], with the benefit that each iteration
can be much less costly in our method.

Table 4.1 summarizes these ideas.

Mutapcic’s
Cutting-Set [38]

Dual-Subgradient [33] OFO [39] Single-row based RO

Solution
Update

Extended nominal
problem (4-1)

Approximated nominal
problem (4-3)

First-order method
Single-row nominal

problem (1-row oracle)
Uncertainty
Update

Full pessimization (4-2) First-order method First-order method First-order method

Binary Search
on OPT needed?

No No Yes No

Table 4.1: Overview of the algorithms to be studied in Chapters 4 and 5
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4.2
Cutting-set methods with pessimizing oracles

This method was introduced by Mutapcic and Boyd [38] in 2009. To
introduce their idea, we first need to define the so-called sampled problem.
First, we consider the nominal problem, and as discussed in Section 1.2, we
can assume the objective to be certain and linear without loss of generality.
Therefore, to simplify notation, we will describe the nominal problem consi-
dering this to be the case. The nominal problem is then written as follows:

minimize
x

cTx

subject to fi(x, ūi) ≤ 0, i = 1, . . . ,m

where ūi is the nominal value of the parameter ui.
We are interested in the case in which each ui is uncertain and belongs

to the set U , with ūi ∈ Ui. Thus, the robust version of the problem is the
following:

minimize
x

cTx

subject to max
ui∈Ui

fi(x, ui) ≤ 0, i = 1, . . . ,m

Now, consider a case in which there are subsets Ûi ⊆ Ui, defined as:

Ûi = {u1
i , u

2
i , . . . , u

Ki
i }

which means that, instead of the whole set U , only Ki scenarios are being
considered for constraint i. Assume that u1

i = ūi, so that each subset is
guaranteed to contain the nominal value ūi.

Then, the so-called sampled robust problem, which is an extension of the
nominal problem, is defined as:

minimize
x

cTx

subject to fi(x, ui,j) ≤ 0, i = 1, . . . ,m, j = 1, . . . , Ki

(4-1)

which is a convex optimization problem with K = K1 + · · · + Km

constraints.
Mutapcic and Boyd [38] show that, under mild technical conditions (e.g.,

Slater’s condition), by solving the sampled problem we automatically have
both a lower and an upper bound on the optimal value for the robust problem.
Intuitively, the gap decreases with the quality of the sampled solution, which
means that adding more scenarios (constraints) to the sampled problem leads
to increasingly better bounds on the robust optimal value.
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With these concepts, their algorithm can now be introduced. It consists
of solving a sequence of sampled problems while increasing the number of
scenarios. New scenarios are found by a pessimizing oracle, an oracle that finds
the worst possible scenario of a constraint for a given point x. More formally,
for a given constraint i and for a fixed x, a pessimizing oracle solves:

maximize
u

fi(x, u)

subject to u ∈ Ui
(4-2)

Mutapcic and Boyd [38] note that this pessimization can be exact or
approximate. In the approximate version, the resulting u would still be in the
set Ui, but not guaranteed to maximize fi(x, u). We highlight that, unless it is
prohibitively costly, solving (4-2) exactly in each iteration can be convenient,
because this creates a natural stopping criteria for the algorithm: whenever a
solution xt is found such that even a maximization on the uncertain parameters
for each constraint is not able to find violations larger than the tolerance ε by
the solution xt, then xt is robust ε−feasible by definition.

From now on, we will call u∗i the solution of problem (4-2).

Algorithm 6 Basic cutting-set method
Tolerance ε
Initial sampled sets Ûi = {ūi}, i = 1, . . . ,m
while maxi maxui∈Ui

fi(xt, ui) > ε do
Solve sampled problem (4-1) with current sampled sets
Let xt be the returned solution
for i = 1, . . . ,m do

Solve pessimizing oracle (4-2) with fixed xt to evaluate u∗i - exactly
or approximately

if fi(xt, u∗i ) > 0 then Add u∗i to the sampled set Ûi
end if

end for
end while
Return xt

This method has been shown to perform very well in practice in many
cases.

However, one drawback of the algorithm is the lack of good guarantees
for such performances. The authors show, using ideas from Kelley et al.
[54], an upper bound on the total number of constraints to be added that
is exponential in n. Therefore, the sampled problem being solved in each
iteration (4-1) can theoretically grow to be too large. This also illustrates why,
as discussed by Mutapcic and Boyd in the Introduction of [38], this method is
especially interesting when the nominal problem and the sampled problem can
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be efficiently solved. When this is not the case, each iteration could become
too costly, especially if too many constraints have been added.

The need to run the pessimizing oracle (4-2) for every constraint in each
iteration can also theoretically be too costly if such procedure cannot be done
efficiently.

These facts motivated the search for other algorithms that could ideally
have better guarantees without losing good performance on “easy” data.

4.3
Dual-Subgradient method

In the aforementioned context of trying to create iterative methods to
approximately solve robust optimization problems with better guarantees,
Ben-Tal et al. [33] published in 2014 an important work that improved some
aspects of previous algorithms. In the paper, they deal with two cases: the first
is when the constraints are concave functions of the noise u, and the uncertainty
sets Ui are required to be convex, and the second case drops the requirement
for the uncertainty set to be convex, but instead needs the constraints to be
linear functions in u. We will focus on the former, with convex uncertainty
sets, since it is more in line with the other algorithms presented here.

The idea of the method stems from the following question: “is it possible
to approximately solve a robust optimization problem using only an algorithm
for the original, nominal formulation?”. Again, the goal is to avoid the need
of converting the problem into its robust counterpart, which in general can be
much harder.

As usual, we will consider the objective to be certain and linear without
loss of generality, to simplify notation. Ben-Tal et al.’s approach relies prima-
rily on a nominal feasibility oracle, which approximately solves the nominal
feasibility problem for a fixed noises ui ∈ Ui, returning an ε−feasible solution
x or declares the robust problem to be infeasible.

Formally, it receives fixed noises u1 ∈ U1, u2 ∈ U2, . . . , um ∈ Um for each
constraint, and a tolerance ε, and solves the following feasibility problem:

∃?x ∈ X

subject to fi(x, ui) ≤ ε, i = 1, . . . ,m
(4-3)

or, if it doesn’t exist, correctly concludes that the robust problem is infeasible.
We note that this oracle is, in general, no easier than solving the nominal

version of the optimization problem. Therefore, the oracle itself could be costly.
For this reason, the authors claim that the method is specially good if the
nominal problem has a structure that could be exploited (and that would
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be lost in its robust counterpart version), such as the case of network flow
problems.

The algorithm proposed uses this oracle to find, at each time step t, a
solution xt. The noises uti, on the other hand, are updated via the Online
Convex Optimization framework, more specifically using Online Gradient
Descent (in its maximization version), seen in more details in Section 3.2.3.
As we have seen, the OGD provides guarantees that depend on the diameter
D, a parameter of the uncertainty sets such that D ≥ maxu,v∈Ui

||u − v||2
for all i ∈ [m], and on G, a constant such that ||∇ufi(x, u)||2 ≤ G for all
x ∈ X , ui ∈ Ui and i ∈ [m]. These parameters are not always easy to calculate,
especially G. If it is not possible to calculate them efficiently, a doubling trick
could be used, as mentioned for ρ in Section 3.2.4. However, we will now provide
an example, as in [33], of a case in which it is possible to calculate them, for
illustration purposes.

Suppose that a linear nominal problem has only one constraint of the
form:

aTx ≤ b

Considering ellipsoidal uncertainty, its robust version can be written as:

(a+ Pu)Tx ≤ b

where P ∈ Rn×K is a scaling matrix and ||u||2 ≤ 1. Further assume a bound
on the norm of x, ||x||2 ≤ 1.

If we denote fi(x, u) = (a+ Pu)x− b, it is clear that ∇ufi(x, u) = P Tx.
Therefore:

||∇ufi(x, u)||22 = xTPP Tx ≤ ||P ||2F · ||x||2 ≤ ||P ||2F

where ||P ||2F represents the maximal magnitude of the noise.
Then, by definition, we can set G = ||P ||F . Moreover, due to the fact

that ||u||2 ≤ 1, the diameter is simply D = 2.
After this simple example of how the input parameters could be calcu-

lated, we can present their algorithm. For simplicity of notation, we assume,
as do the authors, that D and G are the same for every uncertain constraint,
i.e., Di = D and Gi = G ∀i = 1, . . . ,m, which could be easily relaxed. The
setting, called Dual-Subgradient approach, is then described as follows:
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Algorithm 7 Dual-Subgradient Robust Optimization
Tolerance ε
Parameters D, G
Set T =

⌈
G2D2

ε2

⌉
and η = D

G
√
T

Initialize {u0
1, . . . , u

0
m}

for t = 1, . . . , T do
for i = 1, . . . ,m do

Update each uti via OGD: uti = ΠU
(
ut−1
i + η∇ufi(xt−1, ut−1

i )
)

end for
Set xt as the solution of the nominal feasibility oracle with the current

noises (ut1, . . . , utm)
if Oracle declared infeasibility then

return Robust problem is infeasible
end if

end for
return x̄ = 1

T

∑T
t=1 x

t

Lemma 3 (Theorem 3 of [33]) After running T =
⌈
G2D2

ε2

⌉
of Algorithm

7, it is guaranteed to either return a 2ε−approximate solution to the robust
problem or correctly conclude that it is infeasible.

Prova. First, suppose that Algorithm 7 returns that the robust problem is
infeasible. By the definition of the problem solved in each iteration, given in
Equation (4-3), this means that for some t ∈ [T ], uti ∈ Ui, there does not exist
x ∈ X such that:

fi(x, uti) ≤ 0

which implies that the robust problem is not feasible.
Now, suppose that a solution x̄ is returned. By the definition of the oracle,

we know that for all t ∈ [T ] and i ∈ [m], the following holds:

fi(xt, uti) ≤ ε

Therefore,
∀i ∈ [m], 1

T

T∑
t=1

fi(xt, uti) ≤ ε (4-4)

From the regret guarantees of the OGD seen in Equatoin (3-5), we have:

∀i ∈ [m],max
ui∈Ui

1
T

T∑
t=1

fi(xt, ui)−
1
T

T∑
t=1

fi(xt, uti) ≤
GD√
T
≤ ε (4-5)
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Combining (4-4) and (4-5), it follows:

ε ≥ 1
T

T∑
t=1

fi(xt, uti) ≥ max
ui∈Ui

1
T

T∑
t=1

fi(xt, ui)− ε

From Jensen’s Inequality:

max
ui∈Ui

1
T

T∑
t=1

fi(xt, ui)− ε ≥ max
ui∈Ui

fi(x̄, ui)− ε

Therefore,
fi(x̄, ui) ≤ 2ε ∀ui ∈ Ui ∀i ∈ [m]

which concludes the proof. �

One main advantage of this algorithm, in comparison to Mutapcic and
Boyd’s cutting-set approach, is its worst-case guarantee on the number of
iterations: due to the known guarantees of the Online Gradient Descent
setting, Algorithm 7 will terminate after at most O(D2G2

ε2
) rounds. Even though

this quantity could potentially be large, it is typically much better than the
exponential guarantee available for Algorithm 6.

Another theoretical advantage of Algorithm 7 is the fact that it does not
rely on a pessimizing oracle, as defined in equation (4-2), for the noises. While
xt is still found by solving the nominal problem (although not its sampled,
expanded version), the noises uti are computed using the faster OGD scheme.

On a more practical observation, however, we note that we would ideally
like to evaluate the solution at every time step, or every few time steps, to check
for robust feasibility (and hence return a valid solution before completing all
T rounds). Since each of these checks consists precisely of running pessimizing
oracles on the noise of each constraint, the advantage of not relying on
such pessimization for the noise could in practice be smaller than it seems,
depending on how often the practitioner wants to check for robust feasibility.

Another important remark is the following: the algorithm as designed
in 7, relying on nominal feasibility oracles, would in fact require a binary
search on the optimal value as an outside process, multiplying the performance
guarantees by an extra O(log(1/ε)). However, Ho-Nguyen and Kilinc-Karzan
[39] observe in Remark 4.3 that by changing the feasibility oracle to an
optimization oracle, i.e. ensuring that the oracle returns an ε-optimal instead
of simply an ε-feasible solution, the average solution x̄ is guaranteed to be
robust ε-optimal and therefore no binary search is needed.

4.4
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Online First-Order Framework

Ho-Nguyen and Kilinc-Karzan [39] explored the previous works discussed
in Sections 4.2 and 4.3 with the following observations: even though Ben-Tal
et al. [33] theoretically improved the noise update by substituting the need
for a worst-case pessimization oracle on each constraint by an online learning
procedure, both the Dual-Subgradient [38] and Cutting-set [33] methods still
rely on solution oracles that could be too costly. Ho-Nguyen and Kilinc-
Karzan note that while the nominal problem is typically much easier than
its robust counterpart, depending on repeated calls can be prohibitive in the
high-dimensional setting.

Ho-Nguyen and Kilinc-Karzan propose, as do Abernethy et al. [55], to
view approaches such as the Dual-Subgradient method in a unified framework,
which can be described in terms of Game Theory. The two iterative processes
running simultaneously to generate and update solutions and noises can be seen
as a dynamic game in which, in each round, Player 1 chooses a solution xt to
the current scenario ut and Player 2 chooses a realization of the scenario ut+1.
They discuss that in the Dual-Subgradient [33], Player 1 considers the current
noise, while Player 2 update the noise by minimizing the regret associated with
past solutions.

The first goal in [39] is, therefore, to describe a general framework that
includes [33] as a special case. We will now present this meta-template, but
simplifying its notation.

First, we define:

εu({xt, ut}Tt=1) = max
i∈[m]

sup
ui∈Ui

1
T

T∑
t=1

f i(xt, ui)−max
i∈[m]

1
T

T∑
t=1

f i(xt, uit) ≤ max
i∈[m]
Ri(T )

(4-6)

εx({xt, ut}Tt=1) = 1
T

T∑
t=1

max
i∈[m]

f i(xt, uit)− inf
x∈X

1
T

T∑
t=1

f i(x, uit) ≤ Rx(T ) (4-7)

Ho-Nguyen and Kilinc-Karzan [39] prove that we only need to bound the
sum of the two terms, εu({xt, ut}Tt=1) + εx({xt, ut}Tt=1) ≤ ε in order to obtain
an ε−feasible solution for the robust problem.

With this result, their framework is now introduced in Algorithm 8.
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Algorithm 8 Ho-Nguyen and Kilinc-Karzan’s framework for Iterative Robust
Optimization
Tolerance ε
Update algorithms Ai ∀ i ∈ [m] and Ax
Set T large enough so that maxi∈[m]Ri(T ) +Rx(T ) ≤ ε

Initialize ui1 = Ai({}) ∀ i ∈ [m] and x1 = Ax({})
for t = 2, . . . , T do

for i = 1, . . . ,m do
Compute u=

i Ai({xs, us}t−1
s=1 ∈ U i, where Ai can be an OCO proce-

dure.
end for
Compute xt = Ax({xs, us}t−1

s=1) ∈ X , where Ax can be an OCO
procedure.

Obtain upper bounds ε̂u ≥ εu({xs, us}ts=1) and ε̂x ≥ εx({xs, us}ts=1), as
explained in more details in [39], Section 4.

Compute κtu = ε̂u/ε and ε̂x/ε
if κtu + κtx ≤ 1 then

Set υt = maxi∈[m]
1
t

∑t
s=1 f

i(xs, usi )
Set τ t = 1− κtx
if υt > (1− τ t)ε then

return Robust problem is infeasible
end if
if υt ≤ (1− τ t)ε then

return x̄t = 1
T

∑t
s=1 xs, robust ε-feasible solution.

end if
end if

end for

Ho-Nguyen and Kilinc-Karzan show that with the above meta-template,
Ben-Tal et al.’s algorithm [33] can be directly seen as its special case, by defining
the algorithms Ai as some variation of the Online Gradient Descent and Ax
as an algorithm that finds xt with a nominal feasibility oracle.

On the other hand, Mutapcic et al.’s method [38] can’t be expressed in
terms of the framework described in Algorithm 8, due to its cutting-set nature
of adding constraints only when violations occur.

Finally, they propose their final algorithm, called Online First-Order
method (OFO), in which both xt and the noises uti ∀i ∈ [m] are chosen
using first-order procedures such as OGD. If the problem has more than one
constraint, the loss function for the first-order procedure to update xt is given
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by the constraint with worst error in time t, as shown in (4-7).
Since xt is updated by an OGD, a projection onto the set X must be

performed after the update, which can be a non-trivial task unless X has
a very favourable structure. This formulation also requires knowledge of the
optimal value of the robust problem, OPT , in advance. If it is not known, a
binary search must be performed. The The way to use binary search would
be as follows: we start with a guess ˆOPT and run the OFO algorithm. If it
successfully converges, our guess of OPT decreases, since we are working with
a minimization problem. If it returns infeasible, the guess ˆOPT decreases. This
is repeated until the binary search algorithm stops.

If the noises and the solutions are updated via an OGD procedure
and if the projection steps can be performed easily, this algorithm takes
O(log(1/ε) ·1/ε2), where the O(log(1/ε)) refers to the binary search procedure.

On a final note on this algorithm, we note that it might be possible
to avoid the costly projection step if we treat even the deterministic cons-
traints as “uncertain” constraints with a fixed uncertain parameters under the
OCO framework. However, in practice this could lead to a larger number of
iterations needed for convergence. Furthermore, the solution returned by this
hypothetical algorithm would not fully satisfy the deterministic constraints of
the feasibility set X (as do the OFO and the other algorithms we have studied),
but only approximately up to a tolerance ε.
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5
Robust Optimization via Single-row Nominal Oracle

In this chapter we take the idea of Ben-Tal et al. further: we present an
algorithm with provable guarantees for solving a robust problem by solving
only a 1-row version of the nominal problem in each iteration (instead of the
whole nominal problem, whose feasibility version is seen in equation (4-3)).
This is interesting when solving the full nominal problem in each iteration is
prohibitively costly, as when it has many non linear constraints.

To make this chapter more self-contained, we recall some important
notions. First, we want to approximately solve the following robust problem:

minimize
x

cTx

subject to fi(x, ui) ≤ 0, ∀ui ∈ Ui, i = 1, . . . ,m (5-1)

x ∈ X .

Let OPT be the optimal value of this problem. We assume that each fi(x, u)
is convex in x and concave in u, and that each Ui is convex. The nominal
oracle used by the Dual-Subgradient approach [33] seen in Section 4.3 to
approximately solve this problem is (in its optimization version) what is
obtained by fixing a single scenario ūi ∈ Ui for each robust constraint:

minimize
x

cTx

subject to fi(x, ūi) ≤ 0, i = 1, . . . ,m (nominal oracle)

x ∈ X .

The 1-row nominal oracle that we want to use is what is obtained by
further aggregating the constraints of the nominal oracle using non-negative
multipliers p̄1, . . . , p̄m

minimize
x

cTx

subject to
m∑
i=1

p̄ifi(x, ūi) ≤ 0 (1-row oracle)

x ∈ X .
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Observation 1 We note that the optimization problem with constraint ag-
gregation, presented in (1-row oracle), can theoretically be unbounded even if
(nominal oracle) is not. However, this drawback is easily avoidable, as it suffi-
ces to ensure that X includes a box constraint on the solutions x. Since we are
simply trying to avoid unboundedness, even a very loose box will be sufficient.

Theorem 1 Consider a feasible robust problem (5-1). Let G be a constant such
that ||∇ufi(x, u)||2 ≤ G for all x ∈ X , ui ∈ Ui and i ∈ [m]. Let D represent the
diameter of the sets U , i.e., D ≥ maxu,v∈Ui

||u − v||2 for all i ∈ [m]. Further
assume that fi(x, u) ∈ [−ρ, ρ] for all x ∈ X , u ∈ Ui and i ∈ [m]. Finally,
assume that (1-row oracle) is bounded. Then the algorithm Single-row based
Robust Optimization computes a solution x̄ with the following guarantees:

1. x̄ is ε-feasible, namely x̄ ∈ X and fi(x̄, ui) ≤ ε for all ui ∈ Ui and all
i = 1, . . . ,m

2. The value of x̄ is at most that of the optimal solution: cT x̄ ≤ OPT.

Moreover, the algorithm makes at most max
{

(2GD)2

ε2
, 8ρ2 lnm

ε2

}
calls to 1-row

oracles.

In order to get an intuition, first notice that the nominal oracle can be
solved using 1-row oracles using the algorithm MWU-Based CP, presented in
Section 3.3. Thus, the direct idea for solving the robust problem using 1-row
oracles is to run the Dual-Subgradient algorithm of Ben-Tal et al. [33], and in
each iteration, when a nominal oracle is needed, it is solved using 1-row oracles
via the MWU-Based CP in Section 3.3. The main drawback of this method
is the following: if the Dual-Subgradient algorithm [33] requires T1 iterations
and the MWU-Based algorithm for solving each nominal oracle requires T2

iterations, the total calls for 1-row oracles ends up being T1 · T2. Concretely,
replacing the value of T1 by Θ((GD)2/ε2) (as shown in Section 4.3) and of T2 by
Θ(ρ2 ln(m)/ε2) (as shown in Section 3.3), this direct approach would require
Θ((GDρ)2 ln(m)/ε4) calls to 1-row oracles. Thus, that Theorem 1 above is
saying is that we do not need to pay the product of T1 and T2 but essentially
just the largest of these quantities, up to a small constant factor.

The main idea is to run the algorithms Dual-Subgradient and MWU-
Based CP “in parallel”, rather than “in series”. More precisely, we show that
running only a single iteration of MWU-Based CP per iteration of the Dual-
Subgradient suffices for convergence. The algorithm Single-row based RO is
more formally described in Algorithm 9.
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Algorithm 9 Single-row based Robust Optimization
Tolerance ε
Parameters D, G of the OGD framework
Parameter ρ, the width of the problem
Set T = max

{
(2GD)2

ε2
, 8ρ2 lnm

ε2

}
Initialize {u0

1, . . . , u
0
m}

Initialize p1 = 1/m ∀i ∈ [m]
for t = 1, . . . , T do

Compute xt as the optimal solution to the problem:

minimize
x

cTx

subject to
m∑
i=1

pti fi(x, uti) ≤ 0

x ∈ X .

if Oracle declared infeasibility then
return Robust problem is infeasible

end if
Define gain vector gt ∈ Rm for the MWU, with coordinates gti :=

fi(xt, uti)
Feed the gain function gt to the generalized MWU seen in Corollary 1,

obtaining the updated distribution pt+1

for i = 1, . . . ,m do
Define the gain function hti : Ui → R as hti(u) := fi(xt, u)
Feed the gain function hti to the ith OGD, obtaining the updated

point ut+1
i ∈ Ui

end for
end for
return x̄ = 1

T

∑T
t=1 x

t

The idea of running Dual-Subgradient and MWU-Based CP “in parallel”
can be better visualized in Figure 5.1, a diagram that illustrates how the
algorithm works.

Figure 5.1 also serves to further clarify the difference between our
approach and the Dual-Subgradient algorithm. A diagram of the latter would
not have theMWU box, and therefore would have to solve the nominal problem
with m constraints, instead of our easier (1-row oracle).
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Figure 5.1: Illustration of the algorithm Single-row based RO
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Proof of Theorem 1. First we argue that the returned solution x̄ has value
cT x̄ ≤ OPT: this follows from the fact that since xt is the optimal solution to a
relaxation of the robust minimization problem (with same objective function),
we have cTxt ≤ OPT, and since x̄ = 1

T

∑T
t=1 x

t the result follows.

Now we argue that this solution is ε feasible. Since each function fi(x, u)
is convex in x, by Jensen’s inequality we have for all i and u

fi(x̄, u) ≤ 1
T

T∑
t=1

fi(xt, u).

Thus, to show ε feasibility of x̄ it suffices to show that the right-hand side of
the above inequality is at most ε for all i, u ∈ Ui, namely

max
i=1,...,m

max
ui∈Ui

1
T

∑
t

fi(xt, ui) ≤ ε. (5-2)

Let ∆ ⊆ Rm denote the set of all probability distributions over m coordinates.
Since for every vector v ∈ Rm we have maxi vi = maxp∈∆

∑
i pivi, the left-hand

side of (5-2) is equal to

max
p∈∆

∑
i

pi ·max
ui∈Ui

1
T

∑
t

fi(xt, ui) = max
p∈∆

max
u1,...,um

1
T

∑
t

∑
i

pi fi(xt, ui),

where in the right-hand side ui ranges over all of Ui. Thus, to show that x̄ is ε
feasible, it suffices to show that this right-hand side is at most ε:

max
p∈∆

max
u1,...,um

1
T

∑
t

∑
i

pi fi(xt, ui) ≤ ε ⇒ x̄ is ε-feasible. (5-3)

We prove the left-hand side in two steps. The first, a “dual” type bound, shows
that the iterates {pt}t, {uti}i,t computed via online learning approximate the
maximum in the left-hand side.

Lemma 4 (Dual guarantee) We have that

max
p∈∆

max
u1,...,um

1
T

∑
t

∑
i

pi fi(xt, ui) ≤
1
T

∑
t

∑
i

pti fi(xt, uti) + GD√
T

+ 2ρ
√

lnm√
T

.

Prova. Fix i ∈ {1, . . . ,m}. Since the sequence {uti}t was computed using the
OGD over gain functions hti(u) = fi(xt, u), the OGD guarantee from [41] (given
in equation (3-5)) gives

∑
t

fi(xt, ut) ≥ max
ui∈Ui

∑
i

fi(xt, ui)−GD
√
T .
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Similarly, since the sequence {pt}t was computed using MWU over the gain
vectors gt = (fi(xt, uti))i, the MWU guarantee from Corollary 1 gives

∑
t

∑
i

pti fi(xt, uti) ≥ max
p∈∆

∑
t

pi fi(xt, uti)− 2ρ
√
T lnm.

Chaining these two displayed inequalities gives

∑
t

∑
i

pti fi(xt, uti) ≥ max
p∈∆

max
u1,...,um

∑
i

pi fi(xt, ui)−GD
√
T − 2ρ

√
T lnm.

Rearranging this inequality concludes the proof. �

The second step is the “primal” guarantee: it follows directly from the
fact that xt is computed as a “feasible” solution for pt and the uti’s, namely∑
i p

t
i fi(xt, uti) ≤ 0.

Lemma 5 (Primal guarantee) We have that

1
T

∑
t

∑
i

pti fi(xt, uti) ≤ 0

Putting these two lemmas together we obtain that

max
p∈∆

max
u1,...,um

1
T

∑
t

∑
i

pi fi(xt, ui) ≤
GD√
T

+ 2ρ
√

lnm√
T

.

But the choice of T makes the right-hand side at most ε. This concludes the
proof of Theorem 1.
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6
A cutting-set method with constraint aggregation

In this chapter, we aim to modify our Single-row based RO algorithm
presented in Chapter 5 in order to seek better practical performance. Unfor-
tunately, this loses the theoretical guarantees proved in Chapter 5.

To do this, we focus on three main ideas:

1. Accumulate the aggregated constraints of the Single-row based RO
algorithm, inspired in part by the Cutting-set method of Mutapcic and
Boyd [38]

2. Change the updating scheme of the uncertain parameters, by using either
full pessimization or backtracking line search

3. Change the updating scheme of the probability distributions pt

We will now briefly discuss each of these points in more detail.

6.1
Accumulating constraints

Out of the three algorithms described in Chapter 4, Mutapcic and
Boyd’s Cutting-set method [38] seems to be the one most widely used in
practice, despite its lack of tight guarantees. Studies such as [36] and [56] show
that, even without good guarantees, the cutting-set method often outperforms
reformulation and regret minimization methods.

We argue that one of the main reasons for the Cutting-set method’s better
performance is the fact that the calculation of each solution xt essentially takes
into account all (important) previous realizations of the uncertain parameters.
On the other hand, due to the way the regret minimization methods work,
only the current realization of the noise is considered when generating a new
solution. In terms of game theory, Player 1 (i.e. the one choosing xt’s) has
much more information at his disposal in the latter case. As a result, the
Cutting-set method typically need much less iterations to converge, as also
shown in Kroer’s results [56]. For this reason, we will incorporate constraint
accumulation in this practical version of our algorithm. In each iteration, we
add two constraints: one aggregated constraint and the single worst constraint
of the iteration. This process will become more clear in Section 6.3.
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6.2
Updating the uncertainty parameters

When using OGD (in its maximization version) to update the noises
uti, as proposed in the regret minimization methods and particularly in our
Single-row based RO method seen in Chapter 5, a similar situation to the
one described several times in this work is presented: in order to ensure that
the guarantees hold, often too much conservatism is necessary. In this case,
the step size η taken to update each uti within OGD can be too small. In our
setting, for example, we have η = O(1/

√
T ) and T = O(1/ε2), which means

that for small values of tolerance ε, T could already become too big and η, too
small.

One way to speed up the convergence in practice is to select the gradient
step size η in an optimized way using a technique commonly used in offline
methods: backtracking line search (see, e.g., [57,58]). In fact, Ho-Nguyen et al
also used a similar line search technique when comparing iterative approaches
to solve robust optimization [39], even though the theoretical guarantees are
lost. The idea of the backtracking line search method is to first try to use a full
step of η = 1 on the direction of the gradient (while ensuring feasibility). If this
does not lead to a point that increases the current value of the function we are
trying to maximize, the step is reduced by half, and this is done repeatedly until
a point that increases the current value of the function is found. In practice, this
allows the algorithm to use larger steps whenever possible, instead of always
using a small value of η.

However, another reason why Mutapcic and Boyd’s cutting-set procedure
seems to outperform most others in practice is the fact that, for many common
problems in robust optimization, running a full pessimization oracle to find the
worst possible ui, instead of simply updating it using a gradient step, is not
that costly. In special cases, such as the robust version of LP with ellipsoidal
uncertainty, there is even an analytic solution that can be easily computed at
the cost of computing a norm. This fact is also discussed by Ho-Nguyen et
al in [39], chapter 6. Naturally, when the worst possible ui is not too hard to
compute, it is often worth finding it at every iteration instead of running first
order procedures that could have a potentially slow convergence.

For this reason, in our optimized algorithm, instead of using a first-
order method, we use a pessimizing oracle, as defined in (4-2), to perform an
optimization on the noises of each constraint, similarly to what is done in [38].
As also discussed in [38], in cases in which this pessimization is prohibitively
costly, it can still be done approximately or via backtracking line search. A
big advantage of using the exact pessimizing oracle is that since it computes
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worst-case noises for the current solution xt, we are essentially checking for
the robust feasibility of xt at each iteration. Whenever (4-2) is solved for every
constraint and no violations bigger than ε are observed, the algorithm can stop,
since xt is already an ε−feasible robust solution.

6.3
Updating the probability distributions of the constraints

We would like to make the update of pt more direct, hopefully resulting
in a faster convergence of the algorithm. We started with the following idea:
once a solution xt is calculated by the oracle and a noise uti is computed for
each constraint, the new probability distribution can be calculated as follows:

wti =

fi(x
t, uti), iffi(xt, uti) > 0

0, otherwise

and
pti = wti∑m

i=1w
t
i

∀i ∈ [m] (6-1)

This means that in the new probability distribution, only constraints
violated by solution xt have weight, and its weight is proportional to the
violation. After this new distribution is calculated, the following new constraint
can be added to the minimization problem solved, in each iteration, by the
oracle:

m∑
i=1

ptifi(x, uti) ≤ 0

However, we note that the setting described leads to a big problem: it
could potentially cycle and never converge. Suppose, for example, a case in
which only 3 constraints are violated by the current solution xt, and with equal
violations. The subsequent pt to be added would give them equal weights of 1/3.
Then, the new solution xt could still violate the same 3 constraints with the
same weight, forcing the algorithm to add the same constraint to the problem
indefinitely.

A less obvious but still relevant problem with this setting can be discussed
as follows: if a given constraint is itself too hard, it should probably be
dealt with individually, in order to increase the speed of convergence for the
algorithm as a whole.

We then propose the following modification: once the noises are updated
and the violations of the current solution xt are known for each constraint, we
add two constraints to our problem:

1. The constraint fvt(x, utvt
) ≤ 0, where vt ∈ [m] represents the index of the
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constraint with the worst violation in the current time step

2. An aggregation of the other constraints, ∑m
i=1 p

t
ifi(x, uti) ≤ 0, where pt

comes from weights computed as in (6-2)

wti =

fi(x
t, uti), if fi(xt, uti) > 0 and i is not vt

0, otherwise
(6-2)

In summary, our algorithm starts with one constraints and, in each round,
adds two new ones. To illustrate this setting, after s rounds the problem being
solved by the oracle will be the following:

minimize
x

cTx

subject to
m∑
i=1

p1
i fi(x, u1

i ) ≤ 0

fv2(x, u2
v2) ≤ 0

m∑
i=1

p2
i fi(x, u2

i ) ≤ 0

fv3(x, u3
v3) ≤ 0

m∑
i=1

p3
i fi(x, u3

i ) ≤ 0

. . .

fvs(x, usvs
) ≤ 0

m∑
i=1

psifi(x, usi ) ≤ 0

x ∈ X

(modified nominal problem)

6.4
Overview of the algorithm

We now summarize the procedure described so far in Algorithm 10
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Algorithm 10 Cutting-set method with constraint aggregation
Tolerance ε
Initial sampled sets Ûi = {ūi}, i = 1, . . . ,m
while maxi∈[m] fi(xt, uti) > ε do

Solve modified version of the nominal problem with aggregated cons-
traints, as exemplified in equation (modified nominal problem)

if This version is infeasible then
Return "Robust problem is infeasible"

end if
Let xt be the returned solution
for i = 1, . . . ,m do

Solve pessimizing oracle (4-2) with fixed xt to evaluate u∗i and
maxui∈Ui

f(xt, ui) - exactly or approximately
end for
Let vt be the index of the constraint with worst violation
Compute weights vector as in (6-2)
Compute probability vector as in (6-1)
Add the constraints fvt(x, utvt

) ≤ 0 and ∑m
i=1 p

t
ifi(x, uti) ≤ 0 to the

modified nominal problem being solved
end while

Return xt
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7
Computational Experiments

In this chapter we will present computational experiments to illustrate
the performances of three algorithms: the cutting-set method [38] seen in
Section 4.2, a modification of the Dual-Subgradient method seen in 4.3 using
backtracking line search to update the uncertainties (instead of using the
theoretical value of the step η, which can be way too small for the algorithm
to converge in reasonable time, as discussed in Section 6.2) and our cutting-set
method with constraint aggregation, the algorithm described in Chapter 6.

One important comment regarding the implementation of our modified
Dual-Subgradient method is the following: since the uncertainty parameters
are not found with a pessimizing oracle, but instead with a first-order method,
we are not able to know in every iteration if the current solution or the averaged
solution so far are robust feasible. Running this check in every iteration is not
a good strategy, since part of the motivation for this algorithm is to avoid the
need to run pessimizing oracles for each constraint in every iteration. Therefore,
we run pessimizing oracles on the following situations:

1. If, in a given iteration t, the solution xt does not violate any constraint
by more than the tolerance ε considering the current noises uti found by
first-order methods, we then run pessimizing oracles to check if xt is in
fact approximately robust feasible even for worst case noises

2. Every 5 iterations, we check the average of the solutions so far for robust
ε−feasibility.

We also implemented the Online First-Order procedure [39] seen in
Section 4.4. However, we do not include its results in our comparisons, since
even using backtracking line search to update the first-order procedures, we
were not able to make the algorithm converge in reasonable time. We speculate
that this happened because:

1. Unlike the computational experiments performed in [39] and [56], which
have one uncertain constraint, our tests have several constraints subject
to uncertainty. This seems to be able to cause a slow convergence when
xt is updated via an Online Learning procedure.
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2. Our experiments also have deterministic equality constraints, apart from
the uncertain inequalities. For this reason, the projection of a solution
xt into the feasible set is not trivial, since an optimization with several
equality constraints is needed in each iteration.

The tests were run on Julia, using the JuMP package and with either
Gurobi or Mosek as solvers, depending on which performed better in a
given situation. As an example, Gurobi seemed to be faster to solve LPs
(linear programs) in our case, but Mosek had better performance on QCQPs
(quadratically constrained quadratic programs).

7.1
Robust version of an LP with ellipsoidal uncertainty

Consider the following LP.

minimize
x

cTx

subject to ãTi x ≤ bi

x ≥ 0

(7-1)

For simplicity of notation, we let only the parameters ãi ∈ Rn be subject
to uncertainty. They are known to lie in given ellipsoids:

ãi ∈ {ai + Piui : ||ui||2 ≤ 1}

where Pi ∈ Rn×K is a given scaling matrix and ui ∈ RK . Note that if Pi
is a matrix of zeros, then ãi is exactly known and the problem reduces to a
deterministic LP.

Problem (7-1) can be rewritten as:

minimize
x

cTx

subject to (ai + Piui)Tx ≤ bi ∀ui : ||ui||2 ≤ 1 ∀i ∈ [m]

x ≥ 0

which is equivalent to:

minimize
x

cTx

subject to aTi x+ uTi P
T
i x ≤ bi ∀ui : ||ui||2 ≤ 1 ∀i ∈ [m]

x ≥ 0

(7-2)

If x is to be feasible for every possible realization of u with ||u||2 ≤ 1,
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then it must be feasible for the worst case. Then, using the known fact that:

sup
uTPT x:||u||2

= ||P Tx||2

we can rewrite problem (7-2), which theoretically has infinitely many cons-
traints, as:

minimize
x

cTx

subject to aTi x+ ||P T
i x||2 ≤ bi ∀i ∈ [m]

x ≥ 0

(7-3)

which an SOCP.

7.1.1
Iterative methods

We now aim to approximately solve the robust problem without having
to reformulate it as an SOCP as presented in (7-3). For the Dual-Subgradient
method we need to compute the gradient of the constraint functions with
respect to the noises. Defining fi(x, ui) = (ai + Piui)Tx− bi, we have:

∇uf(x, u) = P T
i x

Therefore, the update of the variables uti with a first-order method takes
the following form:

uti = ut−1
i + ηP Tx

max{||uti + ηP Tx||2, 1}

7.1.2
Problem instances

For our tests, we use instances from the well known NETLIB library
for Linear Programming problems [59]. Most of the instances in NETLIB
have both equality and inequality constraints. Since we only want to handle
uncertainty on the inequality constraints, the others remain deterministic. We
also re-scaled the inequalities so that each bi = 1, which does not change
the optimal point nor the optimal value of the solution, but ensures that a
tolerance of ε for each constraint is more meaningful. The problems we want
to solve can therefore be expressed as:
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minimize
x

cTx

subject to (ai + Piui)Tx ≤ bi ∀ui : ||ui||2 ≤ 1 ∀i ∈ [m]

dTl x = el ∀l ∈ [q]

x ≥ 0

We consider the dimension K of each vector ui ∈ RK to be equal to n.
Each scaling matrix Pi is created as a diagonal Rn×n matrix, and the value of
such diagonal in the j−th row corresponds to the j−th entry multiplied by
5%. This means that we let each entry of the matrix A, individually, to vary
up to 5%. As a brief example, consider the case in which one row of an LP
is given by: (

3 5 7
)T
x ≤ b (7-4)

Then, we set the matrix P corresponding to this row as
0.3 0 0
0 0.5 0
0 0 0.7


Then, the robust version of the inequality in (7-4) becomes:

(3 + 0.3u1)x1 + (5 + 0.5u2)x2 + (7 + 0.7u3)x3 ≤ b; ||u||2 ≤ 1

7.1.3
Results

We ran the three algorithms for the robust version of several problems
from NETLIB, with tolerance ε = 0.005. We highlight that many of the
instances became infeasible even with such small perturbation (we do not
include them here).

We also report the time required for the reformulation method, i.e.,
solving the SOCP described in Equation (7-3). The results can be seen in Table
7.1. The Dual-Subgradient method failed to converge on instance brandy.
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SOCP Cutting-set
Cutting-set with

constraint aggregation
Dual-Subgradient with

backtracking LS

Instance n m q Time (s) Time (s) Iter.

Inequality
constraints
in biggest

problem solved

Time (s) Iter.

Inequality
constraints
in biggest

problem solved

Time (s) Iter.

afiro 32 19 8 0.021 0.012 3 26 0.016 11 21 0.16 30
blend 83 31 43 0.11 0.04 6 62 0.2 23 44 0.57 55

beaconfd 262 33 140 0.89 0.18 2 34 0.17 2 2 3.65 30
brandy 249 54 166 1.21 0.91 9 103 3.26 46 88 - -
lotfi 308 58 95 1.85 0.59 2 74 2.24 20 38 21.18 105

scagr7 140 45 84 0.51 0.08 4 64 0.63 19 36 3.19 40
scarg25 500 171 300 13.13 5.93 7 275 43.27 101 201 23.43 35
agg2 302 456 60 13.46 6.70 8 672 66.18 184 366 83.78 145

Table 7.1: Results for the robust versions of NETLIB LP problems

The results indicate that, in this setting, the Cutting-set method by
Mutapcic and Boyd [38] shines. Since solving bigger versions of the extended
nominal problem is typically not an issue when the problem is an LP (which can
be solved very efficiently), the empirical fact that the algorithm often converges
in very few iterations becomes a big advantage. The exact reformulation
technique also works reasonably well (although slower than the cutting-set).
The Dual-Subgradient method suffers from the fact that since the uncertainty
parameters are not found by pessimization but by OGD, it often takes several
iterations for it to converge. In the particular case of the Robust LP, updating
the noises via OGD does not represent an advantage, especially because the
pessimizing oracle also has the computational cost of computing a norm.

This setting is not too favorable for our method, especially because
aggregating constraints does not represent a big computational difference
when solving LPs of these sizes. However, part of the motivation can already
be understood: the biggest LP that we have to solve is often much smaller
than that of the pure cutting-set method. In many cases, it is even smaller
than m, the number of constraints of the nominal problem. In some extreme
cases this becomes more evident: in the beaconfd instance, we start with one
aggregated constraint and only have to add a single new one in order to obtain
an ε−feasible solution for the robust problem.

For illustration purposes, Figure 7.1 shows the maximum violation in each
iteration of the scagr7 instance for the Cutting-set method and the Cutting-set
with constraint aggregation, until each of them converge (on the 4th and 19th
iterations, respectively). We note that Cutting-set method already starts with
a relatively small error, since the full nominal problem is solved. On the other
hand, our method starts with a greater violation and, over the iterations,
the error is reduced due to the constraint accumulation process. Again, we
highlight that even though it is clear why our algorithm typically takes more
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scagr7 − maximum violation in each iteration
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Cutting−set with aggregated constraints
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Figure 7.1: Evolution of the maximum violation over the iterations for the
scagr7 problem

iterations to converge, each iteration becomes less computationally costly.

7.2
Robust version of a QCQP with ellipsoidal uncertainty

We are now interested in a case of Quadratically Constraints Quadratic
Programming with ellipsoidal uncertainty. Several applications of large scale
QCQPs can be seen in [60]. The nominal version of the optimization problem
can be written as follows:

minimize
x

fT0 x

subject to ||Aix||22 ≤ bTi x+ ci, ∀i ∈ [m]

x ∈ X

(7-5)

where Ai ∈ Rn×n, bi ∈ Rn and ci ∈ R. We are interested in its robust
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version in which we consider that the matrices Ai are uncertain, given by:

minimize
x

fT0 x

subject to sup
ui∈Ui

||
(
Ai +

K∑
k=1

P i
ku

(k)
i

)
x||22 ≤ bTi x+ ci, ∀i ∈ [m]

x ∈ X

(7-6)

in which P i
1, P

i
2, . . . , P

i
K ∀i ∈ [m] are uncertainty matrices. Since we are

working with ellipsoidal uncertainty, Ui = {u ∈ RK : ||u||2 ≤ 1}.

7.2.1
Reformulation as an SDP

We will now explore what would be done in order to solve the robust pro-
blem in the most common way, with a reformulation to its robust counterpart.
This is discussed in Ben-Tal and Nemirovski’s 2002 work [26].

In [26], and later in [24], it is proven that the reformulation of the
minimization version of (7-6) (in which we only consider uncertainty in the
matrices Ai) is given by:

minimize
x

fT0 x

subject to



xT bi + ci − λi 0 0 . . . 0 [A0
ix]T

0 λi 0 0 0 [P 1
i x]T

0 0 λi 0 0 [P 2
i x]T

. . . . . . . . . . . . . . . . . .

0 0 0 0 λi [PK
i x]T

Aix P 1
i x P 2

i x . . . PK
i x I


� 0, ∀i ∈ [m]

(7-7)
with variables x ∈ X and λ ∈ Rm.

One important aspect of problem (7-7) is the size of its constraints: we
need to create m matrices, each in R(n+K+1)×(n+K+1). As we will see, this leads
to memory problems even with instances of only moderate size. Moreover, it
is known, as discussed in [33], that solvers can handle QPs two to three orders
of magnitude larger than SDPs.

As an example, we were successfully able to use the above formulation for
small values ofm and n, in order to compare the optimal solution with the ones
being found by the iterative methods. However, we were not able to solve this
formulation for most of the instances we generate in the next section, because
the solver runs out of memory. This motivates the use of iterative methods
that do not require a conversion to the robust counterpart.
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7.2.2
Iterative methods

It should be noted that it is not immediately clear that this problem
can be solved with the iterative frameworks presented in this work, since they
require the constraint functions to be both convex in x and concave in ui. In
the case of robust QCQP, the constraint functions are convex in x but not
concave in ui.

However, a reformulation can be performed in order to circumvent this
problem [39,61]. We will first introduce some definitions, following the notation
in [39].

First, define, for each i ∈ [m], the matrix P ix ∈ Rn×K , whose column
k ∈ [K] is given by P i

kx.
Then, define:

Qix = (P i
x)T (P i

x) ∈ SK+

rix = (P i
x)TAix ∈ RK

six = ||Aix||22 − bTi x− ci ∈ R

It follows directly that:

∥∥∥∥∥
(
Ai +

K∑
k=1

P i
ku

(k)
i

)
x

∥∥∥∥∥
2

2
− bTi x− ci = uTi Qixui + 2(rix)Tui + six

We then define for each i ∈ [m] the function φi(x, ui) as:

φi(x, ui) :=
∥∥∥∥∥
(
Ai +

K∑
k=1

P i
ku

(k)
i

)
x

∥∥∥∥∥
2

2
− bTi x− ci + λmax(Qix)(1− ‖ui‖

2
2)

and therefore it also holds that:

φi(x, ui) = uTi Qixui + 2(rix)Tui + six + λmax(Qix)(1− ‖ui‖
2
2) (7-8)

There are two important observations to be made about the functions
as defined in (7-8) (both are proven in, e.g., [39], Lemma 5.1). One is that
it is concave in ui, as initially desired. Even more importantly, the following
relation is shown:

sup
ui∈Ui

∥∥∥∥∥
(
Ai +

K∑
k=1

P i
ku

(k)
i

)
x

∥∥∥∥∥
2

2
− bTi x− ci = sup

ui∈Ui

φi(x, ui)

Since this reformulation enables us to maximize the constraints in terms
of the scenarios ui, we can then use the iterative methods to approximately
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solve the robust problem.
Finally, note that, with this reformulation, the gradient of φi with respect

to ui (which we need for the Dual-Subgradient method) is given by:

∇ui
φi(x, ui) = 2(Qi

x − λmax(Qi
xIK)ui + 2rix

7.2.3
Problem instances

The NETLIB library that we used for the Robust LP problems, described
in Section 7.1, has many instances of reasonable size that were well suited to
test the methods studied in this work. However, this is not the case for QPLIB
[62] library of QCQP problems: most of the instances in it are either too large
(with tens of thousands of variables and/or constraints) or not even convex.
Therefore, the QPLIB library is not ideal to study robust problems. We note
than in the QCQP literature, the problems are very often randomly generated
in such a way as to create problems that are reasonably hard to solve (such as in
[39,56,60,63,64]). The recent works that performed computational experiments
with robust QCQPs only studied problems with a single uncertain constraint,
such as the Robust SVM [39,56]. We will therefore randomly generate instances
in a similar way as described in [63] (which does not treat the robust case).
The nominal problem for which we want to generate instance is as follows:

minimize
x

fT0 x

subject to ||Aix||22 ≤ bTi x+ ci, ∀i ∈ [m]

dTl x ≥ el ∀l ∈ [q]

x ∈ [0, 1]n

(7-9)

where q = dm/10e.
This means that we aim to create m quadratic constraints and q linear

constraints. The matrices Ai are randomly sampled with every entry in the
range [−1, 1], in such a way that ensures Ai to be symmetric and the overall
problem to be is convex. As in [63], we uniformly sample each entry of each
bi, dl, f0 and also each el to be in the range [−1, 1]. Finally, while [63] samples
each ci from a uniform distribution in the range [0, 100], we reduce this range
to [0, 10] in order to avoid possibly creating constraints that are too easy.
Nonetheless, generating the instances in this way creates a favorable setting
for our algorithm, since they have inherently different levels of slackness. Some
of them will naturally be easier than others, and are therefore more likely to
be already satisfied by the aggregated constraints.

For the robust case, we then consider that the matrices Ai are uncertain,
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as illustrated in Equation (7-6). We generate each matrix P i
k as follows: for each

i and each k, P i
k is initialized a matrix of zeros. Then, we sample 20% of its

entries, and set its values to the absolute values of the corresponding entries
in Ai multiplied by 0.1. The intuition is that each P i

k represents a possible
“scenario” that affects some of the coefficients in Ai, but not all at the same
time (as that would be too pessimistic).

One practical advantage of setting the matrices P i
k in this manner is

that they can be stored as sparse matrices. If they had to be stored as dense
matrices, we could run into memory problems when attempting to solve big
instances.

Now, we can apply the iterative methods to approximately solve this
robust problem. We set the tolerance ε to 0.001, and run the problem
for values of m ∈ {50, 100, 200, 400, 600} and, similarly, also vary n ∈
{50, 100, 200, 400, 600}. We also set K, the dimension of each ui, as 15, si-
milarly to [39]. Setting K too big could result in memory problems, since we
need K n× n matrices for each of the m non-linear constraints.

For each pair of m and n we run the algorithms five times and provide
averaged solutions. In the next section we show and discuss the results.

7.2.4
Results

The results, for varying values of m and n, are shown in Tables 7.2, 7.3,
7.4, 7.5 and 7.6. We first note that the reformulation approach, that solves
the SDP presented in Equation (7-7), was only able to solve the two smallest
classes of instances: the ones with (m = 50, n = 50), in which it took on average
139.4 seconds, and the ones with (m = 100, n = 50), in which it took 283.2
seconds on average (both much higher than the times needed by the cutting-set
methods). For all the other instances, the solver ran out of memory.

The solver also ran out of memory when running the pure cutting-set
method, on three classes of instances: (m = 400, n = 600), (m = 600, n = 400)
and (m = 600, n = 600). For these, our cutting-set with constraint aggregation
method successfully found a solution without running into memory problems
precisely because it was able to converge before the problem being solved
became too big.

For each test, we set a time limit of 20 minutes, except for the ones with
m = 600 or n = 600, for which we set the limit to one hour. It is important to
note that the Dual-Subgradient method could not converge (i.e., achieve robust
violation smaller than the tolerance of 0.001) in reasonable time in most of the
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cases. The column Converged? indicates the percentage of instances in which
the Dual-Subgradient converged. This happened mainly for two reasons:

– We reduced the tolerance from ε = 0.005 in the robust LP case to
ε = 0.001 in the robust QCQP experiment, to compensate for the
fact that the instances generated are not as adversarial as some of the
NETLIB ones. Since the Dual-Subgradient method typically has to rely
on the convergence of the averaged solution x̄, intuitively the convergence
can become too slow if the tolerance is too small.

– Since the nominal problem, unlike the LP case, is itself costly, the
algorithm is not able to run as many iterations as it would need for
convergence.

As for the comparison between our cutting-set method with constraint
aggregation and the original version of [38], we note that for smaller problems,
such as in Table 7.2, our algorithm does not have an advantage, since each
iteration is not too costly for the original cutting-set method [38].

However, taking, for example, the instance (m = n = 400), the pure
cutting-set method must solve a problem with at least 400 non-linear cons-
traints up to three times, while the biggest problem our method had to solve
(on average) had 45 non-linear constraints, since it converged in 22 iterati-
ons. This is possible because some of the constraints are inherently easier than
others, and we are able to satisfy their robust version with aggregated cons-
traints, instead of including them individually in the problem.

Cutting-set
Cutting-set

with constraint
aggregation

Dual-Subgradient with backtracking LS

n Iter. Time(s) Iter. Time(s) Converged?
Iter.

(when converged)
Time(s)

(when converged)
50 2.6 1.02 5 1,02 0.4 12 3.05
100 2.4 2.79 7 3.07 0 - -
200 2.4 6.31 9.4 8.73 0.2 11 35
400 2.2 27.1 10.2 30.2 0 - -
600 2 108.4 15.2 173.2 0 - -

Table 7.2: Results for the case with m = 50
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Cutting-set
Cutting-set

with constraint
aggregation

Dual-Subgradient with backtracking LS

n Iter. Time(s) Iter. Time(s) Converged?
Iter.

(when converged)
Time(s)

(when converged)
50 3 2.35 6.8 2.75 0.4 8 3.27
100 3 5.95 8.4 5.85 0 - -
200 2.8 18.4 11.4 14.35 0 - -
400 2 58.5 16.5 76.3 0 - -
600 2 277.4 20.2 263.42 0 - -

Table 7.3: Results for the case with m = 100

Cutting-set
Cutting-set

with constraint
aggregation

Dual-Subgradient with backtracking LS

n Iter. Time(s) Iter. Time(s) Converged?
Iter.

(when converged)
Time(s)

(when converged)
50 3 3.95 8 4.89 0 - -
100 2.8 12.03 9.5 10.7 0 - -
200 3 38.4 13 27.6 0 - -
400 2.8 165.0 16.5 123.4 0 - -
600 2.2 1266.82 21.2 475.8 0 - -

Table 7.4: Results for the case with m = 200

Cutting-set
Cutting-set

with constraint
aggregation

Dual-Subgradient with backtracking LS

n Iter. Time(s) Iter. Time(s) Converged?
Iter.

(when converged)
Time(s)

(when converged)
50 2.2 5.84 7.6 8.4 0 - -
100 3 25.2 10.2 22.98 0 - -
200 2.8 77.4 14.8 67.2 0 - -
400 2.6 665.4 22.4 272.4 0 - -
600 - - 26.6 1031.2 0 - -

Table 7.5: Results for the case with m = 400
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Cutting-set
Cutting-set

with constraint
aggregation

Dual-Subgradient with backtracking LS

n Iter. Time(s) Iter. Time(s) Converged?
Iter.

(when converged)
Time(s)

(when converged)
50 2 26.4 10.2 25.7 0 - -
100 2.4 46.4 14.6 50.6 0 - -
200 3 183.8 16.0 102.6 0 - -
400 - - 25.2 508.6 0 - -
600 - - 29.2 1673.1 0 - -

Table 7.6: Results for the case with m = 600
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8
Conclusions

We started this work with a motivation to consider uncertainty in
optimization problems. A classic study performed by Ben-Tal and Nemirovski
[1] shows that even slight perturbations of about 0.1% on the data served
as input for NETLIB optimization problems can turn solutions that were
previously optimal into highly infeasible points. We then focused on how the
Robust Optimization framework allows the practitioner to provide uncertainty
sets in which the parameters can vary, and then performs an optimization of
the so-called robust counterpart of the nominal problem, that finds a solution
feasible for all possible realizations of such sets.

While the approach that reformulates the problem into its robust counter-
part has been successfully applied in diverse fields, it can suffer from a serious
drawback: it, in general, belongs to a different class of optimization problems
than that of the nominal problem, and its tractability heavily depends on the
shape of the uncertainty sets used. We have seen that the robust counterpart
of a QCQP with a single ellipsoidal uncertainty, for example, becomes an SDP.
This drawback became very clear in Section 7.2, in which we have shown that
the reformulation into an SDP failed to find a solution for the robust QCQP
problem in all but the smallest instances we generated, because the problem
becomes too big and the solver runs out of memory.

This fact motivated the idea of approximately solving robust problems
with iterative methods, as seen in works such as [33,38,39]. Their goal is to find
solutions that are approximately robust feasible without the need to solve the
robust counterpart. While Mutapcic and Boyd’s [38] cutting-set method only
has guarantees that are exponential in n, Ben-Tal et al.’s Dual-Subgradient
method [33] and Ho-Nguyen and Kilinc-Karzan’s Online First Order method
[39] were able to use concepts from the Online Convex Optimization framework
to achieve tighter guarantees on the required number of rounds.

After providing an overview of the Online Convex Optimization fra-
mework on Chapter 3 (and, more specifically, the OGD on Section 3.2.3 and
the MWU on Sections 3.2.4 and 3.3), we developed the MWU-Based Robust
Optimization algorithm on Chapter 5. This alternative algorithm takes Ben-
Tal et al.’s idea [33] further, as we mix concepts from the Dual-Subgradient
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method and the MWU-Based CP (Section 3.3) to prove that instead of solving
in each iteration the whole nominal problem, we can solve a simplified version
that aggregates all the uncertain constraints into one, and we do not require
much more iterations for convergence. In fact, our algorithm needs essentially
the maximum required number of iterations between the Dual-Subgradient
method and the MWU application on Convex Programming, up to a small
constant factor. This alternative can be useful when the nominal problem has
many constraints and solving it in each iteration can be too costly.

Then, based on the empirical observation that Mutapcic and Boyd’s
cutting-set method seems to generally outperform the other two approaches we
studied, despite having worse guarantees, on Chapter 6 we developed a different
version of our algorithm that is more suited for practical cases. Unfortunately,
it loses the theoretical guarantees proved in Chapter 5, but is able to achieve
interesting computational results when the nominal problem is itself too costly
and when some of the constraints are more slack than others.

We performed two computational experiments: one is approximately
solving the robust version of linear programming problems from the NETLIB
library. In it, we show that while Mutapcic and Boyd’s cutting-set algorithm
shines (because the nominal problem can be solved very efficiently, even
with relatively many constraints), we can already see the motivation for our
optimized algorithm: the biggest version of the nominal problem we have to
solve, in terms of number of constraints, is typically much smaller than that
of other methods. Our second experiment is better suited to illustrate this
advantage. Since we work with the robust version of a QCQP with many
constraints which have naturally different levels of slackness, the nominal
problem is itself not easy to solve, and the main advantage of our method
can be observed in the results, since the algorithm can be able to converge
without the need to solve modified versions of the nominal problem that are
too big.

There are several possible paths for future works. One is to apply the
algorithms introduced in this work to different problems, ideally ones that
display favourable characteristics for our practical algorithm: when the nominal
problem is not easy to solve, and the constraints have different levels of
slackness. Some ideas are:

– Robust SDP problems. Solving this class of problems with iterative al-
gorithms has been discussed in [33]. This setting could be interesting the
our Cutting-set with constraint aggregation method, precisely because
the an SDP with too many constraints can be too costly.
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– In [23], Bertsimas et al. show how to apply concepts from Statistics in
order to use available data to design uncertainty sets for robust problems.
As they discuss, for some of the sets their formulation involves complex
nonlinear constraints, such as exponential cone constraints. Since a direct
optimization can be challenging in these situations, iterative methods
such as [38] are recommended by the authors. Our algorithm could be a
good option in this situation, as it often requires solving smaller problems
than other iterative algorithms.

– Works such as [65] and [66] employ ideas from Mutapcic and Boyd’s
Cutting-set method [38] on high-dimensional machine learning problems.
A method with constraint-aggregation as we suggested could help the
computational performance in these high-dimensional settings.

– Specific robust QCQP problems. While our method was successful on the
QCQP instances we tested, it can be interesting to apply it to known
QCQP problems in the literature. Some of these are briefly discussed
in [60], and include learning the kernel matrix in discriminant analysis
[67], finance [68], signal processing [69] and the alignment of kernels in
semi-supervised learning [70]

Another idea is to use frameworks such as the (AB)-Prod presented by
Sani et al. [71] to improve the practical performance of the theoretical algo-
rithm while maintaining guarantees. Other possible research questions have
been suggested. Ben-Tal et al. [33] discuss that one interesting contribution
would be to remove the need for convexity in algorithms such as the Dual-
Subgradient [33] and the OFO [39]. Currently, they need the convexity as-
sumption in order to ensure that the average x̄ of the solutions xt is in the
domain X , but if this requirement could be removed in some case, it could
open the possibility to solve robust combinatorial problems as well. Finally,
both [33] and [39] argue that these iterative approaches could also be adapted
to solve multi-stage robust decision problems such as Markov decision process
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