Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THE INFLUENCE OF MOLYBDENUM ON THE PROPERTIES OF THE WELD METAL IN WET WELDING WITH OXI-RUTILIC ELECTRODES
Autor: LUCIANA FERREIRA SILVA
Colaborador(es): FERNANDO COSME RIZZO ASSUNCAO - Orientador
SIDNEI PACIORNIK - Coorientador
VALTER ROCHA DOS SANTOS - Coorientador
Catalogação: 23/MAI/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=38237&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=38237&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.38237
Resumo:
The technique of underwater wet welding with coated electrodes shows an increasing potential of application in submarine repair of structural members of floating oil production units, since, in these cases, welding is performed in shallow waters (depths less than 20m). However, it presents problems such as the risk of cold cracking and the intense pores formation . The goal of the present work is to improve the properties of the weld metal with an experimental nickel alloyed oxi-rutilic electrode. The influence of Mo additions in the electrode coating on the microstructure and mechanical properties was studied. Five electrode compositions were tested, with Mo content ranging between 0 and 0.4wt percent. The welds were performed in an underwater simulator at an equivalent depth of 10m, employing a gravity welding system. Five V groove joints were welded, from which samples were obtained for chemical, macro and micrographic analyses, as well as for tensile, Charpy V, and hardness tests. The micrographic analysis showed that the increase in Mo content significantly reduced the average grain size of the fine grain reheated region, increasing the strength limit without losses in toughness and ductility. The low content of C, Mn and Si, jointly with the low diffusible hydrogen values, efficiently counteracted the formation of hydrogen cracks in the weld metal. The obtained results provided relevant data to select the optimal Mo content to be employed, and open the possibility of overcoming several requirements of the AWS D3.6M:1999 standard to obtain Class A qualification of the welding procedures.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
REFERENCES AND ANNEX PDF