Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: METHODS OF THE REGULARITY THEORY IN THE STUDY OF PARTIAL DIFFERENTIAL EQUATIONS WITH NATURAL GROWTH IN THE GRADIENT
Autor: GABRIELLE SALLER NORNBERG
Colaborador(es): BOYAN SLAVCHEV SIRAKOV - Orientador
Catalogação: 08/JAN/2019 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS Prêmio CAPES 2019 - CAPES
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36015&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36015&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.36015
Resumo:
In this Ph.D. thesis we study a class of uniformly elliptic partial differential equations of second order in fully nonlinear nondivergence form with superlinear growth in the gradient and measurable coefficients. For equations with quadratic growth, we prove that multiplicity of solutions occurs when the operator is not coercive. We investigate the qualitative behavior of the continuums of solutions obtained for a parameterized family of problems. For this, we extend the Caffarelli-Swiech-Winter C1, alpha, regularity estimates to equations with at most quadratic gradient growth, showing that the solutions are continuously differentiable up to the boundary. Furthermore, we show a priori estimates in the uniform norm using purely nonlinear techniques in the nondivergence form, such as Harnack type inequalities and a Vázquez’s strong maximum principle for equations of our type.
Descrição: Arquivo:   
COMPLETE PDF