Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: FIBRATIONS AND POISSON STRUCTURES WITH A FINITE NUMBER OF LEAVES
Autor: LILIAN CORDEIRO BRAMBILA
Colaborador(es): DAVID FRANCISCO MARTINEZ TORRES - Orientador
Catalogação: 04/FEV/2019 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36420&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36420&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.36420
Resumo:
In this thesis we introduce the notion of fibered Poisson structure on a locally trivial fiber bundle. This is a Poisson structure on the total space of the fibration with natural compatibility conditions with respect to the given Poisson base and fiber. Our main result is a recipe to produce fibered Poisson structures out of appropriate (pairs of) Poisson actions of Lie groups. We apply this result to produce fibered Poisson structures with fiber and base either a toric variety or a coadjoint orbit, thus enlarging the class of compact Poisson manifolds with a finite number of symplectic leaves.
Descrição: Arquivo:   
COMPLETE PDF