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Abstract

Nornberg, Gabrielle Saller; Sirakov, Boyan (Advisor). Methods of
the Regularity Theory in the Study of Partial Differential
Equations with Natural Growth in the Gradient. Rio
de Janeiro, 2018. 136p. Tese de doutorado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

In this Ph.D. thesis we study a class of uniformly elliptic partial
differential equations of second order in fully nonlinear nondivergence form
with superlinear growth in the gradient and measurable coefficients. For
equations with quadratic growth, we prove that multiplicity of solutions
occurs when the operator is not coercive. We investigate the qualitative
behavior of the continuums of solutions obtained for a parameterized family
of problems. For this, we extend the Caffarelli-Święch-Winter C1,α regularity
estimates to equations with at most quadratic gradient growth, showing
that the solutions are continuously differentiable up to the boundary.
Furthermore, we show a priori estimates in the uniform norm using purely
nonlinear techniques in the nondivergence form, such as Harnack type
inequalities and a Vázquez’s strong maximum principle for equations of
our type.

Keywords
Regularity; Multiplicity of solutions; Existence; A priori estimates;

Viscosity.
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Resumo

Nornberg, Gabrielle Saller; Sirakov, Boyan. Métodos da Teoria
de Regularidade no Estudo de Equações Diferenciais
Parciais com Crescimento Natural no Gradiente. Rio de
Janeiro, 2018. 136p. Tese de Doutorado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

Nesta tese de Doutorado estudamos uma classe de equações diferenciais
parciais de segunda ordem, uniformemente elípticas, completamente
não-lineares na forma não-divergência, com crescimento superlinear no
gradiente e coeficientes mensuráveis. Para equações com crescimento
quadrático, provamos que ocorre multiplicidade de soluções quando o
operador não é coercivo e investigamos o comportamento qualitativo
dos contínuos de soluções obtidos para uma família parametrizada de
problemas. Para isso, estendemos a regularidade e as estimativas C1,α

de Caffarelli-Święch-Winter para equações com crescimento, no máximo
quadrático, no gradiente, mostrando que as soluções são continuamente
diferenciáveis até o bordo. Além disso, mostramos estimativas a priori
na norma uniforme via técnicas puramente não-lineares na forma
não-divergência, entre elas desigualdades do tipo Harnack e o princípio do
máximo forte de Vázquez para equações de nosso tipo.

Palavras-chave
Regularidade; Multiplicidade de soluções; Existência; Estimativas

a priori; Viscosidade.
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1
Introduction

This thesis is devoted to the study of regularity, existence and multiplicity
of viscosity solutions for a class of fully nonlinear uniformly elliptic equations
with quadratic growth in the gradient.

The notion of viscosity solution began to be developed within the
differential equations universe in the 1980s, with the works of Crandall and
Lions [1], [2]. Since then it has been an enormous influence on the study of
fully nonlinear elliptic and parabolic PDEs. This is so because its definition –
weaker, where only continuity of solutions is required – is purely based upon
the maximum principle, which is advantageous when we have an equation in
nondivergence form. The first notion of viscosity solution, namely C-viscosity
[3], had to be improved to cover the case when the coefficients or/and the right
hand side of the equation are no longer continuous but merely measurable,
which lead to the introduction of the Lp-viscosity notion [4]. In general, without
the continuity hypothesis on the nonlinearity, the uniqueness is lost even for
the standard Dirichlet problem for linear equations with bounded coefficients
[5]. Therefore, we can expect multiplicity of solutions.

On the other hand, the study of quasilinear elliptic equations with
quadratic dependence in the gradient also had its beginning in the ’80s,
essentially with the works of Boccardo, Murat and Puel [6], [7] and became
a relevant research topic which still develops. This type of nonlinearity
often appears in risk-sensitive stochastic and large deviation problems, hence
their practical importance. Moreover, the set of equations under the form
Lu = g(x, u,Du), where L is a second order general operator and g has
quadratic growth in the gradient, is invariant with respect to smooth changes
of the function u and variable x, what makes this class also theoretically
important. This fact was first observed by Kazdan and Kramer in [8] and
it is responsible for this class to be usually referred as having natural growth
in the gradient.
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Chapter 1. Introduction 11

To acquaint ourselves with the notation, we consider the following
model equation which features a second order uniformly elliptic operator with
quadratic growth in the gradient

Lu+ c(x)u+ 〈M(x)Du,Du〉 = h(x) (ME)

in a bounded C1,1 domain Ω in Rn with a Dirichlet boundary condition u = 0
on ∂Ω. Here, c, h ∈ Lp(Ω), p > n ≥ 1, c 6≡ 0 and the matrix M satisfies the
nondegeneracy condition 0 < µ1I ≤ M ≤ µ2I; with solutions of this Dirichlet
problem understood as being continuous up to the boundary, so bounded.
In [6], [7] the authors carried out a rather complete study of solvability of
strictly coercive equations in divergence form, that is, when L is the divergence
of an expression of x, u, and Du. Strictly coercive for (ME) means that
c(x) ≤ c0 < 0, and then uniqueness of solutions is to be expected, see [9],
[10]. For weakly coercive equations (when c ≤ 0), existence and uniqueness
can be proved only under a smallness assumption on c and M , as was first
observed by Ferone and Murat [11]. All these pioneering works use the weak
integral formulation of PDEs in divergence form.

In [12] Sirakov showed that the same type of existence and uniqueness
results extends to general fully nonlinear coercive (i.e. proper) equations in
nondivergence form, with superlinear growth in the gradient and unbounded
coefficients, by using techniques based on the maximum principle. Moreover,
Cα regularity results were developed there for fully nonlinear uniformly elliptic
equations with at most quadratic growth in the gradient, in the most general
setting of measurable coefficients for Lp-viscosity solutions.

In that paper it was also observed, for the first time and with a simple
example with the Laplacian (specifically for L = ∆, c = 1, M = I, h = 0),
that the solution set may be very different in the nonproper case c > 0, and
in particular more than one solution may appear. This example leveraged the
study of such equations over a new research strand, whose main objective is the
qualitative analysis of the set of solutions. Subsequent results were established
in [13], [14], [15], [16], [17], [18], still using energy methods.

This Ph.D. thesis can be seen as a natural continuation of the regularity,
existence and multiplicity results initiated in [12]. In particular, our work
attempts to contribute to the theory of nondivergence fully nonlinear equations
with superlinear gradient growth and unbounded coefficients, in the setting
of Lp-viscosity solutions. This thesis covers and develops the results of the
following research articles
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Chapter 1. Introduction 12

[19] Nornberg, G.; Sirakov, B. A priori bounds and multiplicity for fully
nonlinear equations with quadratic growth in the gradient. arXiv:1802.01661;

[20] Nornberg, G. S. C1,α regularity for fully nonlinear elliptic equations
with superlinear growth in the gradient. arXiv:1802.01643.

We stress that nondivergence (fully nonlinear) equations with natural
growth are particularly relevant for applications, since problems with such
dependence in the gradient are abundant in control and game theory [21], and
more recently in mean-field problems [22], where Hamilton-Jacobi-Bellman and
Isaacs operators appear as infinitesimal generators of the underlying stochastic
processes.

The greatest challenge in these studies is to obtain regularity and a priori
estimates for the solutions. We establish complete results of this nature for fully
nonlinear uniformly elliptic equations in nondivergence form. In chapter 3 we
compile the general C1,α regularity and estimates for fully nonlinear equations
with superlinear growth in the gradient and unbounded coefficients.

Our results are valid when L in (ME) is a general Hamilton-Jacobi-
Bellman operator. However, to accommodate the reader and to elucidate the
main ideas, let us give the statement of some of our results for Lp-viscosity
solutions of (ME), in the very particular case when L is a second order
uniformly elliptic linear operator in nondivergence form; namely

Lu = tr (A(x)D2u) + b(x) ·Du , (1.1)

where A is a matrix function which is continuous up to the boundary and
whose eigenvalues belong to some finite and closed interval in (0,+∞) and b is
some bounded vector function. Consider Ω, c, h andM under the assumptions
above (actually, for the regularity results, M can be any bounded matrix).

Theorem 1.1 (C1,α Regularity ) Let u be an Lp-viscosity solution of (ME),
with u ∈ C(Ω) and ‖u‖L∞(Ω) + ‖h‖Lp(Ω) ≤ C0. Then there exists α ∈ (0, 1)
such that u ∈ C1,α(Ω) and satisfies the estimate

‖u‖C1,α(Ω) ≤ C {‖u‖L∞(Ω) + ‖h‖Lp(Ω)},

where C and α depend only on the Lp-norm of the coefficients of the equation,
on the ellipticity constants of L and on C0.

As an application, W 2,p regularity results and a generalized Nagumo’s
lemma are established at the end of chapter 3. In particular, for the linear
operator L, this regularity implies that (bounded) solutions of (ME) are strong,
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Chapter 1. Introduction 13

in the sense that they belong to the Sobolev space W 2,p(Ω) and satisfy the
equation at almost every point.

In chapter 4 we present miscellaneous results on first eigenvalues of
nonlinear operators, in the sense of weighted eigenvalues with unbounded
coefficients – they play an important role in the proof of the multiplicity and
nonexistence results.

We consider the following parameterized version of (ME)
 −Lu = λc(x)u+ 〈M(x)Du,Du〉+ h(x) in Ω

u = 0 on ∂Ω
(Pλ)

indexed by λ ∈ R, with coefficients c, h ∈ L∞(Ω) and c 	 0. For a priori
estimates and multiplicity results related to (Pλ), we also need to assume that
the problem (P0) has a solution u0.

In section 5.2 we prove that solutions of (Pλ) are bounded in the uniform
norm by a new method, as suggested in [12]. Upper bounds are based on some
standard estimates from regularity theory, such as half-Harnack inequalities,
and their recent boundary extensions in [23]. On the other hand, lower bounds
are shown to be equivalent, somewhat surprisingly, to a Vázquez type strong
maximum principle for our equations, which we also establish. Our methods
are (necessarily) very different from those in the preceding works, since for us,
even in the linear scenario, no integral formulation of the equation is available.

Theorem 1.2 (A priori uniform bounds ) Let Λ1, Λ2 with 0 < Λ1 < Λ2. Then
every Lp-viscosity solution u of (Pλ) satisfies

‖u−‖L∞(Ω) ≤ C , for all λ ∈ [0,Λ2], ‖u+‖L∞(Ω) ≤ C , for all λ ∈ [Λ1,Λ2],

where C depends on n, p, µ1, µ2, Ω, Λ1, Λ2, ‖b‖L∞(Ω), ‖c‖L∞(Ω), ‖h‖L∞(Ω),
‖u0‖L∞(Ω), the ellipticity constants of L, the C1,1 character of the boundary,
and the set where c > 0.

As a consequence, we obtain the following multiplicity result.

Theorem 1.3 (Multiplicity of solutions ) For λ ≤ 0, the problem (Pλ) has a
unique Lp-viscosity solution uλ. Moreover, the set

Σ = { (λ, u) ∈ R× C1(Ω) ; (λ, u) solves (Pλ) }

possesses an unbounded component C+ ⊂ [0,+∞]×C1(Ω) such that C+∩({0}×
C1(Ω)) = {u0} and satisfies
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(i) either it bifurcates from infinity to the right of the axis λ = 0 with the
corresponding solutions having a positive part blowing up to infinity in
C(Ω) as λ→ 0+;

(ii) or its projection on the λ axis is [0,+∞).

Moreover, there exists λ̄ ∈ (0,+∞] such that, for every λ ∈ (0, λ̄), the problem
(Pλ) has at least two Lp-viscosity solutions, uλ,1 and uλ,2 , satisfying

uλ,1 −−−→
λ→0+

u0 in C1(Ω) , max
Ω

uλ,2 −−−→
λ→0+

+∞ ,

and, if λ̄ < +∞, the problem (Pλ̄) has a unique Lp-viscosity solution.

See section 5.1 for the main a priori and multiplicity theorems in the
general form; section 5.2 and chapter 6 are devoted to their proofs. In the
latter we construct and study an auxiliary fixed point problem in order to
obtain the existence and nonexistence results via degree theory.

At the beginning of each chapter, a historical overview and references
concerning the problem is provided, as well as the hypotheses and the precise
statements.
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2
Preliminaries

In this chapter we recall some notation, definitions and known results (at
least for specialists) that will be used throughout the thesis.

Let Ω be a bounded domain in Rn and F (x, r, p,X) : Ω×R×Rn×Sn → R
a measurable function. We consider the general structure condition

M−
λ,Λ(X − Y )− b(x)|p− q| − µ|p− q|(|p|+ |q|)− d(x)ω(|r − s|)

≤ F (x, r, p,X)− F (x, s, q, Y ) (SC)µ

≤M+
λ,Λ(X − Y ) + b(x)|p− q|+ µ|p− q|(|p|+ |q|) + d(x)ω(|r − s|)

for a.e. x ∈ Ω, where the operator F satisfies F (·, 0, 0, 0) ≡ 0 with positive
ellipticity coefficients λ ≤ Λ, µ is a nonnegative constant, b ∈ Lq(Ω), d ∈ Lp(Ω),
b, d ≥ 0, for exponents p and q satisfying

q ≥ p ≥ n , q > n (2.1)

and ω is a modulus of continuity. As in [24], [25], hypothesis (2.1) is equivalent
to the following two cases: (i) p = q > n or (ii) q > p = n, that we are going
to consider along the text. We use the same notation on exponents and on
vectors in (SC)µ, as usual in the theory.

Notice that the assumption over the highest order term X, for p = q and
r = s, implies that F is a uniformly elliptic operator; F is uniformly continuous
in (r, p,X). In (SC)µ,

M+
λ,Λ(X) := sup

λI≤A≤ΛI
tr(AX) and M−

λ,Λ(X) := inf
λI≤A≤ΛI

tr(AX)

are the Pucci’s extremal operators, which satisfy the following properties.

Lemma 2.1 (Lemma 2.1 in [12] ) Let X, Y ∈ Sn. Then,

(i) M−
λ,Λ(X) = −M+

λ,Λ(−X);

(ii) M−
λ,Λ(X) = λ

∑
{νi>0} νi + Λ∑{νi<0} νi , M+

λ,Λ(X) = Λ∑{νi>0} νi +
λ
∑
{νi<0} νi , where {νi}1≤i≤n = spec(X);

(iii) M−
λ,Λ(X) +M−

λ,Λ(Y ) ≤M−
λ,Λ(X + Y ) ≤M−

λ,Λ(X) +M+
λ,Λ(X);

DBD
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(iv) M−
λ,Λ(X) +M+

λ,Λ(Y ) ≤M+
λ,Λ(X + Y ) ≤M+

λ,Λ(X) +M+
λ,Λ(X);

(v) M−
λa,ΛA(X) ≤ M−

λ,Λ(φX) ≤ M−
λA,Λa(X), for φ(x) ∈ C(Ω) such that

0 < a ≤ φ(x) ≤ A.

For a proof see [26, p. 15], [27, p. 4] and lemma 4.2 in [28].
By modulus we mean a function ω : [0,+∞] → [0,+∞] continuous at 0

with ω(0) = 0. We may consider ω increasing and continuous, up to replacing
it by a larger function. We can also suppose ω subadditive, from where it holds
the property ω(k) ≤ (k+ 1)ω(1) for all k ≥ 0. More strongly, we will say that
ω is a Lipschitz modulus if ω(k) ≤ k ω(1), for all k ≥ 0.

In some cases, we are going to use the following linear structure condition

M−
λ,Λ(X − Y )− b(x)|p− q| − d(x)ω((r − s)+)

≤ F (x, r, p,X)− F (x, s, q, Y ) (SC)

≤M+
λ,Λ(X − Y ) + b(x)|p− q|+ d(x)ω((s− r)+) a.e. x ∈ Ω

with F (·, 0, 0, 0) ≡ 0, where 0 < λ ≤ Λ, b ∈ Lp(Ω), d ∈ Lp(Ω), b, d ≥ 0, for p, q
satisfying (2.1) and ω a modulus. Here, differently from (SC)µ, the condition
over the zero order term in (SC) means that F is proper (or coercive), i.e.
decreasing in r.

Remark 2.2 Notice that equation (ME), with L = F satisfying (SC), gives
an example of an operator satisfying (SC)µ, for µ = ‖M‖L∞(Ω). Indeed,

〈M(x)p, p〉 − 〈M(x)q, q〉 = 〈M(x)p, p〉+ 〈M(x)p, q〉 − 〈M(x)p, q〉 − 〈M(x)q, q〉

= 〈M(x)p, p− q〉+ 〈M(x)(p− q), q〉 ≤ µ|p− q|(|p|+ |q|).

Here, ‖M(x)‖L∞(Ω) = supx∈Ω ‖M(x)‖Mn×n(R), for the matrix norm1

‖M(x)‖Mn×n(R) = sup
y∈Rn, |y|=1

|M(x) · y|, for each x ∈ Ω.

Next we recall the definition of Lp-viscosity solution. Here, solutions are
real functions u : Ω→ R.

Definition 2.3 Let f ∈ Lploc(Ω). We say that u ∈ C(Ω) is an Lp-viscosity
subsolution (respectively, supersolution) of F = f in Ω if for every φ ∈ W 2,p

loc (Ω)
1Observe that both 〈p, q〉 and p · q denote the inner product of p, q ∈ Rn.
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and x0 ∈ Ω such that u− φ has a local maximum (minimum) at x0, one has

ess lim
x→x0
{F (x, u(x), Dφ(x), D2φ(x))− f(x)} ≥ 0

( ess lim
x→x0
{F (x, u(x), Dφ(x), D2φ(x))− f(x)} ≤ 0 )

in the sense that for every ε, r > 0 there is a set A ⊂ Br(x0) of positive measure
such that F (x, u(x), Dφ(x), D2φ(x))−f(x) ≥ −ε (F (x, u(x), Dφ(x), D2φ(x))−
f(x) ≤ ε) for all x ∈ A.

In other words, whenever φ ∈ W 2,p
loc (Ω), ε > 0 and O ⊂ Ω open are such

that F (x, u(x), Dφ(x), D2φ(x))− f(x) ≤ −ε (≥ ε) for a.e. x ∈ O, then u− φ
cannot have a local maximum (minimum) in O.

We can think about Lp-viscosity solutions for any p > n
2 , since this

restriction makes all test functions φ ∈ W 2,p
loc (Ω) continuous [29, p. 284] and

having a second order Taylor expansion [4]. We are going to deal mostly with
the case p > n. In particular, for Ω bounded with ∂Ω ∈ C1,1, this implies that
the continuous injection W 2,p(Ω) ⊂ C1(Ω) is compact, for all n ≥ 1 [30, p.
213, 285].

If F and f are continuous in x, we can use the more usual notion of
C-viscosity sub and supersolutions. Precisely, we have the following definition.

Definition 2.4 Let F (x, r, p,X) : Ω × R × Rn × Sn → R continuous and
f ∈ C(Ω). We say that u ∈ C(Ω) is a C-viscosity subsolution (supersolution) of
F = f in Ω if for every x0 ∈ Ω and φ ∈ C2(Br(x0)), r > 0, such that u−φ has
a local maximum (minimum) at x0, we have F (x0, u(x0), Dφ(x0), D2φ(x0)) ≥
f(x0) (F (x0, u(x0), Dφ(x0), D2φ(x0)) ≤ f(x0) ).

Employing Taylor expansions of second order, we can replace the set
of “test functions” in C2 by polynomials of degree two [26, p. 13], or by an
intrinsic approach on semi-jets [3, p. 9, 10]. We also refer to [31], [32], [33] for
more properties and results concerning C-viscosity solutions.

Definitions 2.3 and 2.4 are equivalent when F satisfies (SC) with b ∈
L∞(Ω) and p ≥ n, by theorem 2.1(ii) in [34] (which in turn goes back to
proposition 2.9 in [4]) – we will be using them interchangeably in this case.

In both Lp or C cases, we only need to define a subsolution
as an upper semicontinuous function, and a supersolution being lower
semicontinuous, which is sufficient to ensure the attainment of a maximum
or minimum, respectively, over compact sets. Moreover, if the function u is
not semicontinuous, we say that u is a viscosity subsolution (supersolution)
provided u∗ (u∗) is. Here, u∗ and u∗ are the upper and lower semicontinuous
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envelopes of u respectively, namely u∗(x) := limy→x u(y), u∗(x) := limy→x u(y),
see [3, p. 22], [33, p. 40]. Note that u∗ and u∗ are always semicontinuous
functions with u∗ ∈ USC(Ω) and u∗ ∈ LSC(Ω). Nevertheless, sub and
supersolutions will be assumed continuous along the text, unless specifically
noted otherwise.

A strong sub or subsolution belongs to W 2,p
loc (Ω) and satisfies the

inequality at almost every point. These notions are related, up to quadratic
growth, as shows the next proposition.

Proposition 2.5 Assume F satisfies (SC)µ, p, q as in (2.1), and f ∈ Lp(Ω).
Then, u ∈ W 2,p

loc (Ω) is a strong subsolution (supersolution) of F = f in Ω if
and only if it is an Lp-viscosity sub(super)solution of this equation.

See theorem 3.1 and proposition 9.1 in [25] for a proof, even for more
general conditions on µ and the exponents p, q. Is is also well known that the
pointwise maximum of subsolutions, or supremum over any set (for instance,
if this supremum is locally bounded), is still a subsolution; see theorem 4.2 in
[33] for C-viscosity solutions, and also proposition 2 in [35] for a version for
Lp-viscosity solutions related to quadratic growth and bounded coefficients.

When we refer to solutions of the Dirichlet problem in C1,1 domains, we
will assume that strong solutions belong to W 2,p(Ω) – despite some cases in
which we prefer to keep on the “local” sense in order to preserve the maximal
generality. Remember that a solution is always both a sub and supersolution
of the equation.

Denote L±[u] := M±
λ,Λ(D2u) ± b(x)|Du|, where b ∈ Lq+(Ω), q > n. We

make the convention that b ∈ Lp+(Ω) when p > n and no other information on
b or q is provided.

Next we recall Alexandrov-Bakelman-Pucci type results with unbounded
ingredients and quadratic growth, which will be referred simply by ABP.

Proposition 2.6 Let Ω bounded, µ ≥ 0, b ∈ Lq+(Ω) and f ∈ Lp(Ω), for p, q
as in (2.1). Then there exist δ = δ(n, p, λ,Λ, diam(Ω), ‖b‖Lq(Ω)) > 0 such that

µ‖f−‖Lp(Ω) (diam(Ω))
n
p ≤ δ (µ‖f+‖Lp(Ω) (diam(Ω))

n
p ≤ δ )

implies that every u ∈ C(Ω) which is an Lp-viscosity sub(super)solution of

L+[u] + µ|Du|2 ≥ f(x) in Ω+
(
L−[u]− µ|Du|2 ≤ f(x) in Ω−

)
,
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where Ω± = Ω ∩ {±u > 0}, satisfies the estimate

max
Ω

u ≤ max
∂Ω

u+ CA ‖f−‖Lp(Ω)

(
min

Ω
u ≥ min

∂Ω
u− CA ‖f+‖Lp(Ω)

)
,

for a constant CA depending on n, p, λ,Λ, ‖b‖Lq(Ω), diam(Ω), which remains
bounded if these quantities are bounded. Moreover, if µ = 0, the norm of f on
the right hand side can be taken in the Ln space instead of Lp.

As a matter of fact, ABP is valid under more general conditions, even for
unbounded µ. We refer to proposition 2.8 in [36] for a complete proof in the
case µ = 0. See theorem 2.6 and lemma 9.3 in [25], and theorem 3.4 in [37],
for a precise dependence on constants (see also [24] and [36]). For a simplified
proof for µ > 0 and p > n (which is the only superlinear case that we need
along the text), see appendix B.

A consequence of ABP in its quadratic form is the comparison principle
for equations in the form (ME) (with L = F there), concerning Lp-viscosity
solutions and coercive operators. We make the convention, mainly when dealing
with multiplicity results, that α and β will always denote a pair of sub and
supersolutions, in a sense to be specified.

Lemma 2.7 (Comparison Principle) Assume F satisfies (SC), f ∈ Lp(Ω)
and M ∈ L∞(Ω) in the bounded domain Ω. Suppose that u is an Lp-viscosity
supersolution of −F [u] = 〈M(x)Du,Du〉+ f(x) in Ω

u = 0 on ∂Ω
(2.2)

Then, for any α ∈ C(Ω) ∩W 2,p
loc (Ω) strong subsolution of (2.2), we have

α ≤ u in Ω.

Analogously, if u is an Lp-viscosity subsolution of (2.2), for any β ∈
C(Ω) ∩W 2,p

loc (Ω) strong supersolution of (2.2), we have u ≤ β in Ω.

Proof. Set v := u− α in Ω. By contradiction, assume minΩ v = v(x0) < 0. As
v ≥ 0 on ∂Ω, thus x0 ∈ Ω. Set Ω̃ := {v < 0 in Ω}, which is an open nonempty
set since x0 ∈ Ω̃. Let ϕ ∈ W 2,p

loc (Ω̃) and x̃ ∈ Ω̃ be such that v−ϕ has a minimum
at x̃. But then u − (α + ϕ) has a minimum at x̃, and by α + ϕ ∈ W 2,p

loc (Ω̃)
together with the definition of u being an Lp-viscosity supersolution, we know
that for every ε > 0, there exists r > 0 such that, for a.e. x ∈ Br(x̃) ∩ Ω̃,

−F (x, u,Dα +Dϕ,D2α +D2ϕ)− 〈M(x)D(α + ϕ), D(α + ϕ)〉 − f(x) ≥ −ε
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and −F (x, α,Dα,D2α)− 〈M(x)Dα,Dα〉 − f(x) ≤ 0 from the definition of α
as strong subsolution. By (SC),

ε ≥ F (x, u,Dα +Dϕ,D2α +D2ϕ)− F (x, α,Dα,D2α)

+ 〈M(x)D(α + ϕ), D(α + ϕ)〉 − 〈M(x)Dα,Dα〉

≥ M−(D2ϕ)− b(x)|Dϕ| − µ ( |Dα +Dϕ|+ |Dα| ) |Dϕ| − d(x)ω((u− α)+)

≥M−(D2ϕ)− b(x)|Dϕ| − µ|Dϕ|2 − 2µ|Dα| |Dϕ|.

Then, for b̃ = b+ 2µ|Dα| ∈ Lp+(Ω), v is an Lp-viscosity supersolution of
 M

−(D2v)− b̃(x)|Dv| − µ|Dv|2 ≤ 0 in Ω̃
v ≥ 0 on ∂Ω̃ ⊂ ∂Ω ∪ {v = 0}.

Thus, ABP with f = 0 gives us v ≥ 0 in Ω̃, contradicting the definition of Ω̃.
�

Remark 2.8 The same result holds if α = max1≤i≤m αi and β = min1≤j≤l βj ,
where αi and βj are continuous strong sub and supersolutions of (2.2)
respectively. Indeed, in the proof above, we only need to note that minΩ (u−α)
= (u− αi)(x0) for some i ∈ {1, . . . ,m}, and consider v := u− αi .

For equations with linear growth in the gradient, it is also a consequence
of ABP that the notions of Lp and Ln viscosity solutions coincide for p ≥ n.
This is the content of the next proposition, which is a version of theorem 2.1(iii)
in [34] for unbounded coefficients.

Proposition 2.9 Suppose that F satisfies (SC) for b, d ∈ Lq(Ω), q > n, and
let f ∈ Lqloc(Ω). If q ≥ p ≥ n, then u is an Lp-viscosity solution of F ≥ f in Ω
if and only if u is an Lq-viscosity solution of F ≥ f in Ω.

For this, we need the following lemma, which is a version of proposition 1 in
[35] for unbounded coefficients. The proof relies on an argument due to Prof.
Boyan Sirakov.

Lemma 2.10 If F satisfies (SC) and (2.1), the maximum (minimum) in the
definition of Lp-viscosity subsolution (supersolution) can be replaced by a strict
maximum (minimum).

Proof. Suppose, in order to obtain a contradiction, that there exists ε, r > 0
and φ ∈ W 2,p

loc (Ω) such that u− φ attains a local maximum at x0 but

F (x, u(x), Dφ(x), D2φ(x)) ≤ f(x)− ε a.e. in Br(x0). (2.3)
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For simplicity of notation, suppose x0 = 0 and u− φ ≤ (u− φ)(0) in B2r(0).
Set φδ := φ+ δ|x|4 + ψδ, where ψδ is the strong solution of

 L
+[ψδ] = −4δb(x)|x|3 + ε/8 in Br

ψδ = 0 on ∂Br,
(2.4)

given, for instance, by proposition 2.4 in [24]. Also, consider small values of
δ ∈ (0, 1) such that 4δr2(2 + nΛ) ≤ ε/8.

Claim 2.11 u− φδ attains a strict local maximum in Br for small δ > 0.

Proof of Claim 2.11. Since L+[ψδ/δ ] = −4b(x)|x|3 + ε/(4δ) =: g(x) a.e. in
Br, by ABP and Chebyshev’s inequality |{|h| > t}| ≤ t−q‖h‖qLq for h ∈ Lq(Ω),
it follows that

ψδ
δ
≤ CA ‖g−‖Ln(Br) ≤ CA |Br ∩ {g < 0}|

1
n
− 1
q ‖g−‖Lq(Br)

≤ CA |Br ∩ {4b(x)|x|3 > ε/(8δ) }|
1
n
− 1
q ‖g−‖Lq(Br)

≤ C (δ/ε)
q
n
−1 ‖b‖

q
n
−1

Lq(Ω) (ε+ ‖b‖Lq(Ω)) −−−→
δ→0+

0

for all x ∈ Br, since q > n. In particular, ψδ(0) < δr4 for small δ > 0, so we
have on ∂Br that u − φδ = u − φ − δr4 < (u − φ)(0) − ψδ(0) = (u − φδ)(0).
Thus, u− φδ must attain a strict local maximum at some point in Br, say in
the ball Bs(x0) ⊂ Br(0), and the claim is proved. �

Therefore, by applying the hypothesis over φδ,

F (x, u(x), Dφδ(x), D2φδ(x)) ≥ f(x)− ε/2 a.e. x ∈ Bs(x0).

So, using the latter and (2.3), we obtain

ε/2 ≤ F (x, u(x), Dφδ(x), D2φδ(x))− F (x, u(x), Dφ(x), D2φ(x))

≤ L+[ δ|x|4 + ψδ ] ≤ 4δ|x|2(2 + nΛ) + 4δb(x)|x|3 + L+[ψδ] ≤ ε/4

a.e. x ∈ Bs(x0), by (2.4) and the choice of δ, which yields a contradiction. �

Proof of Proposition 2.9. It is obvious by definition 2.3 that Lp-viscosity
solutions are Lq-viscosity, since f ∈ Lqloc(Ω). So, in order to obtain
a contradiction, suppose that u is an Lq-viscosity but not Lp-viscosity
subsolution of F ≥ f in Ω. Then, there exists ϕ ∈ W 2,p

loc (Ω) and B2r(x0) ⊂ Ω
such that u− ϕ has a local maximum at x0 in Br(x0) and

F (x, u,Dϕ,D2ϕ) ≤ f(x)− ε a.e. in Br(x0). (2.5)
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We may assume that there exists δ > 0 such that (u − ϕ)(x0) = 0 and
u− ϕ ≤ −δ on ∂Br(x0) by lemma 2.10.

Let ϕk ∈ C2(B2r(x0)) with ϕk → ϕ in W 2,p
loc ⊂ W 2,n

loc . Hence, wk := u−ϕk
is an Lq-viscosity subsolution of

L+[wk] ≥ F (x, u,Du,D2u)− F (x, u,Dϕk, D2ϕk) ≥ −g−k (x)

in Br(x0), for gk(x) := f(x)− F (x, u,Dϕk, D2ϕk) ∈ Lq(Br). Since by (2.5) we
have g−k (x) = −gk(x) ≤ F (x, u,Dϕk, D2ϕk)− F (x, u,Dϕ,D2ϕ) ≤ L+[ϕk − ϕ]
a.e. in {gk ≤ 0} ∩Br(x0), then ‖g−k ‖Ln(Br(x0)) is bounded by

(λ+ Λ)‖D2(ϕk − ϕ)‖Ln(Br(x0)) + ‖b‖Ln(Br(x0))‖D(ϕk − ϕ)‖L∞(Br(x0))

which converges to zero when k → +∞, by the Sobolev continuous inclusion
W 1,q ⊂ L∞ for q > n. Now it is just a question of applying ABP to obtain that
wk ≤ sup∂Br(x0) wk + ‖g−k ‖Ln(Br(x0)) in Br(x0) for all k ∈ N. Thus, the uniform
convergence of ϕk to ϕ in this last inequality is responsible for producing a
contradiction with the definition of δ. �

The next proposition follows from theorem 4 in [12] in the case p = n.
We refer to proposition 9.4 in [25] for a more general version.

Proposition 2.12 (Stability) Let F , Fk operators satisfying (SC)µ with p, q
as in (2.1), and f, fk ∈ Lp(Ω). Let uk ∈ C(Ω) be an Lp-viscosity subsolution
(supersolution) of

Fk(x, uk, Duk, D2uk) ≥ fk(x) in Ω (≤) for all k ∈ N.

Suppose uk → u in L∞loc(Ω) as k → ∞ and for each ball B ⊂⊂ Ω and
ϕ ∈ W 2,p(B), setting

gk(x) := Fk(x, uk, Dϕ,D2ϕ)− fk(x); g(x) := F (x, u,Dϕ,D2ϕ)− f(x),

we have ‖(gk − g)+‖Lp(B) (‖(gk − g)−‖Lp(B)) → 0 as k → ∞. Then u is an
Lp-viscosity subsolution (supersolution) of F (x, u,Du,D2u) ≥ f(x) (≤) in Ω.

If F and f are continuous in x, then it is enough that the above holds for
every ϕ ∈ C2(B), in which case u is a C-viscosity subsolution (supersolution)
of F = f in Ω.

Remark 2.13 Proposition 2.12 is valid if we have fk ∈ Lp(Ωk), uk ∈ C(Ωk),
for an increasing sequence of domains Ωk ⊂ Ωk+1 such that Ω := ⋃

k∈N Ωk , see
proposition 1.5 in [38].
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The following proposition follows from the Cβ superlinear regularity
established in [12]. We give the statement in terms of more general exponents
p, q as in (2.1), indicating the changes from the proof of theorem 2 there.

Proposition 2.14 (Cβ Regularity ) Let Ω ⊂ Rn be a bounded domain. Assume
F satisfies (SC)µ for N = 0, q = 0, s = 0 and b ∈ Lq+(Ω), for p, q satisfying
(2.1). Let u ∈ C(Ω) be an Lp-viscosity solution of (3.2) with f ∈ Lp(Ω). Then
there exists β ∈ (0, 1) depending on n, p, λ,Λ and ‖b‖Lq(Ω) such that u ∈ Cβ

loc(Ω)
and for any subdomain Ω′ ⊂⊂ Ω we have

‖u‖Cβ(Ω′) ≤ K1 {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖d‖Lp(Ω) ω(‖u‖L∞(Ω))}

where K1 depends only on n, p, λ,Λ, µ, ‖b‖Lq(Ω), ‖u‖L∞(Ω′), dist(Ω′, ∂Ω).
If, in addition, u ∈ C(Ω)∩Cτ (∂Ω) and Ω satisfies a uniform exterior cone

condition with size L, then there exists β0 = β0(n, p, λ,Λ, L, ‖b‖Lq(Ω)) ∈ (0, 1)
and β = min(β0,

τ
2 ) such that

‖u‖Cβ(Ω) ≤ K1 {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖u‖Cτ (∂Ω) + ‖d‖Lp(Ω) ω(‖u‖L∞(Ω))}

where K1 depends on n, p, λ,Λ, µ, L, ‖b‖Lq(Ω), ω(1)‖d‖Lp(Ω), diam(Ω), ‖u‖L∞(Ω).
In both cases, K1 remains bounded if these quantities are bounded.

The same result holds if, instead of a solution of (3.2), u is only an
Lp-viscosity solution of the inequalities L−[u] − µ|Du|2 ≤ g(x) and L+[u] +
µ|Du|2 ≥ −g(x) in Ω.

If µ = 0, then K1 does not depend on a bound from above on ‖u‖L∞(Ω).

Proof. To obtain the statement in terms of p, it is only a question of reading
Ln-viscosity sense in [12] as Lp-viscosity, changing b ∈ Lp, d, f ∈ Ln there by
b ∈ Lq, d, f ∈ Lp. The corresponding growth lemmas and exponents concerning
ρ must be replaced by ρ1−n

p , which appear by using proposition 2.6 (for µ = 0)
instead of theorem 3 there.

The zero order term is handled as part of the right hand side, since the
whole proof is valid if we only have u as an Lp-viscosity solution of inequalities
L+[u] ≥ −g(x) and L−[u] ≤ g(x) in the case µ = 0 (see the final remark in
the end of the proof of theorem 2 in [12]). �

Next we recall two boundary versions of the quantitative strong
maximum principle and the weak Harnack inequality, which follow by
theorems 1.1 and 1.2 in [23] respectively.

We denote with B+
r = Br ∩ {xn > 0} a half ball with a flat portion of

the boundary included in {xn = 0}, for r > 0. Further, Tr := Br ∩ {xn = 0}.
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Theorem 2.15 (BQSMP ) Let d ∈ Lp(B+
2 ), f ∈ Lq(B+

2 ), p, q as in (2.1).
Assume that u is an Lp-viscosity supersolution of L−[u] − du ≤ f , u ≥ 0 in
B+

2 . Then there exist constants ε, c, C > 0 depending on n, λ,Λ, p, q, ‖b‖Lq(B+
2 )

and ‖d‖Lp(B+
2 ) such that

inf
B+

1

u

xn
≥ c

ˆ
B+

3/2

(f−)ε
1/ε

− C‖f+‖Lq(B+
2 ).

Theorem 2.16 (BWHI ) Let d ∈ Lp(B+
2 ), f ∈ Lq(B+

2 ), p, q as in (2.1).
Assume that u is an Lp-viscosity supersolution of L−[u] − du ≤ f , u ≥ 0 in
B+

2 . Then there exist constants ε, c, C > 0 depending on n, λ,Λ, p, q, ‖b‖Lq(B+
2 )

and ‖d‖Lp(B+
2 ) such that

inf
B+

1

u

xn
≥ c

ˆ
B+

3/2

(
u

xn

)ε1/ε

− C‖f+‖Lq(B+
2 ).

In particular, theorem 2.16 implies the strong maximum principle when
f = 0, i.e. for an Lp-viscosity solution u of L−[u]−du ≤ 0, u ≥ 0 in Ω, we have
either u ≡ 0 in Ω or u > 0 in Ω and if u(x0) = 0 at x0 ∈ ∂Ω, then ∂νu(x0) > 0.
Here, ∂ν is the derivative in the direction of the interior unit normal. We will
refer to these consequences simply by SMP and Hopf, as below.

Proposition 2.17 (SMP ) Let Ω be a C1,1 domain and u an Lp-viscosity
solution of L−[u] − du ≤ 0, u ≥ 0 in Ω, where d ∈ Lp(Ω) and p, q are as
in (2.1). Then either u > 0 in Ω or u ≡ 0 in Ω.

Proposition 2.18 (Hopf ) Let Ω be a C1,1 domain and u an Lp-viscosity
solution of L−[u] − du ≤ 0, u > 0 in Ω, where d ∈ Lp(Ω) and p, q are as
in (2.1). If u(x0) = 0 for some x0 ∈ ∂Ω, then ∂νu(x0) > 0.

Notice that the results above generalize SMP and Hopf for C-viscosity
solutions from [39]. In [23], theorems 2.15 and 2.16 (and consequently
propositions 2.17 and 2.18) are proved for d ≡ 0, but exactly the same proofs
there work for any d ≥ 0. Moreover, since the function u has a sign, they
are also valid for nonproper operators, by splitting the positive and negative
parts of d and using d−u ≥ 0. We also refer to [40] for another proof of Hopf
maximum principle.

The Local Maximum Principle (LMP) is well known in the literature, see
for example [26, p. 36], [41, p. 244], [33, p. 85] and [42]. Its boundary version
(BLMP) is given in theorem 1.3 in [23], without zero order term.
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Theorem 2.1 (BLMP ) Assume that u is a locally bounded Lp-viscosity
subsolution of  L

+[u] + ν(x)u ≥ −f(x) in B+
2

u ≤ 0 on T2

with f ∈ Lp(B+
2 ), b ∈ Lq+(B+

2 ), ν ∈ Lp1(B+
2 ) ∩ Lp(B+

2 ), for some p1 > n and
p, q as in (2.1). Then, for each r > 0,

sup
B+

1

u+ ≤ C


ˆ

B+
3/2

(u+)r
1/r

+ ‖f+‖Lp(B+
2 )

 ,
where C depends only on n, p, p1, λ, Λ, r, ‖b‖Lq(B+

2 ) and ‖ν‖Lp1 (B+
2 ).

Proof. As the proof of theorem 1.3 in [23], v = u+ can be extended as 0 in
B2 \ B+

2 , since v = 0 on T2 and satisfies (2.6) in B2 , with f extended by
0, which remains in Lp(B2). Then we apply theorem 2.2 below to obtain the
boundary result. �

Theorem 2.2 (LMP ) Let u be a locally bounded Lp-viscosity subsolution of
L+[u] + ν(x)u ≥ −f(x) in B3, with f ∈ Lp(B3), ν ∈ Lp1(B3) ∩ Lp(B3), for
p1 > n and p, q as in (2.1). Then, for each r > 0,

sup
B1

u+ ≤ C

(ˆ
B2

(u+)r
)1/r

+ ‖f+‖Lp(B3)


where C depends only on n, p, p1, λ, Λ, r, ‖b‖Lq(B3) and ‖ν‖Lp1 (B3).

Remark 2.19 Of course the same conclusion holds if we have a domain Ω
and Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω by a local covering argument. The same for any radii
ρ1 < ρ2 < ρ3 by rescaling.

The only difference between theorem 2.2 and LMP given in theorem 3.1
(a) in [42] comes from the need to put the zero order term on the right hand
side. For the sake of completeness, details are provided in the sequel.

Proof. Observe that u is an Ln-viscosity subsolution of the initial equation by
proposition 2.9, as well as v := u+ = max(u, 0) of

L+[v] + ν(x)v ≥ −f+(x) in B3. (2.6)
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and so L+[v] ≥ −g(x), where g := f+ + ν+v ∈ Lp+(B2). Applying theorem
3.1(a) of [42] in the ball B2, we obtain in particular that

sup
B1

v ≤ C


ˆ

B3/2

vs

1/s

+ ‖g‖Ln(B2)


for s > n defined by the relation 1

n
= 1

s
+ 1

p1
. Then, Holder’s inequality yields

‖ν+v‖Ln(B2) ≤ ‖ν+‖Lp1 (B2) ‖v‖Ls(B2)

and for a constant depending also on ‖ν+‖Lp1 (B2), it follows that

sup
B1

v ≤ C{ ‖v‖Ls(B2) + ‖f+‖Ln(B2) }. (2.7)

Now we perform a Moser type argument, as in [32, p. 75], to extend the
validity of (2.7) for all s > 0. More precisely, we start rescaling (2.7). For
R ≤ 2, we define w(x) := v(Rx/2) for x ∈ B2 and apply the result just proved
for w to obtain, in terms of v,

sup
BR/2

v ≤ C {R−
n
s ‖v‖Ls(BR) +R ‖f+‖Ln(BR) }. (2.8)

Next, using (2.8) in B = B(1−θ)R(y), for R ∈ (0, 2] and θ ∈ (0, 1), we have

sup
B(1−θ)R/2(y)

v ≤ C { ((1− θ)R)−ns ‖v‖Ls(B) + (1− θ)R ‖f+‖Ln(B) }. (2.9)

In particular, (2.9) for all y ∈ BθR yields, for R ∈ (0, 2] and θ ∈ (0, 1),

‖v‖L∞(BθR) ≤ C { ((1− θ)R)−ns ‖v‖Ls(BR) + ‖f+‖Ln(BR) }. (2.10)

Let r ∈ (0, s) (notice that the validity of BLMP to r ≥ s is ensured by
(2.7) and Holder’s inequality), then,

(ˆ
vs
)1/s

=
(ˆ

vs−rvr
)1/s

≤ ‖v‖1− r
s∞

(ˆ
vr
)1/s

.

By Young’s inequality with p̃ = 1/(1− r/s) and q̃ = s/r,

C

((1− θ)R)n/s‖v‖L
s(BR) ≤ ‖v‖

1− r
s

L∞(BR)

(
C

((1− θ)R)n

ˆ
BR

vr
)1/s

≤ 1
2‖v‖L

∞(BR) +
(

C

((1− θ)R)n

ˆ
BR

vr
)1/r

.

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



Chapter 2. Preliminaries 27

Thus, applying this estimate in (2.10),

‖v‖L∞(BθR) ≤
1
2‖v‖L

∞(BR) + C

((1− θ)R)n/r

(ˆ
BR

vr
)1/r

+ C‖f+‖Ln(BR).

Next, by defining ψ(t) := ‖v‖L∞(Bt), t ∈ (0, 2], we have

ψ(t) ≤ 1
2ψ(R) + C

(R− t)n/r

(ˆ
BR

vr
)1/r

+ C‖f+‖Ln(B1).

Now, lemma 4.3 in [32] implies that ψ(t) ≤ C
(R−t)n/r

(´
BR
vr
)1/r

+C‖f+‖Ln(B1).

Taking R→ 2− we obtain, for instance for θ = 1/2,

‖v‖L∞(B1) ≤ C

(ˆ
B2

vr
)1/r

+ ‖f+‖Ln(B2)

 .
�

We provide another proof of theorem 2.2 for C-viscosity solutions in
appendix D, which is constructive and follows the classical proof in [41].

The following result, which follows from lemma 2.3 in [12], is a useful
tool to deal with quadratic dependence in the gradient.

Lemma 2.20 (Exponential change) Let p ≥ n and u ∈ W 2,p
loc (Ω). For m > 0

set
v = emu − 1

m
, w = 1− e−mu

m
.

Then, a.e. in Ω we have Dv = (1 +mv)Du, Dw = (1−mw)Du and

M±(D2u) +mλ|Du|2 ≤ M
±(D2v)

1 +mv
≤M±(D2u) +mΛ|Du|2, (2.11)

M±(D2u)−mΛ|Du|2 ≤ M
±(D2w)

1−mw ≤M±(D2u)−mλ|Du|2. (2.12)

and clearly {u = 0} = {v = 0} = {w = 0} and {u > 0} = {v > 0} = {w > 0}.
Moreover, the same inequalities hold in the Lp-viscosity sense if u is

merely continuous; for example, if u ∈ C(Ω) is an Lp-viscosity solution of

M+(D2u) + b(x)|Du|+ µ|Du|2 + c(x)u ≥ f(x) in Ω (2.13)

where b ∈ Lq+(Ω), c, f ∈ Lp(Ω), for p, q as in (2.1), then v = 1
m

(emu − 1), for
m = µ

λ
, is an Lp-viscosity solution of

M+(D2v) + b(x)|Dv|+ c(x)
m

ln(1 +mv)(1 +mv)−mf(x)v ≥ f(x) in Ω
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and analogously for the other inequalities.

The proof follows the original idea of [12] for viscosity solutions, with
the slight improvements that can be found in theorem 6.9 in [33]. See also the
proof of lemma 1.6 in [43].

Proof. Inequalities (2.11) and (2.12) follow by a simple computation, by using
spec(ξ⊗ ζ) = {0, . . . , 0, ξ · ζ}, where ξ⊗ ζ ∈Mn×n(R), (ξ⊗ ζ)ij := ξi ζj for all2

ξ, ζ ∈ Rn. Suppose, then, that u is an Lp-viscosity solution of (2.13).
Let ψ ∈ W 2,p

loc (Ω) such that v−ψ attains a local maximum at x0, namely
v ≤ ψ and v(x0) = ψ(x0). Let ε > 0, take some Ω′ with x0 ∈ Ω′ ⊂⊂ Ω and set
a = ‖u‖L∞(Ω′).

Define ϕ = 1
m
{ln(1 +mψ)} ∈ W 2,p

loc (Ω), i.e. ψ = 1
m
{emϕ− 1}. Then, since

u−ϕ has a maximum at x0, by using the definition of u being an Lp-viscosity
subsolution of (2.13) and also (2.11) for the pair ϕ, ψ, we get

M+(D2ψ)
1 +mψ

≥M+(D2ϕ) + µ|Du|2 ≥ f(x)− b(x)|Dϕ| − c(x)u− ε̃ a.e. in O

where ε̃ = ε
eam+1 and O ⊂ Ω′ is some subset with positive measure.

Let δ ∈ (0, 1). Notice that, since (ψ − u)(x0) = 0 and ϕ ∈ W 2,p(O) ⊂
C(O) for p ≥ n > n/2, there exists Oδ ⊂ O such that v ≤ ψ ≤ v + δ

m
in Oδ.

Thus 1 +mψ ≤ 1 +mv + δ = emu + δ and

M+(D2ψ) + b(x)|Dψ| ≥ f+(x)emu − f−(x)(emu + δ)

+ (c+u− + c−u+)emu − (c+u+ + c−u−)(emu + δ)− ε a.e. in Oδ

i.e. we have shown that v is an Lp-viscosity subsolution of

M+(D2v) + b(x)|Dψ| ≥ f(x)emu − c(x)uemu − (f− + c+u+ + c−u−)δ in Ω

for any δ ∈ (0, 1). The desired conclusion follows by letting δ → 0, since
‖fδ‖Lp(B) → 0 for any B ⊂⊂ Ω, where fδ := (f− + c+u+ + c−u−)δ, by
proposition 2.12. The proof of the remaining inequalities in the Lp-viscosity
sense are similar. �

A direct consequence of lemma 2.20 is the following extension of
proposition 3.5 in [4]. Recall we say that u is twice super(sub)differentiable

2Indeed, observe that if A := ξ ⊗ ζ = ξ ζT and Rn is the direct sum of V and W , for
V = span ζ, W = span{wi}n−1

i=1 , then Aξ = ξ (ζT ξ) = (ξ · ζ) ξ and Awi = 0. Thus, ξ · ζ is an
eigenvalue with eigenvector ξ, while 0 is an eigenvalue with multiplicity n− 1.
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at x ∈ Ω if there exists (p,X) ∈ Rn × Sn such that

u(y) ≤ (≥)u(x) + p · (y − x) + 1
2〈X(y − x), y − x〉+ o(|y − x|2) as y → x.

Corollary 2.21 Let f ∈ Lploc(Ω) for p ≥ n, µ ≥ 0, b ∈ L∞+ (Ω) and u a locally
bounded Lp-viscosity solution of

L+[u] + µ|Du|2 ≥ f(x) in Ω
(
L−[u]− µ|Du|2 ≤ f(x) in Ω

)
.

Then u is twice superdifferentiable (subdifferentiable) a.e. in Ω.

Proof. Set v = 1
m

(emu − 1) for m = µ
λ
. Say b(x) ≤ γ. Hence, by lemma 2.20

and u ∈ L∞loc(Ω), v is an Lp-viscosity solution of

M+(D2v) + γ|Dv| ≥ f(x)(1 +mv) ∈ Lploc(Ω).

By proposition 3.5 in [4], v is twice superdifferentiable a.e. in Ω, and so is u.
�

It follows from the argument in [4], that locally bounded Lp-viscosity
solutions of F = f , with F satisfying the structure condition (SC)µ for
bounded coefficients, are twice differentiable a.e. and satisfy the equation at
almost all points. Moreover, corollary 2.21 is true for p > n − ε0 > n/2 as in
[4], since lemma 2.20 also holds in this case – as well as most of the results
stated here thanks to GMP; but not necessary for our purposes in this work.

We finish the chapter recalling some results about pure second order
operators F (D2u), that is, uniformly elliptic operators F depending only on
X (so Lipschitz continuous in X) and satisfying F (0) = 0. These operators
will play the role of F (0, 0, 0, X) in the approximation lemmas. The next
proposition is corollary 5.7 in [26], which deals with C1,ᾱ interior regularity.

Proposition 2.22 Let u be a C-viscosity solution of F (D2u) = 0 in B1. Then
u ∈ C1,ᾱ(B1/2) for some universal ᾱ ∈ (0, 1) and there exists a constant K2,
depending on n, λ and Λ, such that

‖u‖C1,ᾱ(B1/2) ≤ K2 ‖u‖L∞(B1).

We also need the following solvability result about the Dirichlet problem.
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Proposition 2.23 Let Ω bounded with a uniform exterior cone condition,
ψ ∈ C(∂Ω). Then there exists a unique C-viscosity solution u ∈ C(Ω) of

 F (D2u) = 0 in Ω
u = ψ on ∂Ω .

Proof. Uniqueness is corollary 5.4 in [26]. Let us recall how to obtain existence
via Perron’s Method, as in proposition II.1 in [44] (see also [45]). Indeed,
comparison principle holds for F (D2u) by theorem 5.3 and corollary 3.7
in [26]. Further, we obtain a pair of strong sub and supersolutions u, u ∈
W 2,p

loc (Ω) ∩ C(Ω) of Pucci’s equations M+(D2u) ≤ 0 ≤ M−(D2u) in Ω with
u = u = ψ on ∂Ω by lemma 3.1 of [4]. They are Lp-viscosity sub and
supersolutions of F (D2u) = 0, from where we obtain the pair of C-viscosity
sub and supersolutions desired. �

We use the following notation from [38] and [46]. For r, ν > 0,

Bν
r (x0) := Br(x0) ∩ {xn > −ν}, Tνr(x0) := Br(x0) ∩ {xn = −ν}.

Proposition 2.24 Let u ∈ C(Bν
1 ) be a C-viscosity solution of

 F (D2u) = 0 in Bν
1

u = ψ on Tν1

such that ψ ∈ C(∂Bν
1 )∩C1,τ (Tν1) for some τ > 0. Then u ∈ C1,ᾱ(Bν

1/2), where
ᾱ = min(τ, α0) for a universal α0. Moreover, for a constant K3, depending
only on n, λ,Λ and τ , we have

‖u‖C1,ᾱ(Bν1/2) ≤ K3 {‖u‖L∞(Bν1 ) + ‖ψ‖C1,τ (Tν1)}.

For a proof see proposition 2.2 in [46]; see also remark 3.3 in [38].
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3
Hölder Regularity

The seminal work of Caffarelli [47] in 1989 brought an innovative
approach of looking at Schauder type results via iterations from the differential
quotients that are perturbations of solutions of the respective autonomous
equations. The techniques in [47], which contains in particular C1,α estimates
for Lp-viscosity solutions of uniformly elliptic equations F (x,D2u) = f(x),
allowed Święch [48] to extend them to more general operators F (x, u,Du,D2u)
and later Winter [38] to boundary and global bounds. However, everything that
is available in the literature, to our knowledge, for Lp-viscosity solutions in the
fully nonlinear framework, concerns only structures with either linear gradient
growth or bounded coefficients, except for some particular cases of extremal
equations with small coefficients, see [24]. It is our goal here to obtain C1,α

regularity and estimates for general fully nonlinear uniformly elliptic equations,
with at most quadratic growth in the gradient and unbounded coefficients.

We note that Trudinger, independently from [47], in [49] proved C1,α

regularity in a less general scenario than Święch and Winter, under a continuity
hypothesis for F , dealing with C-viscosity solutions and approximations under
supconvolutions. In that paper, it was stated that a priori estimates for
solutions in C1,α of superlinear equations could be derived from the arguments
in [49] and [50]. However, the question of regularity is more complicated (for
a discussion on differences between a priori bounds and regularity results we
refer to [51]).

We also quote some other papers on C1,α regularity, the classical works
[52], [53], [54] for linear equations; [46] for Neumann boundary conditions; [55]
for asymptotically convex operators; [56] (local) and [57] (global) for degenerate
elliptic operators; [58] and [59] for parabolic equations possibly with VMO
coefficients. Furthermore, Wang [43] has made an important contribution to
C1,α regularity for the parabolic equation ut + F (x,D2u) = g(t, x,Du), where
|g(t, x, p)| ≤ A |p|2 + g(t, x), for bounded coefficients, see lemma 1.6 in [43]
(which uses theorem 4.19 in [60]). Sharp regularity results for general parabolic
equations with linear gradient growth can be found in [61], and very complete
C1,α estimates on the boundary for solutions in the so called S∗-class for
equations with linear gradient growth and unbounded coefficients in [62].
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It is also essential to mention an important series of papers due to Koike
and Święch [25], [36], [24], [63], in which they proved ABP and weak Harnack
inequalities for Lp-viscosity solutions of equations with superlinear growth in
the gradient, together with several theorems about existence, uniqueness and
W 2,p estimates for solutions of extremal equations involving Pucci’s operators
with unbounded coefficients, see in particular theorem 3.1 in [24]. Many of our
arguments depend on the machinery in these works.

3.1
Main Regularity Results

In this section we present the hypotheses and statements of our results.
First, in order to measure the oscillation of F in the x entry, we define

β(x, x0) = βF (x, x0), as in [47], [38],

β(x, x0) := sup
X∈Sn\{0}

|F (x, 0, 0, X)− F (x0, 0, 0, X)|
‖X‖

a.e. x, x0 . (3.1)

Notice that β is a bounded function by (SC)µ and lemma 2.1(ii). Next consider
the usual hypothesis, as in [47], [38]: given θ > 0, there exists r0 = r0 (θ) > 0
such that

(
1
rn

ˆ
Br(x0)∩Ω

β(x, x0)p dx
) 1
p

≤ θ , for all r ≤ r0 a.e. x0. (Hθ)

Notice that (Hθ) is satisfied for Pucci’s extremal operators. Indeed, if for
instance F (x, r, p,X) =M+(X) + b(x)|p|+ d(x)ω(r−), then βF (x, x0) ≡ 0. In
particular this holds if F is the linear operator tr(A(x)X) + b(x) · p + d(x)r,
with A a continuous matrix up to the boundary, as in chapter 1.

The following is our main regularity result. To simplify its statement,
here we assume that ω is a Lipschitz modulus, i.e. ω(r) ≤ ω(1)r, for all r ≥ 0.

Theorem 3.1 (C1,α Regularity Estimates) Let Ω ⊂ Rn be a bounded domain.
Assume F satisfies (SC)µ, f ∈ Lp(Ω), where p > n. Let u be an Lp-viscosity
solution of

F (x, u,Du,D2u) = f(x) in Ω (3.2)

with ‖u‖L∞(Ω) + ‖f‖Lp(Ω) ≤ C0. Then, there exists α ∈ (0, 1) and θ = θ(α),
depending on n, p, λ, Λ, ‖b‖Lp(Ω), such that if (Hθ) holds for all r ≤
min{r0, dist(x0, ∂Ω)}, for some r0 > 0 and for all x0 ∈ Ω, this implies that
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u ∈ C1,α
loc (Ω) and for any subdomain Ω′ ⊂⊂ Ω,

‖u‖C1,α(Ω′) ≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω)} (3.3)

where C depends only on r0, n, p, λ,Λ, α, µ, ‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω), diam(Ω),
dist(Ω′, ∂Ω) and on the bound C0.

If, in addition, ∂Ω ∈ C1,1 and u ∈ C(Ω) ∩ C1,τ (∂Ω) is such that and
‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖u‖C1,τ (∂Ω) ≤ C1, then there exists α ∈ (0, τ) and
θ = θ(α), depending on n, p, λ,Λ, ‖b‖Lp(Ω), so that if (Hθ) holds for some
r0 > 0 and for all x0 ∈ Ω, this implies that u ∈ C1,α(Ω) and satisfies the
estimate

‖u‖C1,α(Ω) ≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖u‖C1,τ (∂Ω)} (3.4)

where C depends on r0, n, p, λ,Λ, α, µ,‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω), diam(Ω), C1 and
on the C1,1 character of the boundary.

Moreover, if µ = 0, then the constant C does not depend on C0, C1.

We also consider a slightly different (smaller) version of β, as in [48] and
chapter 8 in [26]; β̄(x, x0) = β̄F (x, x0) defined as

β̄(x, x0) := sup
X∈Sn

|F (x, 0, 0, X)− F (x0, 0, 0, X)|
‖X‖+ 1 for all x, x0 . (3.5)

Consider the hypothesis (H)θ, which is (Hθ) with β replaced by β̄. This
hypothesis is trivially satisfied if F (x, 0, 0, X) is uniformly continuous in x,
in the sense that there exists some modulus of continuity ω̄ such that

|F (x, 0, 0, X)− F (x0, 0, 0, X)| ≤ ω̄(|x− x0|) (‖X‖+ 1),

for all x, x0 ∈ Ω and X ∈ Sn (for instance, see [64]). See also remark 7.1 in [58]
for a discussion over this hypothesis.

Remark 3.2 If µ = 0 we can replace the smallness condition (Hθ) by (H)θ
in the statement of Theorem 3.1, by adding 1 on the right hand side of (3.3)
and (3.4), see remark 3.10 for details. For instance, in the global case,

‖u‖C1,α(Ω) ≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖u‖C1,τ (∂Ω) + 1}. (3.6)

Remark 3.3 If ω is an arbitrary modulus, we still have regularity and
estimates, with the same dependence on constants as before, by adding 1 on
the right hand side of (3.3) and (3.4), as in (3.6). In this case, we can also
obtain Theorem 3.1 in terms of (H)θ, see remark 3.11.
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Of course, explicit zero order terms that only depend on u and x, can
always be handled as being part of the right hand side f(x).

The proof of Theorem 3.1, given in section 3.2, is based on Caffarelli’s
iteration method. Compared to [48], [38], we use a simplified rescaling of
variable which allows us to carry out the proof, without needing to use a twice
differentiability property of viscosity solutions (whose validity is unknown for
unbounded coefficients). We also use ideas of Wang to deal with superlinear
terms.

The first application of the C1,α theory is W 2,p regularity for solutions
of fully nonlinear equations with superlinear growth in the gradient, which
are convex or concave in the variable X. This extends the results in [38] to
superlinear growth in the gradient in the case p > n.

Theorem 3.4 (W 2,p Regularity ) Let Ω ⊂ Rn be a bounded domain and
u ∈ C(Ω) an Lp-viscosity solution of

F (x, u,Du,D2u) + g(x,Du) = f(x) in Ω (3.7)

where f ∈ Lp(Ω), p > n, g is a measurable function such that g(x, 0) = 0 and
|g(x, p)− g(x, q)| ≤ γ|p− q|+ µ|p− q|(|p|+ |q|), F is convex or concave in X
satisfying (SC)0, for b, d ∈ L∞+ (Ω) and ω a Lipschitz modulus. Also, suppose
‖u‖L∞(Ω) + ‖f‖Lp(Ω) ≤ C0. Then, there exists θ = θ(n, p, λ,Λ, ‖b‖Lp(Ω)) such
that, if (Hθ) holds for all r ≤ min{r0, dist(x0, ∂Ω)}, for some r0 > 0 and for
all x0 ∈ Ω, this implies that u ∈ W 2,p

loc (Ω) and for every Ω′ ⊂⊂ Ω,

‖u‖W 2,p(Ω′) ≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω)}

where C depends on r0, n, p, λ,Λ, µ, ‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω), dist(Ω′, ∂Ω), diam(Ω)
and on the bound C0.

If, moreover, ∂Ω ∈ C1,1, u ∈ C(Ω) and u = ψ on ∂Ω for some
ψ ∈ W 2,p(Ω) with ‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖W 2,p(Ω) ≤ C1 then, there exists
θ = θ(n, p, λ,Λ, ‖b‖Lp(Ω)) such that, if (Hθ) holds for some r0 > 0 and for all
x0 ∈ Ω, this implies that u ∈ W 2,p(Ω) and satisfies the estimate

‖u‖W 2,p(Ω) ≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖W 2,p(Ω)}

where C depends on r0, n, p, λ,Λ, µ, ‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω), diam(Ω), C1 and on
the C1,1 character of the boundary.

Furthermore, if µ = 0, the constant C does not depend on C0, C1.

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



Chapter 3. Hölder Regularity 35

From the regularity and estimates related to µ = 0, we can give an
alternative proof of proposition 2.4 in [24], about existence and uniqueness for
the Pucci’s extremal operators with unbounded coefficients in the case p > n.

Proposition 3.5 (Solvability of the Dirichlet problem ) Let Ω ⊂ Rn be a
bounded C1,1 domain. Let b, d ∈ Lp+(Ω), p > n and ω a Lipschitz modulus.
Let f ∈ Lp(Ω) and ψ ∈ W 2,p(Ω). Then, there exists u± ∈ C(Ω) which are the
unique Lp-viscosity solutions of the problems M

±
λ,Λ(D2u±)± b(x)|Du±| ± d(x)w((∓u±)+) = f(x) in Ω

u± = ψ on ∂Ω .

Moreover, u± ∈ W 2,p(Ω) and satisfies the estimate

‖u±‖W 2,p(Ω) ≤ C {‖u±‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖W 2,p(Ω)}

where C depends only on n, p, λ,Λ, ‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω), diam(Ω) and on the
C1,1 character of the boundary.

On the other hand, as far as a priori bounds are concerned, we obtain the
following version of Nagumo’s lemma (for instance, a version of lemma 5.10
in [65]).

Lemma 3.6 (Generalized Nagumo’s lemma ) Let Ω ⊂ Rn be a bounded C1,1

domain. Let F be a convex or concave operator in the X entry, satisfying
(SC)µ, with b, d ∈ Lp+(Ω) for p > n and ω an arbitrary modulus. Suppose that
there exists θ > 0 such that (Hθ) holds for some r0 > 0 and for all x0 ∈ Ω. Let
f ∈ Lp(Ω), ψ ∈ W 2,p(Ω) and let u ∈ W 2,p(Ω) be a strong solution of

 F (x, u,Du,D2u) = f(x) in Ω
u = ψ on ∂Ω

such that ‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖W 2,p(Ω) ≤ C1. Then we have

‖u‖W 2,p(Ω) ≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖W 2,p(Ω) + ‖d‖Lp(Ω) ω(‖u‖L∞(Ω))}

where C depends on r0, n, p, λ, Λ, µ, ‖b‖Lp(Ω), diam(Ω), C1 and on the C1,1

character of the boundary. The local case is analogous.
Moreover, if µ = 0, the final constant C does not depend on C1.

Remark 3.7 Analogously to remark 3.2, we can replace (Hθ) by (H)θ in
Theorem 3.4 and Lemma 3.6 above, by adding 1 on the right hand side of
the estimates, similar to (3.6).
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3.2
Proof of theorem 3.1.

In this section we give a detailed proof of theorem 3.1, splitting it into
local, boundary and global parts, developed in subsections 3.2.1, 3.2.2 and
3.2.3, respectively.

3.2.1
Local Regularity

Fix a domain Ω′ ⊂⊂ Ω. Consider K1 and β the pair given by the
Cβ local superlinear estimate (proposition 2.14) for Ω′, related to the initial
n, p, λ,Λ, µ, ‖b‖Lp(Ω), dist(Ω′, ∂Ω) and C0 such that

‖u‖Cβ(Ω′) ≤ K1 {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖d‖Lp(Ω) ω(‖u‖L∞(Ω))}.

Also, letK2 (which we can suppose greater than 1) and ᾱ be the constants
of C1,ᾱ local estimate (proposition 2.22) associated to n, λ,Λ in the ball B1(0).

By taking K1 larger and β smaller, we can suppose K1 ≥ K̃1 and β ≤ β̃,
where K̃1, β̃ is the pair of Cβ local estimate in the ballB1 (orB1/2), with respect
to an equation with given constants n, p, λ,Λ and bounds for the coefficients
µ ≤ 1, ‖b‖Lp(B2) ≤ 1 + 2K2|B1|1/p and ω(1)‖d‖Lp(B2) ≤ 1, for all solutions in
the ball B2 with ‖u‖L∞(B2) ≤ 1 (or for all solutions in the ball B1 with bounds
on the coefficients in B1).

The first step is to approximate our equation with one which already has
the corresponding regularity and estimates that we are interested in.

Lemma 3.8 Assume F satisfies (SC)µ in B1, f ∈ Lp(B1), where p > n. Let
ψ ∈ Cτ (∂B1) with ‖ψ‖Cτ (∂B1) ≤ K0. Then, for all ε > 0, there exists δ ∈ (0, 1),
δ = δ(ε, n, p, λ,Λ, τ,K0), such that

‖β̄F (·, 0)‖Lp(B1) ≤ δ, ‖f‖Lp(B1) ≤ δ, µ ≤ δ, ‖b‖Lp(B1) ≤ δ, ω(1)‖d‖Lp(B1) ≤ δ

implies that any two Lp-viscosity solutions v and h of F (x, v,Dv,D2v) = f(x) in B1

v = ψ on ∂B1

and  F (0, 0, 0, D2h) = 0 in B1

h = ψ on ∂B1

respectively, satisfy ‖v − h‖L∞(B1) ≤ ε.
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Proof. We are going to prove that for all ε > 0, there exists a δ ∈ (0, 1)
satisfying the above, with δ ≤ 2−

n
2p δ̃1/2, where δ̃ is the constant from

proposition 2.6. Assume the conclusion is not satisfied, then there exists some
ε0 > 0 and a sequence of operators Fk satisfying (SC)µk for bk, dk ∈ Lp+(B1),
µk ≥ 0, ωk modulus, fk ∈ Lp(B1) and δk ∈ (0, 1) such that δk ≤ 2−

n
2p δ̃

1/2
k for

all k ∈ N, where δ̃k is the number from ABP related to bk, in addition to

‖β̄Fk(·, 0)‖Lp(B1), ‖fk‖Lp(B1), µk, ‖bk‖Lp(B1), ωk(1)‖dk‖Lp(B1) ≤ δk −−−→
k→∞

0

with vk, hk ∈ C(B1) Lp-viscosity solutions of
 Fk(x, vk, Dvk, D2vk) = fk(x) in B1

vk = ψk on ∂B1

and  Fk(0, 0, 0, D2hk) = 0 in B1

hk = ψk on ∂B1

where ‖ψk‖Cτ (∂B1) ≤ K0, but ‖vk − hk‖L∞(B1) > ε0. We first claim that

‖vk‖L∞(B1) , ‖hk‖L∞(B1) ≤ C0 (3.8)

for large k, where C0 = C0(n, p, λ,Λ, K0). Indeed, in the first place, since we
have M−(D2hk) ≤ 0 ≤ M+(D2hk) in the viscosity sense, we obtain directly
that ‖hk‖L∞(B1) ≤ ‖ψk‖L∞(∂B1) ≤ K0. For vk, we initially observe that

2
n
pµk δk ≤ 2

n
p δ2

k ≤ δ̃k , for all k ∈ N.

Further, vk is an Lp-viscosity solution of

L+
k [vk]+µk|Dvk|2 +dk(x)ωk(|vk|) ≥ fk(x) ≥ L−k [vk]−µk|Dvk|2−dk(x)ωk(|vk|).

Then, applying ABP in its quadratic form in B1, we obtain, as in [38], that

‖vk‖L∞(B1) ≤ ‖vk‖L∞(∂B1) + Ck
A {‖fk‖Lp(B1) + ‖dk‖Lp ωk(1)(‖vk‖L∞(B1) + 1)}.

Since ‖bk‖Ln(B1) ≤ |B1|
p−n
np for large k, then the constant in ABP is

uniformly bounded, say Ck
A ≤ CA. Using also that ‖fk‖Lp(B1) ≤ 1 and

CA ωk(1)‖dk‖Lp(Ω) ≤ 1/2 for large k, we obtain that ‖vk‖L∞(B1) ≤ C0, with
C0 = C0(n, p, λ,Λ, K0), proving the claim (3.8).

Then, by the Cβ global estimate (proposition 2.14), there exists some
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β ∈ (0, 1) such that

‖vk‖Cβ(B1) , ‖hk‖Cβ(B1) ≤ C,

where β = min (β0,
τ
2 ) for some β0 = β0(n, p, λ,Λ), C = C(n, p, λ,Λ, C0). Here,

β and C do not depend on k, since µk, ‖bk‖Lp(B1), ωk(1)‖dk‖Lp(B1), ‖fk‖Lp(B1) ≤
1 for all k ∈ N. Then, by the compact inclusion Cβ(B1) ⊂ C(B1) we have, up
to subsequences, that

vk −→ v∞ , hk −→ h∞ in C(B1) as k →∞,

for some v∞, h∞ ∈ C(B1) with v∞ = h∞ = ψ∞ on ∂B1. Moreover, by
Arzelà-Ascoli theorem, a subsequence of Fk(0, 0, 0, X) converges uniformly
on compact sets of Sn to some uniformly elliptic operator F∞(X), since
M−

λ,Λ(X − Y ) ≤ 0 = Fk(0, 0, 0, X)− Fk(0, 0, 0, Y ) ≤M+
λ,Λ(X − Y ).

We claim that both v∞ and h∞ are viscosity solutions of F∞(D2u) = 0 in B1

u = ψ∞ on ∂B1 .

This implies that they are equal, by proposition 2.23, which contradicts
‖v∞ − h∞‖L∞(B1) ≥ ε0.

The claim for h∞ follows by passing to uniform limits in the equation
satisfied by hk. On the other hand, for v∞ we apply stability (proposition 2.12)
by noticing that, for ϕ ∈ C2(B1),

Fk(x, vk, Dϕ,D2ϕ)− fk(x)− F∞(D2ϕ)

= {Fk(x, vk, Dϕ,D2ϕ)− Fk(x, 0, 0, D2ϕ)}

+ {Fk(x, 0, 0, D2ϕ)− Fk(0, 0, 0, D2ϕ)}

+ {Fk(0, 0, 0, D2ϕ)− F∞(D2ϕ)} − fk(x)

and that each one of the addends in braces tends to zero in Lp(B1) as
k → ∞. Indeed, the first one in modulus is less or equal than µk|Dϕ(x)|2 +
bk(x)|Dϕ(x)|+ ωk(‖vk‖L∞(B1)) dk(x), so its Lp-norm is bounded by

µk‖Dϕ‖2
L∞(B1) + ‖bk‖Lp(B1)‖Dϕ‖L∞(B1) + (C0 + 1)ωk(1) ‖dk‖Lp(B1);

while the Lp-norm of the second and third are bounded by

‖β̄Fk(·, 0)‖Lp(B1) (‖D2ϕ‖L∞(B1) + 1)
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and
|B1|1/p ‖Fk(0, 0, 0, D2ϕ)− F∞(D2ϕ)‖L∞(B1)

respectively, what concludes the proof. �

Proof of Local Regularity Estimates in the set Ω′. The main difference
from the case µ = 0, in the present proof, consists of defining a slightly different
scaling on the function, which allows us to have µ small in order to obtain the
conditions of the approximation lemma 3.8. For this, we will bring forward an
argument due to Wang [43], that uses the Cβ regularity of u.

Set W := ‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖d‖Lp(Ω) ω(‖u‖L∞(Ω)), which is less or
equal than W0, a constant that depends on C0 and ω(1)‖d‖Lp(Ω).

For ease of notation, assume 0 ∈ Ω′ and set s0 := min(r0, dist(0, ∂Ω′)).
Recall that this r0 = r0(θ) is such (Hθ) holds for all r ≤ min{r0, dist(x0, ∂Ω)},
for all x0 ∈ Ω. We will see, in the sequel, how the choice of θ is done.

We start assigning some constants. Fix an α ∈ (0, ᾱ) with α ≤ min(β, 1−
n/p). Then, choose γ = γ(α, ᾱ,K2) ∈ (0, 1

4 ] such that

22+ᾱK2 γ
ᾱ ≤ γα (3.9)

and define

ε = ε(γ) := K2 (2γ)1+ᾱ. (3.10)

This ε provides a δ = δ(ε) ∈ (0, 1), the constant of the approximation lemma
3.8 that, up to diminishing, can be supposed to satisfy

(5 + 2K2) δ ≤ γα. (3.11)

Now let σ = σ(s0, n, p, α, ᾱ, β, δ, µ, ‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω), K1, K2, C0) ≤ s0
2

such that

σmin (1−n
p
,β)m ≤ δ {32K2(K2 +K + 1)|B1|1/p}−1 (3.12)

where m := max {1, ‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω), µ(1 + 2βK1)W0}. Consider the
constantK(γ, α,K2) defined asK = K2 γ

−α(1− γα)−1+K2 γ
−1−α(1− γ1+α)−1

which is greater than K2 ≥ 1. In particular, B2σ(0) ⊂ Ω′ and we can define

N = Nσ(0) := σW + sup
x∈B2

|u(σx)− u(0)|.
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By construction and Cβ local quadratic estimate, N is uniformly bounded by

σW ≤ N ≤ (σ + 2βK1σ
β)W ≤ (1 + 2βK1)W0 σ

β. (3.13)

Claim 3.9 ũ(x) := 1
N
{u(σx) − u(0)} is an Lp-viscosity solution of F̃ [ ũ ] =

f̃(x) in B2, where

F̃ (x, r, p,X) := σ2

N
F
(
σx,Nr + u(0), N

σ
p,
N

σ2X
)
− σ2

N
F (σx, u(0), 0, 0)

and f̃ := f̃1 + f̃2 for

f̃1(x) := σ2f(σx)/N, f̃2(x) := −σ2F (σx, u(0), 0, 0) /N,

with F̃ satisfying (S̃C)µ̃ for b̃(x) := σb(σx), µ̃ := Nµ, d̃(x) := σ2d(σx) and
ω̃(r) := ω(Nr)/N .

Proof of Claim 3.9. Let ε > 0 and ϕ̃ ∈ W 2,p
loc (B2) such that ũ − ϕ̃ has a

minimum (maximum) at x0 ∈ B2. Define ϕ(x) := Nϕ̃(x/σ) + u(0) in B2σ(0)
and notice that u−ϕ has a minimum (maximum) at σx0 ∈ B2σ. Since u is an
Lp-viscosity solution on B2σ, for this ε > 0 there exists r > 0 such that

F (σx, u(σx), Dϕ(σx), D2ϕ(σx)) ≤ (≥) f(σx) + (−)Nε/σ2 a.e. in Br(x0),

which is equivalent to

σ2

N
F
(
σx,Nũ(x) + u(0), N

σ
Dϕ̃(x), N

σ2D
2ϕ̃(x)

)
≤ (≥) σ

2

N
f(σx) + (−) ε

a.e. in Br(x0). Adding −σ2F (σx, u(0), 0, 0) /N in both sides, we have

F̃ (x, ũ(x), Dϕ̃(x), D2ϕ̃(x)) ≤ (≥) f̃(x) + (−) ε a.e. in Br(x0).

Further, F̃ (x, 0, 0, 0) = 0 a.e. x ∈ B2 and for all r ∈ R, p ∈ Rn, X ∈ Sn,

F̃ (x, r, p,X)− F̃ (x, s, q, Y )

= σ2

N

{
F
(
σx,Nr + u(0), N

σ
p,
N

σ2X
)
− F

(
σx,Ns+ u(0), N

σ
q,
N

σ2Y
)}

≤M+
λ,Λ(X − Y ) + σb(σx) |p− q|+Nµ|p− q|(|p|+ |q|)

+ σ2d(σx)ω(N |r − s|)/N

=M+
λ,Λ(X − Y ) + b̃(x)|p− q|+ µ̃|p− q|(|p|+ |q|) + d̃(x) ω̃(|r − s|).

The estimate from below in (S̃C)µ̃ is analogous. �
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Notice that, with this definition and the choice of σ in (3.12), we have

• ‖ũ‖L∞(B2) ≤ 1 since N ≥ supB2 |u(σx)− u(0)|;

• ‖f̃1‖Lp(B2) = σ
2−np

N
‖f‖Lp(B2σ) ≤ σ1−n

p
‖f‖Lp(Ω)

W
≤ δ

16 ;

• ‖f̃2‖Lp(B2) ≤ σ
2−np

N
ω(|u(0)|) ‖d‖Lp(B2σ) ≤ σ1−n

p
ω(‖u‖∞)‖d‖Lp(Ω)

W
≤ δ

16 ; thus
‖f̃‖Lp(B2) ≤ δ

8 ;

• µ̃ = Nµ ≤ (1 + 2βK1)W0 µσ
β ≤ δ

8K2|B1|1/p
;

• ‖b̃‖Lp(B2) = σ1−n
p ‖b‖Lp(B2σ) ≤ δ

16K ;

• ω̃(1)‖d̃‖Lp(B2) = σ2−n
p
ω(N)
N
‖d‖Lp(B2σ) ≤ σ2−n

pω(1)‖d‖Lp(Ω) ≤ δ
32(K2+K+1)

from the hypothesis ω(r) ≤ ω(1)r for all r ≥ 0;

• ‖β̄
F̃

(·, 0)‖Lp(B1) ≤ δ/4, by choosing θ = δ/8. Indeed,

β̄
F̃

(x, x0) ≤ σ2

N
sup
X∈Sn

|F (σx, u(0), 0, N
σ2X)− F (σx, 0, 0, N

σ2X)|
‖X‖+ 1

+ sup
X∈Sn

|F (σx, 0, 0, N
σ2X)− F (σx0, 0, 0, Nσ2X)|
N
σ2 (‖X‖+ 1)

+ σ2

N
sup
X∈Sn

|F (σx0, 0, 0, Nσ2X)− F (σx0, u(0), 0, N
σ2X)|

‖X‖+ 1

+ σ2

N
sup
X∈Sn

|F (σx, u(0), 0, 0)|+ |F (σx0, u(0), 0, 0)|
‖X‖+ 1

≤ 2σ2

N
{d(σx) + d(σx0)}ω(|u(0)|) sup

X∈Sn
(‖X‖+ 1)−1 + βF (σx, σx0) (3.14)

and therefore,

‖β̄
F̃

(·, 0)‖Lp(B1) ≤ 4σ1−n
p
ω(‖u‖L∞(Ω))‖d‖Lp(Ω)

W
+
(

1
σn

ˆ
Bσ(0)

βF (y, 0)pdy
) 1
p

≤ δ/8 + θ = δ/4.

Notice that the only place we had to use the dependence on the bound
C0 is to measure the smallness of µ. Thus, if µ = 0, the final constant does not
depend on W0, neither on C0.

Remark 3.10 Still for µ = 0, if we split our analysis in two cases (as usual
for linear growth in the gradient, see for instance [27] ), then we can obtain
the conditions in terms of (Hθ). Indeed, in this case, we consider N := W . If
N ≥ 1, then ũ is as in claim 3.9. In this case, using N/σ2 ≥ 1 we can replace
β by β̄ in (3.14); for the estimate in ω̃(1)‖d̃‖Lp(B2) we only need ω(r) ≤ ω(1)r
for r ≥ 1. On the other hand, if N ≤ 1, we just define ũ = u(σx) and use that
each of the addends in W is less or equal than 1 and also
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ω̃(1)‖d̃‖Lp(B2) = σ2−n
pω(N)‖d‖Lp(B2σ) ≤ σ2−n

pω(1)‖d‖Lp(Ω).

Notice that, in this case, the final estimate we obtain for our original function
u is that ‖u‖C1,α(Ω) ≤ C ≤ C(W + 1), instead of ‖u‖C1,α(Ω) ≤ CW .

We refer to remarks 6.4 and 6.5 in [58] concerning βF and β̄F ; also
theorem 7.3 there for an improvement of this estimate in the parabolic case in
which ‖u‖C1,α(Ω) goes to zero when W does.

In particular F̃ , ũ, µ̃, b̃, d̃, ω̃ satisfy the hypotheses of lemma 3.8. Thus, if
we show that ‖ũ‖C1,α(B1) ≤ C, we will obtain that

‖u(σx)− u(0)‖C1,α(B1) ≤ CN ≤ (1 + 2βK1)CW

by (3.13), then ‖u‖C1,α(Bσ) ≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω)}, where the constant
depends on σ; the local estimate following by a covering argument.

Remark 3.11 In the case we have an arbitrary modulus of continuity, we
define N = σmax{W, 1} + supx∈B2 |u(σx) − u(0)|, which by construction and
Cβ local superlinear estimate,

σ ≤ N ≤ (σ + 2βK1σ
β) max{W, 1} ≤ (1 + 2βK1)W0 σ

β ≤ 1.

Then we have ω̃(1)‖d̃‖Lp(B2) = σ
2−np

N
ω(N)‖d‖Lp(B2σ) ≤ σ1−n

pω(1)‖d‖Lp(Ω).
Moreover, we can consider the smallness assumption in terms of (H)θ,

with β̄ instead of β in (3.14). In fact, in this case we use N/σ2 ≥ 1. In the
end, we obtain that the original function u is such that ‖u‖C1,α(Ω) is bounded
by C max{W, 1} ≤ C(W + 1), in place of CW .

With these rescalings in mind, we write F, u,M, µ, b, d, ω instead of
F̃ , ũ, µ̃, b̃, d̃, ω̃, in order to ease of notation. Now we can proceed with Caffarelli’s
iterations as in [47], [26], [48], which consists of finding a sequence of linear
functions lk(x) := ak + bk · x such that

(i)k ‖u− lk‖L∞(Brk ) ≤ r1+α
k

(ii)k |ak − ak−1| ≤ K2 r
1+α
k−1 , |bk − bk−1| ≤ K2 r

α
k−1

(iii)k |(u− lk)(rkx)−(u− lk)(rky)| ≤ (1+3K1) r1+α
k |x−y|β for x, y ∈ B1,

where rk = γk for some γ ∈ (0, 1), for all k ≥ 0, with the convention l−1 ≡ 0.
Observe that this proves the result. Indeed, bk = b0 + (b1 − b0) + . . . +

(bk− bk−1) converges to some b, since ∑∞k=0 |bk− bk−1| ≤ K2
∑∞
k=0(γα)k−1 <∞;

also |bk − b| ≤
∑∞
l=k |bl+1 − bl| ≤ K2

∑∞
l=k γ

αl = K2
γαk

1−γα . Similarly, |ak − a| ≤
K2

γk(1+α)

1−γ1+α and ak converges to some a.
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Next, for each x ∈ B1, there exists k ≥ 0 such that rk+1 < |x| ≤ rk.
Then, |u(x)− ak − bk · x| = |u(x)− lk(x)| ≤ r1+α

k , since x ∈ Brk , thus

|u(x)− a− b · x| ≤ |u(x)− ak − bk · x|+ |ak − a|+ |bk − b| |x|

≤ r1+α
k +K2

r1+α
k

1− γ1+α +K2
rαk

1− γα rk

=
{

1 + K2

1− γ1+α + K2

1− γα

}
1

γ1+α r
1+α
k+1 ≤ Cγ |x|1+α.

By definition of a differentiable function, a = u(0) , b = Du(0) and we will
have obtained |u(x)− u(0)−Du(0) · x| ≤ C|x|1+α and |Du(0)| ≤ C.

Notice that there was nothing special in doing the initial argument
around 0, which we had supposed in the beginning of the proof, belonging
to Ω′. Actually, by replacing it by any x0 ∈ Ω and setting the corresponding
s0 = min{r0, dist(x0, ∂Ω′)}, we define N = Nσ(x0) by changing 0 by x0 in
there. Then, our initial function u is differentiable at x0 with

|u(x)− u(x0)−Du(x0) · (x− x0)| ≤ CW |x− x0|1+α, |Du(x0)| ≤ CW

which implies, by appendix C, that Du ∈ Cα(Bσ) and ‖u‖C1,α(Bσ) ≤ CW .
Thus, for the complete local estimate, we just take finitely many such points
in order to cover Ω′.

We stress that (i)k and (ii)k are completely enough to imply the result, as
above, while (iii)k is an auxiliary tool to get them. So, let us prove (i)k− (iii)k
by induction on k.

For k = 0 we set a0 = b0 = 0. Recall that β andK1 are the constants from
the Cβ superlinear local estimate in B1 such that ‖u‖Cβ(B1) ≤ K̃1(1 + δ+ 1) ≤
3K1, which implies (iii)0. Obviously (i)0 and (ii)0 are satisfied too.

Notice that |bk| ≤
∑k
l=0 |bl−bl−1| ≤ K2

γα
∑∞
k=0 γ

αk = K2
γα(1−γα) ≤ K and also,

for all x ∈ B1, |lk(x)| ≤ |ak|+ |bk||x| ≤ K2
γ(1+α)

∑∞
k=0 γ

(1+α)k + K2
γα
∑∞
k=0 γ

αk = K.

As the induction step, we suppose the items (i)k − (iii)k valid in order
to construct ak+1 and bk+1 for which (i)k+1 − (iii)k+1 hold. Define

v(x) = vk(x) := (u− lk)(rkx)
r1+α
k

= u(rkx)− ak − bk · xrk
r1+α
k

, for all x ∈ B2.

Note that (i)k says precisely that |v(x)| ≤ 1 for all x ∈ B1. In addition, from
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this and (iii)k we get

‖v‖Cβ(B1) = ‖v‖L∞(B1) + sup
x,y∈B1
x 6=y

|v(x)− v(y)|
|x− y|β

≤ 2 + 3K1 =: K0.

Claim 3.12 v is an Lp-viscosity solution of Fk[v] = fk(x) in B2, for fk :=
f 1
k + f 2

k with f 1
k (x) := r1−α

k f(rkx); f 2
k (x) := −r1−α

k F (rkx, lk(rkx), bk, 0) and Fk
satisfying (SC)µFkFk

, where Fk(x, s, p,X) is defined as

r1−α
k F (rkx, r1+α

k s+ lk(rkx), rαk p+ bk, r
α−1
k X)− r1−α

k F (rkx, lk(rkx), bk, 0),

and the coefficients as bFk(x) := rkb(rkx) + 2rkµK, µFk := r1+α
k µ, dFk(x) :=

r2
kd(rkx) and ωFk(s) := r−1−α

k ω(r1+α
k s).

Proof of Claim 3.12. Let ε > 0 and ψ ∈ W 2,p
loc (B2) such that v − ψ

has a minimum (maximum) at x0. Define ϕ(x) := r1+α
k ψ(x/rk) + lk(x) for

all x ∈ B2rk ; then u − ψ has a minimum (maximum) at rkx0. Since u is an
Lp-viscosity solution in B2rk(0), there exists r ∈ (0, 2) such that

F (rkx, u(rkx), Dϕ(rkx), D2ϕ(rkx)) ≤ (≥) f(rkx) + (−) rα−1
k ε a.e. in Br(x0).

Using Dψ(x) = r−αk {Dϕ(rkx)− bk} and D2ψ(x) = r1−α
k D2ϕ(rkx) a.e., we get

r1−α
k F (rkx, r1+α

k v(x) + lk(rkx), rαkDψ(x) + bk, r
α−1
k D2ψ(x))

≤ (≥) r1−α
k f(rkx) + (−) ε

a.e. in Br(x0). Adding −r1−α
k F (rkx, lk(rkx), bk, 0) in both sides we obtain

Fk(x, v(x), Dψ,D2ψ) ≤ (≥) fk(x) + (−) ε a.e. in Br(x0).

Moreover, Fk satisfies (SC)µFkk , since Fk(x, 0, 0, 0) = 0 a.e. x ∈ B2 and

Fk(x, r, p,X)− Fk(x, s, q, Y ) = r1−α
k {F (rkx, r1+α

k r + lk(rkx), rαk p+ bk, r
α−1
k X)

− F (rkx, r1+α
k s+ lk(rkx), rαk q + bk, r

α−1
k Y )}

≤ M+
λ,Λ(X − Y ) + rkb(rkx)|p− q|

+ rkµ|p− q|{rαk (|p|+ |q|) + bk}+ r1−α
k d(rkx)ω(r1+α

k |r − s|)

=M+
λ,Λ(X − Y ) + bFk(x)|p− q|+ µFk |p− q|(|p|+ |q|) + dFk(x)ωFk(|r − s|)

and the left hand side is completely analogous. �
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Note that Fk, v, µFk , bFk , dFk , ωFk also satisfy the hypotheses of lemma 3.8,

‖bFk‖Lp(B1) ≤ r
1−n

p

k ‖b‖Lp(Brk ) + 2µK|B1|1/p ≤ δ;

‖f 1
k‖Lp(B1) ≤ r

1−n
p
−α

k ‖f‖Lp(Brk ) ≤
δ

2 ;

‖f 2
k‖Lp(B1) ≤ r

1−n
p
−α

k { ‖b‖Lp(Brk )|bk|+ (K + 1)ω(1)‖d‖Lp(Brk ) }

+ r1−α
k µ|bk|2|B1|

1
p ≤ δ

2;

ωFk(1)‖dFk‖Lp(B1) = r
1−n

p
−α

k ω(r1+α
k )‖d‖Lp(Brk ) ≤ r

1−n
p
−α

k ω(1)‖d‖Lp(B1) ≤ δ

and

β̄Fk(x, x0) ≤ r1−α
k sup

X∈Sn

|F (rkx, lk(rkx), bk, rα−1
k X)− F (rkx, 0, 0, rα−1

k X)|
‖X‖+ 1

+ sup
X∈Sn

|F (rkx, 0, 0, rα−1
k X)− F (rkx0, 0, 0, rα−1

k X)|
rα−1
k (‖X‖+ 1)

+ r1−α
k sup

X∈Sn

|F (rkx0, 0, 0, rα−1
k X)− F (rkx0, lk(rkx0), bk, rα−1

k X)|
‖X‖+ 1

+ r1−α
k sup

X∈Sn

|F (rkx, lk(rkx), bk, 0)|+ |F (rkx0, lk(rkx0), bk, 0)|
‖X‖+ 1

≤ 2r1−α
k {(d(rkx) + d(rkx0))ω(‖lk(rkx)‖L∞(Ω)) + (b(rkx) + b(rkx0))

|bk|+ µ|bk|2} sup
X∈Sn

(‖X‖+ 1)−1 + β̄F (rkx, rkx0)

since rα−1
k ≥ 1, then

‖β̄Fk(·, 0)‖Lp(B1) ≤ 4r
1−n

p
−α

k (K + 1)ω(1)‖d‖Lp(Brk ) + 4Kr
1−n

p
−α

k ‖b‖Lp(Brk )

+ 2µK2|B1|1/p + ‖β̄F (·, 0)‖Lp(Brk ) ≤ δ.

Let h = hk ∈ C(B1) be the C-viscosity solution of
 Fk(0, 0, 0, D2h) = 0 in B1

h = v on ∂B1 .

By ABP we have ‖h‖L∞(B1) ≤ ‖h‖L∞(∂B1) ≤ 1 and by the C1,ᾱ local estimate
(proposition 2.22), ‖h‖C1,ᾱ(B1/2) ≤ K2 ‖h‖L∞(B1) ≤ K2. Hence, by lemma 3.8
applied to Fk, v, µFk , bFk , dFk , ωFk , ψ := v |∂B1 , τ := β, K0 and h we obtain, for
ε given in (3.10), that ‖v − h‖L∞(B1) ≤ ε.

Define l(x) = lk(x) := h(0) +Dh(0) · x in B1, then,

‖v − l‖L∞(B2γ) ≤ γ1+α. (3.15)
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In fact, by the choice of γ ≤ 1
4 in (3.9), we have for all x ∈ B2γ(0) that

|v(x)− l(x)| ≤ |v(x)− h(x)|+ |h(x)− h(0)−Dh(0) · x|

≤ K2 (2γ)1+ᾱ +K2|x|1+ᾱ ≤ 2K2 (2γ)1+ᾱ ≤ γ1+α.

However, inequality (3.15) and the definition of v imply

|u(rkx)− lk(rkx)− r1+α
k h(0)− r1+α

k Dh(0) · x| ≤ r1+α
k γ1+α = r1+α

k+1 for x ∈ B2γ,

which is equivalent to

|u(y)− lk+1(y)| ≤ r1+α
k γ1+α = r1+α

k+1 for all y = rkx ∈ B2γrk = B2rk+1 ,

where lk+1(y) := lk(y) + r1+α
k h(0) + rαkDh(0) · y . Then, we define

ak+1 := ak + h(0) r1+α
k , bk+1 := bk +Dh(0) rαk

obtaining (i)k+1. Further, |ak+1 − ak| ≤ K2 r
1+α
k , |bk+1 − bk| ≤ K2 r

α
k , which is

(ii)k+1. To finish we note that, in order to prove (iii)k+1, it is enough to show

‖v − l‖Cβ(Bγ) ≤ (1 + 2K1) γ1+α−β. (3.16)

Indeed, if x, y ∈ B1 and (3.16) is true, then

|(v − l)(γx)− (v − l)(γy)| ≤ (1 + 2K1)γ1+α−β|γx− γy|β

⇔ |(u− lk)(γrkx)− (u− lk)(γrky)− rαkDh(0) · (x− y)γrk|

≤ (1 + 2K1)γ1+αr1+α
k |x− y|β

⇔ |(u− lk+1)(rk+1x)− (u− lk+1)(rk+1y)| ≤ (1 + 2K1) r1+α
k+1 |x− y|β.

Now, we obtain (3.16) applying the local quadratic Cβ estimate
(proposition 2.14) to the function w := v− l, which is an Lp-viscosity solution
in B2 of the inequalities

L−k [w]− µFk |Dw|2 ≤ gk(x), L+
k [w] + µFk |Dw|2 ≥ −gk(x), (3.17)

where gk := g1
k + g2

k , for g1
k(x) := |fk(x) − Fk(x, l(x), Dh(0), 0)| and g2

k(x) :=
dFk(x)ωFk(|w|), with L±k [u] :=M±

λ,Λ(D2u)± (bFk + 2K2 µFk)|Du|. Surely, this
finishes the proof of (3.16), since

|g1
k(x)| ≤ |fk(x)|+ bFk(x)|Dh(0)|+ ωFk(|l(x)|) dFk(x) + µFk |Dh(0)|2,
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then using that |l(x)| ≤ |h(0)|+|Dh(0)| |x| ≤ ‖h‖C1,ᾱ(B1/2) ≤ K2 for all x ∈ B1,
we have

‖ gk‖Lp(B1) ≤ ‖fk‖Lp(B1) + ‖bFk‖Lp(B1)K2 + (K2 + 1)ωFk(1)‖dFk‖Lp(B1)

+ µK2
2 |B1|

1
p + (1 + ‖w‖L∞(B1))ωFk(1)‖dFk‖Lp(B1) ≤ (5 + 2K2) δ ≤ γα

from the definition of δ in (3.11). Thus, using the estimate above and (3.15)
in the Cβ local estimate, properly scaled to the ball of radius γ, we obtain in
particular that

[w]β,Bγ ≤ γ−βK̃1 { ‖w‖L∞(B2γ) + γ2−n
p ‖gk‖Lp(B2γ) }

≤ γ−βK1 { γ1+α + γ2−n
p γα } ≤ 2K1 γ

1+α−β

and so

‖w‖Cβ(Bγ) = ‖w‖L∞(Bγ) + [w]β,Bγ
≤ γ1+α + 2K1 γ

1+α−β ≤ (1 + 2K1) γ1+α−β,

which is (3.16), as desired. �

Remark 3.13 By the proof above we see that, under µ, ‖b‖Lp(Ω), ω(1)‖d‖Lp(Ω)

≤ C1, both σ and the final constant C depend on n, p, λ,Λ, α, β,K1, K2, C0

and C1. This is very useful in applications, when we have, for example, a
sequence of solutions uk with their respective coefficients uniformly bounded;
with ‖uk‖L∞ and the Lp norm of the right hand side a priori bounded. Then
we can uniformly bound the C1,α norm of uk.

3.2.2
Boundary Regularity

Since our equation is invariant under diffeomorphisms and ∂Ω ∈ C1,1,
we only need to prove regularity and estimates for some half ball, say B+

1 (0).
Precisely, we need to prove the following theorem.

Theorem 3.14 Suppose F satisfies (SC)µ, f ∈ Lp(B+
1 ), for p > n and

ψ ∈ C1,τ (T) . Let u ∈ C(Ω) be an Lp-viscosity solution of
 F (x, u,Du,D2u) = f(x) in B+

1

u = ψ on T1

with ‖u‖L∞(B+
1 ) + ‖f‖Lp(B+

1 ) + ‖ψ‖C1,τ (T1) ≤ C0. Let α ∈ (0, ᾱ) such that
α ≤ min(β, 1 − n/p, τ, ᾱ(1 − τ)). Then, there exists θ = θ(n, p, λ,Λ, α, ᾱ,K3)
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such that if (Hθ) holds for some r0 > 0 and for all x0 ∈ B
+
1 , this implies that

u ∈ C1,α(B+
1/2) and

‖u‖
C1,α(B+

1/2) ≤ C {‖u‖L∞(B+
1 ) + ‖f‖Lp(B+

1 ) + ‖ψ‖C1,τ (T1)}

where C depends on r0, n, p, λ,Λ, α, ᾱ, β, µ, ‖b‖Lp(B+
1 ), ω(1)‖d‖Lp(B+

1 ), K1, K3

and the bound C0.

Here, K1, β is the pair of Cβ global superlinear estimate (proposition
2.14) in B+

1 , related to the initial n, p, λ,Λ, µ, ‖b‖Lp(Ω), τ and C1, such that

‖u‖
Cβ(B+

1 ) ≤ K1 {‖u‖L∞(B+
1 )+‖f‖Lp(B+

1 )+‖ψ‖Cτ (T1)+‖d‖Lp(B+
1 ) ω(‖u‖L∞(B+

1 ))}.

As in [38], we start proving a boundary version of the approximation
lemma in Bν

1 . For this set, let K3 ≥ 1 and ᾱ be the pair of C1,ᾱ boundary
estimate (proposition 2.24) associated to n, λ,Λ and τ , independently of ν > 0.

We can suppose that K1 ≥ K̃1 and β ≤ β̃, where K̃1, β̃ is the pair of Cβ

global estimate for the set Bν
1 (or Bν

1/2), independently of ν > 0, with respect
to an equation with given constants n, p, λ,Λ and bounds for the coefficients
µ ≤ 1, ‖b‖Lp(Bν2 ) ≤ 1 + 2K3 (3 + 2Cn)|B1|1/p (for a constant Cn, depending
only on n, from lemma 6.35 of [41] for ε = 1/2, that will appear in the sequel)
and ω(1)‖d‖Lp(Bν2 ) ≤ 1, for any solution in Bν

2 satisfying ‖u‖L∞(Bν2 ) ≤ 1 and
‖ψ‖C1,τ (Tν2) ≤ 2 (or for any solution in Bν

1 with coefficients in Bν
1 ).

Lemma 3.15 Assume F satisfies (SC)µ in Bν
1 for some ν ∈ [0, 1] and

f ∈ Lp(Bν
1 ), where p > n. Let ψ ∈ Cτ (∂Bν

1 ) with ‖ψ‖Cτ (∂Bν1 ) ≤ K0. Then,
for all ε > 0, there exists δ ∈ (0, 1), δ = δ(ε, n, p, λ,Λ, τ,K0), such that if

‖β̄F (·, 0)‖Lp(Bν1 ) ≤ δ, ‖f‖Lp(Bν1 ) ≤ δ, µ ≤ δ, ‖b‖Lp(Bν1 ) ≤ δ, ω(1)‖d‖Lp(Bν1 ) ≤ δ

then any two Lp-viscosity solutions v and h of F (x, v,Dv,D2v) = f(x) in Bν
1

v = ψ on ∂Bν
1

and  F (0, 0, 0, D2h) = 0 in Bν
1

h = ψ on ∂Bν
1

respectively, satisfy ‖v − h‖L∞(Bν1 ) ≤ ε.
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Proof. For ε > 0, we will prove the existence of δ ∈ (0, 1) as above with
δ ≤ 2−

n
2p δ̃1/2, where δ̃ is the constant from proposition 2.6. Suppose the

contrary, then there exist ε0 > 0 and sequences νk ∈ [0, 1], Fk satisfying (SC)µk
for bk, dk ∈ Lp+(Bνk

1 ), µk ≥ 0, ωk modulus, δk ∈ (0, 1) with δk ≤ 2−
n
2p δ̃k

1/2 and
fk ∈ Lp(Bνk

1 ) such that

‖β̄Fk(·, 0)‖Lp(Bνk1 ), ‖fk‖Lp(Bνk1 ), µk, ‖bk‖Lp(Bνk1 ), ωk(1)‖dk‖Lp(Bνk1 ) ≤ δk −−−→
k→∞

0

with vk, hk ∈ C(Bνk
1 ) Lp-viscosity solutions of

 Fk(x, vk, Dvk, D2vk) = fk(x) in Bνk
1

vk = ψk on ∂Bνk
1

and  Fk(0, 0, 0, D2hk) = 0 in Bνk
1

hk = ψk on ∂Bνk
1

where ‖ψk‖Cτ (∂Bνk1 ) ≤ K0 but ‖vk − hk‖L∞(Bνk1 ) > ε0.

Analogously to the proof of lemma 3.8, ABP implies that
‖vk‖L∞(Bνk1 ) , ‖hk‖L∞(Bνk1 ) ≤ C0 for large k, where C0 is a constant that
depends only on n, p, λ,Λ and K0.

Notice that Bνk
1 has the exterior cone property, then by the Cβ global

quadratic estimate (proposition 2.14) we obtain β ∈ (0, 1) such that

‖vk‖Cβ(Bνk1 ) , ‖hk‖Cβ(Bνk1 ) ≤ C , for all k ∈ N, (3.18)

where β = min (β0, τ/2) for some β0 = β0(n, p, λ,Λ) and C depending on
n, p, λ,Λ and C0. Observe that β and C do not depend on k, since µk,
‖bk‖Lp(Bνk1 ), ωk(1) ‖dk‖Lp(Bνk1 ), ‖fk‖Lp(Bνk1 ) ≤ 1 and diam(Bνk

1 ) ≤ 2, for all
k ∈ N. Here we have different domains, what prevents us from directly using
the compact inclusion Cβ into the set of continuous functions, in order to
produce convergent subsequences. But this is just a technicality, as in [38], by
taking a subsequence of νk that converges to some ν∞ ∈ [0, 1], which we can
suppose monotonous. Hence we consider two cases: Bν∞

1 ⊂ Bνk
1 ⊂ B

νk+1
1 ⊂ ...

or ... ⊂ B
νk+1
1 ⊂ Bνk

1 ⊂ Bν∞
1 , for all k ∈ N. In the first one, we use the compact

inclusion on Bν∞
1 . In the second, we make a trivial extension of our functions

to the larger domain Bν∞
1 , i.e. by defining ψk in B̃k = B1∩{−ν∞ ≤ xn ≤ −νk}

in such a way that ‖ψk‖Cτ (B̃k) ≤ C0, from where we can suppose that (3.18)
holds on Bν∞

1 for the extended vk and hk. In both cases, we obtain convergent
subsequences vk −→ v∞, hk −→ h∞ in C(Bν∞

1 ) as k →∞, for some continuous
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functions v∞, h∞ in Bν∞
1 , with v∞ = h∞ = ψ∞ on ∂Bν∞

1 .
Finally, we claim that v∞ and h∞ are viscosity solutions of F∞(D2u) = 0 in Bν∞

1

u = ψ∞ on ∂Bν∞
1

,

therefore equal by proposition 2.23, which contradicts ‖v∞ − h∞‖L∞(B1) ≥ ε0.
For h∞, it follows by passing to uniform limits in the inequalities satisfied

by hk. For v∞, we apply proposition 2.12 together with observation 2.13, since
for each ϕ ∈ C2(B), where B ⊂ Bν∞

1 , we have that Fk(x, vk, Dϕ,D2ϕ) −
fk(x)−F∞(D2ϕ)→ 0 as k →∞ in Lp(B), analogously to the end of the proof
of lemma 3.8. �

Proof of theorem 3.14. We proceed as in the local case, introducing the
corresponding changes that come from the boundary context. Our approach
is similar to [38]. Now we set W := ‖u‖L∞(B+

1 ) + ‖f‖Lp(B+
1 ) + ‖ψ‖C1,τ (T1) +

‖d‖Lp(B+
1 ) ω(‖u‖L∞(B+

1 )) ≤ W0 and s0 := min(r0,
1
2).

Fix α ∈ (0, ᾱ) with α ≤ min(β, 1 − n
p
, τ, ᾱ(1 − τ)) and choose γ =

γ(n, α, ᾱ,K3) ∈ (0, 1
4 ] such that 22+ᾱK4 γ

ᾱ ≤ γα, where K4 = K4 (K3, n) ≥ 1
will be specified later. Thus, define ε = ε(γ) by K4 (2γ)1+ᾱ. This ε provides
a δ = δ(ε) ∈ (0, 1), the constant of the approximation lemma 3.15 which, up
to diminishing, can be supposed to satisfy (5 + 2K4) δ ≤ γα. Next we chose
σ = σ(s0, n, p, α, ᾱ, β, δ, µ, ‖b‖Lp(B+

1 ), ω(1)‖d‖Lp(B+
1 ), K1, K3, C0) ≤ s0

2 such that

σmin (1−n
p
,β)m ≤ δ {32K2(K4 +K + 1)|B1|1/p}−1

where m := max {1, ‖b‖Lp(B+
1 ), ω(1)‖d‖Lp(B+

1 ), µ(1 + 2βK1)W0} and K :=
K4 γ

−α(1− γα)−1 +K4 γ
−1−α(1− γ1+α)−1 ≥ K4 ≥ 1.

Fix z = (z′, zn) ∈ B+
1/2(0). We split our analysis in two cases, depending

on the distance of the point z to the bottom boundary:

1) zn < σ
2 ⇔ ν < 1

2 and 2) zn ≥ σ
2 ⇔ ν ≥ 1

2 , for ν := zn
σ
.

Suppose the first one. In this case we proceed as in [38] by translating
the problem to the set Bν

2 , in order to use the approximation lemma in its
boundary version 3.15. Notice that, for B+

2σ(z) = B2σ(z) ∩ {xn > 0}, which is
a subset of B+

1 (0), and for Bν
2 (0) = B2(0) ∩ {xn > −ν}, we have

x ∈ Bν
2 (0) ⇔ σx+ z ∈ B+

2σ(z) ⊂ B+
1 (0).
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Figure 3.1: Illustration of the variable change, from B+
2σ(z) to Bν

2 (0).

Then we define N = Nσ(z) := σW + supx∈Bν2 (0) |u(σx + z) − u(z)|. The
Cβ estimate, this time the global one, restricted to the set B+

2σ(z), yields

σW ≤ N ≤ (σ + 2βK1σ
β)W ≤ (1 + 2βK1)σβW0. (3.19)

Next we set ũ(x) := 1
N
{u(σx+ z)−u(z)}. As in claim 3.9, ũ is an Lp-viscosity

solution of  F̃ (x, ũ,Dũ,D2ũ) = f̃(x) in Bν
2

ũ = ψ̃ on Tν2

for

F̃ (x, r, p,X) := σ2

N
F
(
σx+ z,Nr + u(z), N

σ
p,
N

σ2X
)
− σ

2

N
F (σx+ z, u(z), 0, 0),

ψ̃(x) := 1
N
{ψ(σx+ z)− u(z)} and f̃ := f̃1 + f̃2 where

f̃1(x) := σ2f(σx+ z)/N ; f̃2(x) := −σ2F (σx+ z, u(z), 0, 0)/N,

F̃ satisfying (S̃C)µ̃ for b̃(x) = σb(σx + z), µ̃ = Nµ, d̃(x) = σ2d(σx + z) and
ω̃(r) = ω(Nr)/N .

With this definition and the choice of σ in (3.12), we get ‖ũ‖L∞(Bν2 ) ≤ 1,
‖f̃‖Lp(Bν2 ) ≤ δ

8 , µ̃ ≤
δ

8K2|B1|1/p
, ‖b̃‖Lp(Bν2 ) ≤ δ

16K , ω̃(1)‖d̃‖Lp(Bν2 ) ≤ δ
32(K4+K+1)

and ‖β̄
F̃

(0, ·)‖Lp(Bν1 ) ≤ δ/4 by choosing θ = δ/8, as in the local case.
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Furthermore, we have ‖ψ̃‖L∞(Tν2) ≤ ‖ũ‖L∞(Bν2 ) ≤ 1 and then

‖Dψ̃‖Cτ (Tν2) ≤
σ

N
‖Dψ‖L∞(B2σ(z)∩T) + σ

N
sup

x 6=y∈Tν2

|Dψ(σx+ z)−Dψ(σy + z)|
|σx− σy|τ

στ

≤
‖ψ‖C1,τ (T)

W
≤ 1

since N ≥ σW . Therefore, we obtain

‖ψ̃‖C1,τ (Tν2) = ‖ψ̃‖L∞(Tν2) + ‖Dψ̃(x)‖Cτ (Tν2) ≤ 2.

We can suppose, up to this rescaling, that F, u, µ, b, d, ω satisfy the former
hypotheses related to F̃ , ũ, µ̃, b̃, d̃, ω̃. Thus, we move to the construction of
lk(x) := ak + bk · x such that

(i)k ‖u− lk‖L∞(Bνrk ) ≤ r1+α
k

(ii)k |ak − ak−1| ≤ K4 r
1+α
k−1 , |bk − bk−1| ≤ K4 r

α
k−1

(iii)k |(u− lk)(rkx)−(u− lk)(rky)| ≤ C1,4 r
1+α
k |x−y|β for all x, y ∈ Bνk

1

where C1,4 = C1,4 (K1, K4) and νk := ν
rk
, rk = γk for some γ ∈ (0, 1), for all

k ≥ 0; again l−1 ≡ 0.

We emphasize that these iterations will prove that the function u (which
plays the role of ũ) is differentiable at 0 and provide

|u(x)− u(0)−Du(0) · x| ≤ C|x|1+α, |Du(0)| ≤ C

for every x ∈ Bν
1 . In terms of our original function defined on B+

1 , it means
that u will be differentiable at z, for all z with zn <

σ
2 . On the other hand,

the second case zn ≥ σ
2 is covered by the local part, section 3.2.1, since in this

situation we are far away from the bottom boundary. Consequently, boundary
superlinear regularity and estimates on B+

1 will follow by a covering argument.
For the proof of (i)k − (iii)k, we use induction on k. For k = 0 we set

a0 = b0 = 0. Recall that β and K1 are the constants from Cβ quadratic global
estimate in the set Bν

1 , then we have ‖u‖Cβ(Bν1 ) ≤ K̃1(1 + δ+ 2 + 1) ≤ 5K1 and
so (iii)0 for ν0 = ν, (i)0 and (ii)0 are valid.

Analogously to the the local case, we have |bk|, ‖lk‖L∞(Bνrk ) ≤ K. For the
induction’s step we suppose (i)k − (iii)k and construct ak+1, bk+1 such that
(i)k+1 − (iii)k+1 are valid. Define

v(x) = vk(x) := (u− lk)(rkx)
r1+α
k

= u(rkx)− ak − bk · xrk
r1+α
k

, for all x ∈ Bνk
2 .
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Since rkx ∈ Bν
rk
⇔ x ∈ Bνk

1 , (i)k says that |v| ≤ 1 in Bνk
1 . From this and (iii)k,

‖v‖
Cβ(Bνk1 ) = ‖v‖L∞(Bνk1 ) + sup

x,y∈Bνk1
x 6=y

|v(x)− v(y)|
|x− y|β

≤ 1 + C1,4 =: K0.

Notice that, as in claim 3.12, v is an Lp-viscosity solution of Fk(x, v,Dv,D2v) = fk(x) in Bνk
2

v = ψk on Tνk2

for fk := f 1
k + f 2

k ; f 1
k (x) := r1−α

k f(rkx), f 2
k (x) := −r1−α

k F (rkx, lk(rkx), bk, 0)
and Fk(x, s, p,X), defined as

r1−α
k F (rkx, r1+α

k s+ lk(rkx), rαk p+ bk, r
α−1
k X)− r1−α

k F (rkx, lk(rkx), bk, 0),

satisfying (SC)µFkFk
with coefficients bFk(x) = rkb(rkx) + 2rkµK, µFk = r1+α

k µ,
dFk(x) = r2

kd(rkx) and ωFk(s) = r−1−α
k ω(r1+α

k s).
These Fk, v, µFk , bFk , dFk , ωFk still satisfy the hypotheses of lemma 3.15,

since ‖bFk‖Lp(Bνk1 ) ≤ δ, ωFk(1)‖dFk‖Lp(Bνk1 ) ≤ δ, ‖fk‖Lp(Bνk1 ) ≤ δ and
‖β̄Fk(·, 0)‖Lp(Bνk1 ) ≤ δ, see section 3.2.1.

Let h = hk ∈ C(Bνk
1 ) be the C-viscosity solution of

 Fk(0, 0, 0, D2h) = 0 in Bνk
1

h = v on ∂Bνk
1

given by proposition 2.23, since Bνk
1 has the uniform exterior cone condition.

From ABP we get ‖h‖L∞(Bνk1 ) ≤ ‖h‖L∞(∂Bνk1 ) ≤ 1. Further, h = v = ψk ∈
C1,τ (B1 ∩ {xn = −νk}) and we can find a uniform bound for the C1,τ norm of
ψk. Indeed, ‖ψk‖L∞(Tνk1 ) ≤ ‖v‖L∞(Bνk1 ) ≤ 1 and

[Dψk]τ,Tνk1 = sup
x,y∈Tνk1
x 6=y

|Dψk(x)−Dψk(y)|
|x− y|τ

= sup
x̃,ỹ∈Tνrk

x̃=rkx, ỹ=rky

|Dψ(x̃)−Dψ(ỹ)|
|x̃− ỹ|τ

rτ−αk ≤ 1

since ‖Dψ‖Cτ (Tν1) ≤ 1 and α ≤ τ . Moreover, using the global Holder
interpolation in smooth domains, lemma 6.35 of [41], for ε = 1

2 , there exists a
constant Cn, which does not depend1 on k, such that

‖ψk‖C1(Tνk1 ) ≤ Cn ‖ψk‖C(Tνk1 ) + 1
2‖ψk‖C1,τ (Tνk1 )

1The proof of lemma 6.35 in [41] is based on an interpolation inequality (6.89) for
adimensional Holder norms (that does not depend on the domain); followed by a partition
of unity that straightens the boundary (not necessary in our case Tνk

1 ⊂ Rn−1).

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



Chapter 3. Hölder Regularity 54

hence

‖ψk‖C1,τ (Tνk1 ) = ‖ψk‖C1(Tνk1 ) + [Dψk]τ,Tνk1 ≤ Cn + 1
2‖ψk‖C1,τ (Tνk1 ) + 1

i.e. ‖ψk‖C1,τ (Tνk1 ) ≤ 2(Cn+1). Thus, the C1,ᾱ global estimate (proposition 2.24)
yields

‖h‖
C1,ᾱ(Bνk1/2) ≤ K3 {‖h‖L∞(Bνk1 ) + ‖ψk‖C1,τ (Tνk1 )} ≤ K3 (3 + 2Cn) =: K4.

Now, the approximation boundary lemma 3.8 applied to Fk, v, h,νk, µFk , bFk ,
dFk , ωFk , ψk, β,K0 gives us that ‖v − h‖L∞(Bνk1 ) ≤ ε.

Therefore, defining l(x) = lk(x) := h(0)+Dh(0) ·x in Bνk
1 , it follows that

‖v − l‖L∞(Bνk2γ ) ≤ γ1+α. (3.20)

In fact, by the choice of γ we have, for all x ∈ Bνk
2γ(0),

|v(x)− l(x)| ≤ |v(x)− h(x)|+ |h(x)− h(0)−Dh(0) · x| ≤ 2K4 (2γ)1+ᾱ ≤ γ1+α.

Next, (3.20) and the definition of v imply

|u(rkx)− lk(rkx)− r1+α
k h(0)− r1+α

k Dh(0) · x| ≤ r1+α
k γ1+α = r1+α

k+1 for x ∈ Bνk
2γ ,

which is equivalent to

|u(y)− lk+1(y)| ≤ r1+α
k γ1+α = r1+α

k+1 for all y = rkx ∈ Bν
2γrk = Bν

2rk+1
,

where lk+1(y) := lk(y) + r1+α
k h(0) + rαkDh(0) · y. Then, we define ak+1 := ak +

h(0)r1+α
k , bk+1 := bk +Dh(0)rαk , obtaining (i)k+1. Also, |ak+1 − ak| ≤ K4 r

1+α
k ,

|bk+1− bk| ≤ K4 r
α
k , which is (ii)k+1. As in the local case, to finish the proof of

(iii)k+1, it is enough to show that

‖v − l‖
Cβ(Bνkγ ) ≤ C1,4 γ

1+α−β.

Let us see that this is obtained by applying the global superlinear Cβ

estimate (proposition 2.14) to the function w := v − l.
Analogously to the local case, w is an Lp-viscosity solution in Bνk

2 of
(3.17) (see notations and coefficients there), in addition to w = ψk − l on Tνk2 .
The definition of δ gives us ‖gk‖Lp(Bνk1 ) ≤ (5 + 2K4)δ ≤ γα. Further, using that
ψk = h on Tνk2γ, we obtain ‖ψk − l‖L∞(Tνk2γ ) ≤ γ1+α.

Now, since ψk− l ∈ C1(Tνk2γ), it is a Lipschitz function with constant less
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or equal than ‖Dψk −Dl ‖C(Tνk2γ ) ≤ 2(Cn + 1) +K4 ≤ 2K4 and thus

|(ψk − l)(x)− (ψk − l)(y)|

= |(ψk − l)(x)− (ψk − l)(y)|τ |(ψk − l)(x)− (ψk − l)(y)|1−τ

≤ (2K4)τ (2K4)1−τ |x− y|τ γ(1+ᾱ)(1−τ)

= 2K4 |x− y|τ γ1−τ+ᾱ(1−τ).

Then, the choice of α implies that [ψk− l]τ,Tνk2γ ≤ 4K4 γ
1−τ+α. Hence, from this,

(3.20) and Cβ global estimate, properly scaled for the radius γ, we obtain

[w]
β,B

νk
γ
≤ γ−βK̃1 { ‖w‖L∞(Bνk2γ ) + γ2−n

p ‖gk‖Lp(Bνk2γ )

+ ‖ψk − l‖L∞(Tνk2γ ) + γτ [ψk − l]τ,Tνk2γ }

≤ γ−βK1 { 2γ1+α + γ2−n
p γα + 4K4 γ

1+α } ≤ K1 (3 + 4K4) γ1+α−β

and finally, for C1,4 := 1 + (3 + 4K4)K1 = C1,4 (K1, K4), we conclude

‖w‖
Cβ(Bνkγ ) = ‖w‖L∞(Bνkγ ) + [w]

β,B
νk
γ

≤ γ1+α + (3 + 4K4)K1 γ
1+α−β ≤ C1,4 γ

1+α−β.

�

3.2.3
The Global Blend

Our goal in this section is to prove the global statement of theorem 3.1, by
combining the local regularity estimates derived in section 3.2.1 with theorem
3.14 in section 3.2.2. Even though the argument is easily assembled from the
previous constructions, we compile the details for completeness since, on the
one hand, some technical difficulties arise due to the presence of quadratic
growth in the gradient; on the other hand, it permits to clarify some points in
the linear growth context in [38].

Let us deal with the model equation (ME) for L = F . More precisely,
assume that u ∈ C(Ω) is an Lp-viscosity solution of
 F (x, u,Du,D2u) + c(x)u+ 〈M(x)Du,Du〉 = f(x) in Ω

u = ψ on ∂Ω
(3.21)

for ψ ∈ C1,τ (∂Ω) and F satisfying (SC). Meanwhile we quickly discuss the
changes when we have an arbitrary superlinear growth (since the latter is
easier to handle when we are interested in diffeomorphic invariance property).
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From section 3.2.1 we obtain local regularity estimates for any Ω′ ⊂⊂ Ω,
with a fixed distance from the boundary. So, as in [38], we only need to make
a careful analysis on the neighborhoods of boundary points. In fact, in order
to use theorem 3.14, near a boundary point we will make a diffeomorphic
change of independent variable, which takes a neighborhood of ∂Ω into B+

1 .
This change only depends on the coefficients of the equation and on the C1,1

character of the boundary.
Let x0 ∈ ∂Ω. Since ∂Ω ∈ C1,1, there exists an open set Ux0 containing x0

and a C1,1 diffeomorphism

Φ : Ux0 ⊂ Rn −→ B1(0) ⊂ Rn

x = (x1, . . . , xn) 7−→ (Φ1(x), . . . ,Φn(x))

such that Φ(x0) = 0 and Φ (Ux0∩Ω) = B+
1 , Φ (Ux0∩∂Ω) = T1 = B1∩{xn = 0}.

Note that u ∈ C(Ω) is, in particular, an Lp-viscosity solution of the first
equation in (3.21) in the smaller domain Ux0 ∩ Ω, with u = ψ on ∂Ω ∩ Ux0 .
Also, the function ũ := u ◦ Φ−1 is continuous in B+

1 .
We claim that ũ is an Lp-viscosity solution of F̃ (x, ũ,Dũ,D2ũ) + c̃(x)ũ+ 〈M̃(x)Dũ,Dũ〉 = f̃(x) in B+

1

ũ = ψ̃ on T1
(3.22)

where c̃ := c ◦ Φ−1, f̃ := f ◦ Φ−1, M̃ := (DΦT ◦ Φ−1)M ◦ Φ−1(DΦ ◦ Φ−1),
ψ̃ := ψ ◦ Φ−1 and F̃ (x, r, p,X), defined as

F ( Φ−1(x), r, (DΦ ◦ Φ−1)p, (DΦT ◦ Φ−1)X(DΦ ◦ Φ−1) +
(
(∂ij Φ ◦ Φ−1) p

)
i,j

) ),

satisfies (S̃C), with ellipticity coefficients λ̃ = λc1
Φ, Λ̃ = Λc2

Φ, for some positive
constants c1

Φ, c
2
Φ, b̃ := ‖DΦ ◦ Φ−1‖∞ b ◦ Φ−1 + n2Λ max1≤i,j≤n |∂ijΦ ◦ Φ−1|,

d̃ := d ◦ Φ−1 and ω̃ := ω. Moreover,

β
F̃

(x, x0) ≤ C1
Φ βF (Φ−1(x),Φ−1(x0)) + C2

Φ |x− x0| (3.23)

and

β̄
F̃

(x, x0) ≤ C3
Φ β̄F (Φ−1(x),Φ−1(x0)) + C2

Φ |x− x0|, (3.24)

for some positive constants C1
Φ, C2

Φ and C3
Φ. Furthermore, F̃ is convex or

concave provided F is (notice that this last statement is important to deal
with the W 2,p results).

Let us prove the claim. Of course c̃, d̃ f̃ ∈ Lp(B+
1 ), ψ̃ ∈ C1,τ (T) and
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ũ = ψ̃ on T. Observe that ‖M‖L∞(B+
1 ) ≤ C(Φ)‖M‖L∞(Ω).

Let ϕ̃ ∈ W 2,p
loc (B+

1 ) a test function and set ϕ := ϕ̃ ◦ Φ ∈ W 2,p
loc (Ux0 ∩ Ω).

Since Φ ∈ C1,1, it follows that DΦ is Lipschitz and so differentiable a.e.,
then the second order partial derivatives of Φ exist at almost every point. We
know (for instance, theorem 4 in section 5.8 of [29]) that DΦ ∈ W 1,∞(Ω), so
Φ ∈ W 2,q(Ω) for all q ≤ +∞. Thus b̃ ∈ Lp(Ω) and we can calculate

∂i ϕ (x) =
n∑
k=1

∂k ϕ̃ (Φ(x)) ∂Φk

∂xi
(x)

∂ij ϕ (x) =
n∑
k=1

n∑
l=1

∂kl ϕ̃ (Φ(x)) ∂Φl

∂xj

∂Φk

∂xi
+

n∑
k=1

∂k ϕ̃ (Φ(x)) ∂
2Φk

∂xixj

and then

Dϕ = DΦ (Dϕ̃ ◦ Φ) ∈Mn×1(R)

D2ϕ = DΦT (D2ϕ̃ ◦ Φ)DΦ + (∂ij Φ (Dϕ̃ ◦ Φ))1≤i,j≤n ∈Mn×n(R)

under the convention that ∂ij Φ is the line matrix in M1×n(R) given by the
second order derivatives in direction i, j of the coordinate functions Φk, i.e.
∂ijΦ =

(
∂2Φ1
∂xixj

· · · ∂2Φn
∂xixj

)
. In order to give meaning to the quadratic form

〈M(x)p, p〉, for a matrixM(x) ∈Mn×n(R), we make the convention that vector
derivatives of functions from Rn into R are column matrices in Mn×1(R).

Observe that the definition on the coefficients of the equation satisfied
by ũ in (3.22) is the only one that makes sense when we evaluate our original
equation (3.21) with u, on the derivatives of the test function ϕ, and apply
Φ−1 to obtain the desired equation in B+

1 , i.e.

F (x, u,Dϕ,D2ϕ) ◦ Φ−1 = F (Φ−1(x), u ◦ Φ−1, (DΦ ◦ Φ−1)Dϕ̃,

(DΦT ◦ Φ−1)D2ϕ̃ (DΦ ◦ Φ−1) +
(
(∂ij Φ ◦ Φ−1)Dϕ̃

)
i,j

)

= F̃ (x, ũ,Dϕ̃,D2ϕ̃)

and

〈M(x)Dϕ,Dϕ〉 ◦ Φ−1 = 〈 (M ◦ Φ−1)(x) (DΦ ◦ Φ−1)Dϕ̃, (DΦ ◦ Φ−1)Dϕ̃ 〉

=
(
(DΦ ◦ Φ−1)Dϕ̃

)T
(M ◦ Φ−1)(x)

(
(DΦ ◦ Φ−1)Dϕ̃

)
= (Dϕ̃)T

(
(DΦ ◦ Φ−1)T (M ◦ Φ−1)(x)(DΦ ◦ Φ−1)

)
(Dϕ̃)

= 〈M̃(x)Dϕ̃,Dϕ̃〉.
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Notice that

sup
λI≤A=(aij)ij≤ΛI

tr
(
A (∂ijΦ ◦ Φ−1)(p− q)

)
= sup

λI≤A≤ΛI

n∑
i,j=1
|aij(∂ijΦ ◦ Φ−1)(p− q)| ≤ n2Λ max

1≤i,j≤n
|∂ijΦ ◦ Φ−1| |p− q|

and

sup
λI≤A≤ΛI

tr
(
A(DΦT ◦ Φ−1)X(DΦ ◦ Φ−1)

)
= sup

λI≤A≤ΛI
tr
(
(DΦ ◦ Φ−1)A(DΦT ◦ Φ−1)X

)
= sup

λ̃I≤Ã≤Λ̃I
tr(ÃX),

since 〈Ãξ, ξ〉 = ξT (DΦ◦Φ−1)A(DΦT ◦Φ−1)ξ = (DΦT ◦Φ−1ξ)TA(DΦT ◦Φ−1ξ) ∈
[λ,Λ]|η|2 ⊂ [λ̃, Λ̃]|ξ|2, for η = DΦT ◦ Φ−1ξ ⇔ ξ = DΦ ◦ Φ−1η which is such
that ‖DΦ ◦ Φ−1‖−1

∞ |ξ| ≤ |η| ≤ ‖DΦT ◦ Φ−1‖∞|ξ|. Then, define c1
Φ and c2

Φ,
respectively, as the minimum and maximum of the numbers ‖DΦ ◦ Φ−1‖−2

∞

and ‖DΦT ◦Φ−1‖2
∞, both being positive since the determinant of the Jacobian

matrix of Φ is equal to 1.
Therefore, F̃ satisfies (S̃C), since

F̃ (x, r, p,X)− F̃ (x, s, q, Y )

= F (Φ−1(x), r, (DΦ ◦ Φ−1)p, (DΦT ◦ Φ−1)X(DΦ ◦ Φ−1) +
(
(∂ijΦ ◦ Φ−1)p

)
i,j

))

− F (Φ−1(x), s, (DΦ ◦ Φ−1)q, (DΦT ◦ Φ−1)Y (DΦ ◦ Φ−1) +
(
(∂ijΦ ◦ Φ−1)q

)
i,j

))

≤M+
λ,Λ((DΦT ◦ Φ−1)(X − Y )(DΦ ◦ Φ−1) +

(
(∂ij Φ ◦ Φ−1) (p− q)

)
i,j

))

+ b(Φ−1(x)) |(DΦ ◦ Φ−1)(p− q)|+ d(Φ−1(x))ω((s− r)+)

≤M+
λc1Φ,Λc

2
Φ
(X − Y ) +M+

λ,Λ

(
(∂ij Φ ◦ Φ−1) (p− q)

)
i,j

)

+ ‖DΦ ◦ Φ−1‖∞ b(Φ−1(x)) |p− q|+ d(Φ−1(x))ω((s− r)+)

≤M+
λ̃,Λ̃(X − Y ) + b̃(x)|p− q|+ d̃(x)ω̃((s− r)+)

Of course the bounds on the left hand side of (S̃C) are completely
analogous. On the other hand, if we compute F with (SC)µ, we directly obtain
F̃ satisfying (SC)µ̃ for µ̃ := ‖DΦ ◦ Φ−1‖2

∞ µ .
Now we prove that the oscillations of β and β̄ remain controlled after the

change of variable. In this case we need extra care to deal with Φ at different
points x and x0. This was first observed by Prof. Diego Moreira, who suggested
the following argument.
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Set Qx := DΦ (Φ−1(x)), then F̃ (x, 0, 0, X) = F (Φ−1(x), 0, 0, QT
xXQx), so

|F̃ (x, 0, 0, X)− F̃ (x0, 0, 0, X)|

= |F (Φ−1(x), 0, 0, QT
xXQx)− F (Φ−1(x0), 0, 0, QT

x0XQx0)|

≤ |F (Φ−1(x), 0, 0, QT
xXQx)− F (Φ−1(x), 0, 0, QT

x0XQx0)|

+ |F (Φ−1(x), 0, 0, QT
x0XQx0)− F (Φ−1(x0), 0, 0, QT

x0XQx0)|

The second addend above is bounded by

βF (Φ−1(x),Φ−1(x0)) ‖QT
x0XQx0‖ ≤ C1

Φ βF (Φ−1(x),Φ−1(x0))‖X‖, (3.25)

where C1
Φ := ‖DΦ ◦ Φ−1‖∞‖DΦT ◦ Φ−1‖∞. For the first one, notice that

|F (x, 0, 0, X)− F (x, 0, 0, X0)| ≤ max{M+(X −X0),M+(X0 −X)}, and

M+(QT
xXQx −QT

x0XQx0) ≤M+((QT
x −QT

x0)XQx) +M+(QT
x0X(Qx −Qx0))

≤ C2
Φ |x− x0| ‖X‖, (3.26)

where C2
Φ := nΛ max{‖DΦ ◦ Φ−1‖∞, ‖DΦT ◦ Φ−1‖∞} {Lip(DΦ ◦ Φ−1) +

Lip(DΦT ◦Φ−1)}, hence (3.23) is proved. On the other hand, using that (3.26)
is less or equal than C2

Φ |x− x0|(‖X‖+ 1), and replacing (3.25) by

β̄F (Φ−1(x),Φ−1(x0)) (‖QT
x0XQx0‖+ 1) ≤ C3

Φ β̄F (Φ−1(x),Φ−1(x0))(‖X‖+ 1),

where C3
Φ := max{C1

Φ, 1}, we obtain (3.24).

Finally, consider F̃x,r,p = FΦ−1(x),r,(DΦ◦Φ−1)p for fixed (x, r, p). Then

F̃ (tX + (1− t)Y )

= F
(
t(DΦT ◦ Φ−1)X(DΦ ◦ Φ−1) + (1− t)(DΦT ◦ Φ−1)Y (DΦ ◦ Φ−1)

)
S tF

(
(DΦT ◦ Φ−1)X(DΦ ◦ Φ−1)

)
+ (1− t)F

(
(DΦT ◦ Φ−1)Y (DΦ ◦ Φ−1)

)
= tF̃ (X) + (1− t)F̃ (Y )

for all X, Y ∈ Sn and t ∈ [0, 1], provided F is convex or concave in the X
entry, and the claim is proved.

To finish we cover the boundary with a finitely many neighborhoods of
this type to obtain regularity and an estimate near the boundary. In turn, the
complete proof of regularity and estimates in the global case is derived by a
covering argument over the domain Ω, using local and boundary results.
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3.3
W 2,p Results

In this section we prove the W 2,p type results stated in section 3.1.

Proof of Theorem 3.4. We prove only the global case, since in the local
one we just ignore the term with ψ, by considering it equal to zero in what
follows. Notice that ψ ∈ W 2,p(Ω) ⊂ C1,τ (Ω) for some τ ∈ (0, 1) with continuous
inclusion, then ‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖C1,τ (∂Ω) ≤ C2.

Thus, by C1,α regularity theorem, we have that f̄(x) := f(x)−g(x,Du) ∈
Lp(Ω) and also

‖u‖C1,α(Ω) ≤ C3 {‖u‖L∞(Ω) + ‖f̄‖Lp(Ω) + ‖ψ‖C1,τ (∂Ω)}.

Claim 3.16 u is an Lp-viscosity solution of F (x, u,Du,D2u) = f̄(x) in Ω.

Proof of Claim 3.16. Let us prove the subsolution case; for the supersolution
it is analogous. Assuming the contrary, there exists some φ ∈ W 2,p

loc (Ω),
x0 ∈ Ω and ε > 0 such that u − φ has a local maximum at x0 and
F (x, u,Dφ,D2φ)− f̄(x) ≤ −ε a.e. in Br(x0).

In turn, by the definition of u being an Lp-viscosity subsolution of (3.7),

F (x, u,Dφ,D2φ) + g(x,Dφ) ≥ f(x)− ε/2 a.e. in Br(x0)

up to diminishing r > 0. By subtracting the last two inequalities, we obtain

−{γ + µ(|Du|+ |Dφ|)} |Du−Dφ| ≤ g(x,Du)− g(x,Dϕ) ≤ −ε/2 (3.27)

a.e. in Br(x0). Since u− φ ∈ C1(Br(x0)) has a local maximum at x0, we have
D(u − φ)(x0) = 0 and, moreover, |D(u − φ)(x)| < ε {γ + µ(‖Du‖L∞(Br(x0)) +
‖Dφ‖L∞(Br(x0)) + 1}−1/4 for all x ∈ Br(x0), possibly for a smaller r, which
contradicts (3.27). �

Thus by Winter’s result, theorem 4.3 in [38] (or Święch [48] in the local
case), we have that u ∈ W 2,p(Ω) (respectively u ∈ W 2,p

loc (Ω)) and

‖u‖W 2,p(Ω) ≤ C {‖u‖L∞(Ω) + ‖f̄‖Lp(Ω) + ‖ψ‖W 2,p(Ω)}

≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + µ‖u‖2
C1(Ω) + γ‖u‖C1(Ω) + ‖ψ‖W 2,p(Ω)}

≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖W 2,p(Ω)

+ (µC2 + γ)C3{‖u‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖C1,τ (∂Ω)}}

which implies the estimate. �

In theorem 3.4, the final constants only depend on the Lp-norm of the
coefficients, despite the boundedness hypothesis on b, d. The latter hypothesis
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is needed to conclude that solutions are twice differentiable a.e. Observe that,
in [38] (see theorem 4.3 there),W 2,p results consist of two parts: (i) introducing
a new equation F (x, 0, 0, D2u) = f̃(x) (via corollary 1.6 in [48]), in which u

remains a solution in the Lp-viscosity sense; (ii) obtaining W 2,p estimates for
solutions of F (x, 0, 0, D2u) = f̃(x), which are independent of the zero and first
order coefficients.

Proof of Proposition 3.5. It is enough to treat the upper extremal case. Let
bk, dk ∈ L∞+ (Ω) be such that bk → b and dk → d in Lp(Ω). Let uk ∈ W 2,p(Ω)
be the unique Lp-viscosity solution of M

+
λ,Λ(D2uk) + bk(x)|Duk|+ dk(x)ω(u−k ) = f(x) in Ω

uk = ψ on ∂Ω

given by theorem 4.6 of [38]. From the estimates in theorem 3.4, we have

‖uk‖W 2,p(Ω) ≤ Ck {‖uk‖L∞(Ω) + ‖f‖Lp(Ω) + ‖ψ‖W 2,p(Ω)}, (3.28)

where Ck remains bounded, since bk and dk are bounded in Lp(Ω).
Now, by ABP we have that that ‖uk‖L∞(Ω) ≤ ‖ψ‖L∞(∂Ω) + C ‖f‖Lp(Ω).

From this and (3.28) we get ‖uk‖W 2,p(Ω) ≤ C and hence there exists u ∈ C1(Ω)
such that uk → u in C1(Ω).

Next, proposition 2.12 implies that u is an Lp-viscosity solution of M
+
λ,Λ(D2u) + b(x)|Du|+ d(x)ω(u−) = f(x) in Ω

u = ψ on ∂Ω .
(3.29)

Notice that W 2,p(Ω) is reflexive [30, p. 203, 264], so there exists ũ ∈ W 2,p(Ω)
such that uk converges weakly to ũ. By uniqueness of the limit, ũ = u a.e. in
Ω, and u is a strong solution of (3.29).

Finally, if there exists another Lp-viscosity solution of (3.29), say v ∈
C(Ω), then the function w := u − v satisfies w = 0 on ∂Ω and it is an
Lp-viscosity solution of L+[w] ≥ 0 in Ω∩{w > 0}. Indeed, since u is strong, we
can apply the definition of v as an Lp-viscosity supersolution with u as a test
function; we also use that u− ≤ v−+ (u− v)−, monotonicity and subadditivity
of the modulus. Then, by ABP we have that w ≤ 0 in Ω. Analogously, from
the definition of subsolution of v, we obtain w ≥ 0 in Ω, and so w ≡ 0 in Ω. �

The approximation procedure in the above proof cannot be used to
extend theorem 3.4 for unbounded b and d, since in this case we do not have
uniqueness results to infer that the limiting function is the same as the one
we had started with. However, knowing a priori that the solution is strong, we
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can obtain W 2,p a priori estimates in the general case, as stated in lemma 3.6.
We give a short proof for such Nagumo’s lemma in the sequel.

Proof of Lemma 3.6. Note that, in particular, u ∈ C1,α(Ω) and satisfies
F (x, 0, 0, D2u) = g(x) a.e. in Ω, where

g(x) := f(x)− F (x, u,Du,D2u) + F (x, 0, 0, D2u) ∈ Lp(Ω),

since |F (x, u,Du,D2u)− F (x, 0, 0, D2u)| ≤ b(x)|Du|+ µ|Du2|+ d(x)ω(|u|) ∈
Lp(Ω). Now, by theorem 3.4 (for b, d, µ, γ = 0) and the proof there dealing
with C1,α estimates,

‖u‖W 2,p(Ω) ≤ C {‖u‖L∞(Ω) + ‖g‖Lp(Ω) + ‖ψ‖W 2,p(Ω)}

≤ C {‖u‖L∞(Ω) + ‖f‖Lp(Ω) + µ‖u‖2
C1(Ω)

+ ‖ψ‖W 2,p(Ω) + ‖b‖Lp(Ω)‖u‖C1(Ω) + ‖d‖Lp(Ω) ω(‖u‖∞)}

from where the estimate follows. �
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4
The Eigenvalue Problem

This chapter is related to existence of eigenvalues for general operators
with nonnegative unbounded weight. So, we leave aside for a moment the
superlinear growth and “go back to the roots” of the theory, focusing on the
linear growth case. As we mentioned in chapter 1, results of this type will play
an important role in the multiplicity and nonexistence arguments of chapter 6.
Indeed, the lack of energy methods require techniques based on the maximum
principle to overcome these limitations in the nondivergence scenario, see [66].

Throughout the chapter we are going to consider all solutions in the
Ln-viscosity sense. There is no particular reason to deal with n instead of p; we
just prefer to keep the usual notation from [28]. We stress that all Ln-viscosity
results are valid for Lp-viscosity ones by proposition 2.9; the only important
assumption relies on the weight – we ask for c ∈ Lp(Ω), c 	 0, with p > n, as
well as b ∈ Lp+(Ω).

We start recalling some notations. A subset K ⊂ E of a Banach
space is an order cone if it is closed, convex, λK ⊂ K for all λ ≥ 0 and
K∩ (−K) = {0}. This cone induces a partial order on E, namely for u, v ∈ E,
u ≤ v ⇔ v − u ∈ K. We say that K is solid if intK 6= ∅. Further, a completely
continuous operator, defined in E, is continuous and takes bounded sets into
precompact ones.

Following the construction in [66], [67], we have the next Krein-Rutman
theorem for general nonlinear operators; a proof is provided in section 4.1.

Theorem 4.1 (Generalized Krein-Rutman ) Let K ⊂ E be an order solid cone
and let T : K → K be a completely continuous operator that is also

(i) positively 1-homogeneous, i.e. T (λu) = λTu, for all λ ≥ 0, u ∈ K;

(ii) monotone increasing, i.e. for all u, v ∈ K, u ≤ v we have Tu ≤ Tv;

(iii) strongly positive with respect to the cone, in the sense T (K \{0}) ⊂ intK.

Then T has a positive eigenvalue α1 > 0 associated to a positive eigenfunction
w1 ∈ intK.
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Consider Ω ⊂ Rn a bounded C1,1 domain along this chapter. The
application of Krein-Rutman is very standard for positive weights [66], [68].
Let us recall its use when we have a fully nonlinear operator with unbounded
coefficients. About structure, we suppose (SC) with ω a Lipschitz modulus.

Consider E := C1
0(Ω) and the usual order solid cone of nonnegative

functions over this space, i.e. K =: {u ∈ E; u ≥ 0 in Ω}.
Let c(x) ∈ Lp+(Ω) with c > 0 in Ω, p > n. As the operator on K, we

take T = −F−1 ◦ c in the sense that U = Tu iff U is the unique Ln-viscosity
solution of the Dirichlet problem F (x, U,DU,D2U) = −c(x)u in Ω

U = 0 on ∂Ω
(Tu)

where F satisfies the following hypotheses there exists θ > 0 such that (H)θ holds for a.e. x0 ∈ Ω,
(SC) and (S) hold, F (x, tr, tp, tX) = tF (x, r, p,X) for all t ≥ 0.

(H)

Here, hypothesis (S) means the solvability in Ln-viscosity sense with data in
Lp, i.e. for any f ∈ Lp(Ω), there exists a unique

u ∈ C(Ω) Ln-viscosity solution of F [u] = f(x) in Ω; u = 0 on ∂Ω. (S)

Of course, Pucci’s extremal operators

L±[u] :=M±(D2u)± b(x)|Du| ± d(x)ω(u∓), b, d ∈ Lp+(Ω),

where ω is a Lipschitz modulus, are particular examples of F satisfying (H).
Indeed, remember that proposition 3.5 provides us with a strong solution
u ∈ W 2,p(Ω) ⊂ W 2,n(Ω), which is an Ln-viscosity solution by proposition 2.5.
Furthermore, since it is unique among Lp-viscosity solutions, it is also unique
among Ln-viscosity ones. Here all the coefficients can be unbounded. Observe
that (S) and (H)θ also holds when F is a uniformly continuous operator in x
satisfying the growth conditions in [64] (see also [69]), in this case concerning
C-viscosity notions of solutions.

On the other hand, (H)θ, (SC) and (S) are completely enough to ensure
existence, uniqueness and C1,α global regularity and estimates for the problem
(Tu) from theorem 3.1, which in turn implies that the operator T is well defined
and completely continuous.

Let us check the homogeneity of the operator from the homogeneity of
F . For λ = 0 it is obvious, since the problem F (x, u,Du,D2u) = 0 in Ω with
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u = 0 on ∂Ω has only the trivial solution. Indeed, this is ensured by applying
(SC) and ABP in both directions. Thus, if λ > 0 and V = T (λu), by the
homogeneity and uniqueness of F , we have V/λ = Tu i.e. T (λu) = λTu.

Furthermore, T = −F−1 ◦ c is strictly positive with respect to the cone,
thanks to SMP and Hopf. In general, without the strict positiveness of c in Ω
there is no guarantee on this property, i.e., under c ≥ 0 and c 6≡ 0 in Ω, we
only obtain that T (K \ {0}) ⊂ K.

Notice that T = −F−1 ◦ c has an eigenvalue α1 > 0 associated to the
positive eigenfunction ϕ1 if and only if ϕ1 is an Ln-viscosity solution of

F [ϕ1] + 1/α1 c(x)ϕ1 = 0 in Ω
ϕ1 > 0 in Ω
ϕ1 = 0 on ∂Ω .

For any c ∈ Lp(Ω) with p > n and F satisfying (H), we can define,
similar to the foregoing works [70], [28], the principal weighted eigenvalues

λ±1 = λ±1 (F (c),Ω) = sup
{
λ > 0; Ψ±(F (c),Ω, λ) 6= ∅

}
(4.1)

where

Ψ±(F (c),Ω, λ) :=
{
ψ ∈ C(Ω); ±ψ > 0 in Ω, ±(F [ψ] + λc(x)ψ) ≤ 0 in Ω

}
;

with inequalities holding in the Ln-viscosity sense. Notice that, by definition,
λ±1 (G(c),Ω) = λ∓1 (F (c),Ω), where G(x, r, p,X) := −F (x, r, p,X).

With a simple approximation result by positive weights given by
Krein-Rutman theorem as above, for F satisfying (H), our main result in
this chapter is the following existence of eigenvalues with nonnegative weight.

Theorem 4.2 Let Ω ⊂ Rn be a bounded C1,1 domain, c ∈ Lp(Ω), c 	 0 for
p > n and F satisfying (H) for b, d ∈ L∞+ (Ω). Then F has two positive weighted
eigenvalues α±1 > 0 corresponding to normalized and signed eigenfunctions
ϕ±1 ∈ C1,α(Ω) that satisfies


F [ϕ±1 ] + α±1 c(x)ϕ±1 = 0 in Ω

±ϕ±1 > 0 in Ω
ϕ±1 = 0 on ∂Ω

(4.2)

in the Lp-viscosity sense, with maxΩ (±ϕ±1 ) = 1.
If, moreover, the operator F has W 2,p regularity of solutions (in the sense

that every u ∈ C(Ω) which is an Lp-viscosity solution of F [u] = f(x) ∈ Lp(Ω),
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u = 0 on ∂Ω, satisfies u ∈ W 2,p(Ω)), then α±1 = λ±1 and the conclusion is valid
also for b ∈ Lp+(Ω).

Significant contributions on eigenvalues of continuous operators in
nondivergence form in bounded domains include the fundamental work [70]
for linear operators; [28] for convex fully nonlinear operators; [71] for nonlocal
operators; [72], [73], [74] and the recent [75] for degenerate elliptic operators.
Theorem 4.2 is a slight improvement to the general existence theory about
nonconvex operators possessing first eigenvalues in [64] (see also [69]), since
we are not supposing that our nonlinearity is uniformly continuous in x.

If, in addition, we have W 2,p regularity of solutions, we can extend
theorem 4.2 even further, allowing an unbounded first order coefficient.
Eigenvalues for fully nonlinear operators with such coefficients have
been previously studied, to our knowledge, only for radial operators and
eigenfunctions, in [76] and [77]. As a particular case of theorem 4.2, we obtain
the existence of positive eigenvalues with a nonnegative unbounded weight for
the extremal Pucci’s operators with unbounded coefficients.

Proposition 4.3 Let Ω ⊂ Rn a bounded C1,1 domain, b, c ∈ Lp+(Ω), c 	 0,
for p > n. Then, there exists ϕ±1 ∈ W 2,p(Ω) such that, for λ±1 defined in (4.1),
we have λ±1 > 0 and

M±
λ,Λ(D2ϕ±1 )± b(x)|Dϕ±1 |+ λ±1 c(x)ϕ±1 = 0 in Ω

ϕ±1 > 0 in Ω
ϕ±1 = 0 on ∂Ω.

(4.3)

Notice that we obtain positive eigenvalues because F is proper. For
general existence related to nonproper operators see the script in [28] for
bounded coefficients. We also stress that, without regularity assumptions on
the domain, it is still possible to obtain the existence of an eigenpair, as in [28]
and [70]; in such cases the eigenfunction belongs to C1,α

loc (Ω) ∩ C(Ω) by using
C1,α local regularity instead of the global one.

We start proving some auxiliary results which take into account the
unboundedness of c.

Proposition 4.4 Let u, v ∈ C(Ω) be Ln-viscosity solutions of

 F [u] + c(x)u ≥ 0 in Ω
u < 0 in Ω

,


F [v] + c(x)v ≤ 0 in Ω

v ≥ 0 on ∂Ω
v(x0) < 0 x0 ∈ Ω

(4.4)
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with F satisfying (H), c ∈ Lp(Ω), p > n. Suppose one, u or v, is a strong
solution. Then, u = tv for some t > 0. The conclusion is the same if

 F [u] + c(x)u ≤ 0 in Ω
u > 0 in Ω

,


F [v] + c(x)v ≥ 0 in Ω

v ≤ 0 on ∂Ω
v(x0) > 0 x0 ∈ Ω.

(4.5)

For the proof of proposition 4.4, as in [64], [70], [28], we need the following
consequence of ABP, which is a maximum principle for small domains.

Lemma 4.5 Assume F satisfies (SC) and c ∈ Lp(Ω), p > n. Then there exists
ε0 > 0, depending on n, p, λ,Λ, ‖b‖Lp(Ω), ‖c+‖Lp(Ω) and diam(Ω), such that if
|Ω| ≤ ε0 then any u ∈ C(Ω) which is an Ln-viscosity solution of

 F [u] + c(x)u ≥ 0 in Ω
u ≤ 0 on ∂Ω

(4.6)

satisfies u ≤ 0 in Ω. Analogously, if v ∈ C(Ω) is an Ln-viscosity solution of
 F [v] + c(x)v ≤ 0 in Ω

v ≥ 0 on ∂Ω

then we have that v ≥ 0 in Ω provided |Ω| ≤ ε0.

Proof. Assume u satisfies (4.6). In order to obtain a contradiction, suppose
that Ω+ := {u > 0} is not an empty set. By (SC), we have that u is an
Ln-viscosity solution of L+[u] ≥ L+[u] − c−(x)u ≥ −c+(x)u in Ω+. So, ABP
gives us that

sup
Ω+

u ≤ C1 diam(Ω) ‖c+‖Ln(Ω) sup
Ω+

u ≤ C1 diam(Ω) |Ω|1−
n
p ‖c+‖Lp(Ω) sup

Ω+
u.

Then we choose ε0 > 0 such that C1 diam(Ω) ε
1−n

p

0 ‖c+‖Lp(Ω) ≤ 1/2 to obtain a
contradiction. If v is a supersolution the proof is similar, by using ABP in the
opposite direction. �

Remark 4.6 We emphasize once more that, for equations satisfying (SC),
the notions of Lp and Ln viscosity solutions are equivalent, by proposition 2.9.
Notice that the addition of the term c(x)u does not change the proof there,
since the behavior of the zero order term is irrelevant to that proof.

However, we can give a more direct proof of proposition 4.4 for
Lp-viscosity solutions. As a matter of fact, it is just a question of using ABP
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(for Lp-visc.) with the Ln-norm of f in the proof above (lemma 4.5); the proof
of proposition 4.4 below is also unchangeable, just reading Lp instead of Ln.

We are going to use this result in chapter 6 with the operator F being
L−[u] + c(x)u, in the case of inequalities (4.5).

Proof of Proposition 4.4. We are going to prove the first case, since
the second is analogous. Let u, v be Ln-viscosity solutions of (4.4). Say both
are strong, otherwise just use test functions for one of them and read all
inequalities below in the Ln-viscosity sense. Set zt := tu − v for t > 0. Then,
using 1-homogeneity and (SC), we have that zt is a solution of

L+[zt] + d(x)ω((−zt)+) + c(x)zt ≥ F [tu]− F [v] + c(x)zt
= t {F [u] + c(x)u} − {F [v] + c(x)v} ≥ 0 in Ω . (4.7)

Let K be a compact subset of Ω such that x0 ∈ K and MP lemma 4.5
holds for Ω \ K. Further, let t0 > 0 be large enough such that zt0 ≤ 0 in K.
In fact, this t0 can be taken as minK v/maxK u > 0, since u < 0 in K and
minK v ≤ v(x0) < 0. Then, since zt0 ≤ 0 in ∂ (Ω \K) ⊂ ∂Ω ∪ ∂K, we obtain
from lemma 4.5 that zt0 ≤ 0 in Ω \K and so in Ω.

Define

τ := inf{ t > 0; zt ≤ 0 in Ω } ≥ t0 > 0.

By (SC), zτ is a solution of L−[−zτ ] + {c(x)− d(x)ω(1)}(−zτ ) ≤ 0 in Ω, with
zτ ≤ 0 in Ω. Hence, by SMP, we have either zτ ≡ 0 or zτ < 0 in Ω. In the first
case we are done. Suppose, then, zτ < 0 in Ω in order to obtain a contradiction.

Next we choose some ε > 0 such that zτ−ε < 0 in K. Indeed, we can
take, for example, ε = min{−minK zτ/(2‖u‖L∞(K)), τ/2}, which implies

zτ−ε = zτ − εu ≤ minK zτ + ε‖u‖L∞(K) < 0 in K,

as in [78]. In particular, zt satisfies (4.7) for t = τ − ε > 0 . Thus, zτ−ε ≤ 0 by
MP in the set Ω \K. By SMP, zτ−ε < 0 in Ω, which contradicts the definition
of τ being an infimum. �

The next result was first introduced in [70] and extended in [28] to
nonlinear operators. We show below that, when we add an unbounded weight c,
all we need is its positiveness on a subset of positive measure in order to obtain
a bound from above on λ1; we also make some remarks about the constant.

Lemma 4.7 Suppose (H) with b, d ∈ L∞+ (Ω). If c ≥ δ > 0 a.e. in BR ⊂⊂ Ω,
for R ≤ 1, then

λ±1 (F (c),Ω) ≤ C0

δR2
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where C0 depends on n, λ, Λ, R, ‖b‖L∞(Ω) and ω(1)‖d‖L∞(Ω).
If, moreover, F has no term of order zero (i.e. d or ω is equal to zero),

then R can be any positive number. On the other hand, if b ≡ 0, then the
constant C0 does not depend on R.

Proof. Observe that λ±1 (F (c),Ω) ≤ λ±1 (F (c), BR) by definition.
As in [70], [28], consider the radial function σ(x) = −(R2 − |x|2)2 < 0 in

BR. Let us treat the λ−1 case; for λ+
1 it is just a question of looking at −σ.

Suppose, in order to obtain a contradiction, that there exists some
λ > C0

δR2 such that Ψ−(F (c),Ω, λ) 6= ∅, i.e. let ψ ∈ C(Ω) be a negative
Ln-viscosity solution of F [ψ]+λc(x)ψ ≥ 0 in Ω. Hence ψ is also an Ln-viscosity
solution of F [ψ] + C0

δR2 c(x)ψ ≥ 0 in BR.

Claim 4.8 We have F [σ] + C0
δR2 c(x)σ ≤ 0 a.e. in BR.

Proof of Claim 4.8. Notice that

Dσ(x) = 4(R2 − |x|2)x , D2σ(x) = 4(R2 − |x|2)I − 8x⊗ x.

Say, for example, 0 ≤ b(x) ≤ γ and 0 ≤ d(x) ≤ η a.e., thus

F [σ] ≤M+(D2σ) + γ|Dσ| − θAσ

≤ 4(R2 − |x|2)M+(I)− 8M−(x⊗ x) + 4γ(R2 − |x|2) |x| − η ω(1)σ(x)

and therefore

F [σ]
σ
≥ 8λ |x|2

(R2 − |x|2)2 −
4nΛ

R2 − |x|2
− 4γR
R2 − |x|2

− η ω(1) a.e. in BR .

The first term is always nonnegative, but it is extremely important to control
the middle terms when x is near from R. Explicitly, we have that

8λ |x|2
(R2 − |x|2)2 ≥

4nΛ
R2 − |x|2

+ 4γR
R2 − |x|2

⇔ |x|2 ≥ αR2

for α = nΛ+γR
2λ+nΛ+γR ∈ (0, 1). Then we separate the analysis in two cases.

(a) |x|2 ≥ αR2: It follows that F [σ]/σ ≥ −η ω(1) ≥ −η ω(1) c(x)/(δR2)
from construction;

(b) |x|2 ≤ αR2: In this case we use that the first term is nonnegative and
so F [σ]/σ ≥ −4(nΛ + γR)/((1− α)R2)− η ω(1) ≥ −C0 c(x)/(δR2).

If η or ω is equal to zero, then we do not need to use R ≤ 1 in the above.
Furthermore, if γ = 0, C0 does not depend on R. �
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Now we apply proposition 4.4, since σ ∈ C2(BR), obtaining that ψ = tσ,
for some t > 0. However, this is not possible, since ψ < 0 on ∂BR ⊂ Ω while
σ = 0 on ∂BR . �

Moving to the last statement in theorem 4.2, we first prove an eigenvalue
bound that takes into account an unbounded b, when the weight is a continuous
and positive function in Ω. Note that, in this case, theorem 4.1 gives us a pair
α1 > 0 and ϕ1 ∈ C1(Ω) such that


G[ϕ1] + α1 c(x)ϕ1 = 0 in Ω

ϕ1 > 0 in Ω
ϕ1 = 0 on ∂Ω

(4.8)

in the Ln-viscosity sense, with maxΩ ϕ1 = 1 and

0 < α1 ≤ λ+
1 (G(c),Ω) = λ−1 (F (c),Ω).

The following proposition is a delicate point in our construction of an
eigenpair. It states that α1 in (4.8) is bounded, and this does not seem to be a
consequence of the usual methods for bounding a first eigenvalue, such as the
one in lemma 4.7. Instead, we use the classical blow-up method [79] of Gidas
and Spruck.

Proposition 4.9 Assume c ∈ C(Ω) with c > 0 in Ω, and G satisfying (H)
for b ∈ Lp+(Ω) and d ∈ L∞+ (Ω). Let α1 and ϕ1 as in (4.8). Then α1 ≤ C, for a
constant C = C(n, λ,Λ,Ω, ‖b‖Lp(Ω), ω(1)‖d‖L∞(Ω)).

Proof. If the conclusion is not true, then exists a sequence bk ∈ L∞+ (Ω), with
‖bk‖Lp(Ω) ≤ C, ‖bk‖L∞(Ω) → +∞ and the respective eigenvalue problem


Gk [ϕk] + αk1 c(x)ϕk = 0 in Ω

ϕk > 0 in Ω
ϕk = 0 on ∂Ω

(4.9)

in the Ln-viscosity sense, with maxΩ ϕk = 1 for all k ∈ N and αk1 → +∞ as
k → +∞, where Gk is a fully nonlinear operator satisfying (H)k , i.e. (H) for
bk and dk. Say dk ≤ η and maxΩ ϕk = ϕk(xk0) for xk0 ∈ Ω. Then, xk0 → x0 ∈ Ω
as k → +∞, up to a subsequence.

Case 1: x0 ∈ Ω. Let 2ρ = dist(x0, ∂Ω) > 0 and notice that xk0 ∈ Bρ(x0)
for all k ≥ k0. Set rk = (αk1)−1/2 and define ψk(x) = ϕk(xk0 + rkx). Thus, ψk is
an Ln (so Lp) viscosity solution of

G̃k(x, ψk, Dψk, D2ψk) + ck(x)ψk(x) = 0 in B̃k := Bρ/rk(0)
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where ck(x) := c(xk0 + rkx), G̃k(x, r, p,X) := r2
kGk(xk0 + rkx, r, p/rk, X/r

2
k)

satisfies (H̃)k, i.e. (H) for b̃k and ηk, where b̃k(x) := rk bk(xk0 + rkx) and
ηk = r2

k η. Notice that bk and ηk converge locally to zero in Lp(B̃k) as k → +∞,
since p > n.

Furthermore, sup
B̃k
ψk = ψk(0) = 1 for all k ∈ N and BR(0) ⊂⊂ B̃k for

large k, for any fixed R > 0. By theorem 3.1 we have that ψk is locally in C1,α

and satisfies the estimate

‖ψk‖C1,α(BR(0)) ≤ Ck‖ψk‖L∞(B̃k) ≤ C,

since ψk attains its maximum at 0 and Ck only depends on the Lp-norm of
the coefficients bk and ck, which are uniformly bounded in there. Hence, by
compact inclusion we have that there exists ψ ∈ C1(BR(0)) such that ψk → ψ

as k → +∞, up to a subsequence. Performing the same argument for each ball
BR(0), for every R > 0, we obtain in particular that ψk → ψ in L∞loc(Rn), by
using the uniqueness of the limit for ψk in the smaller balls.

Using stability (proposition 2.12 together with observation 2.13) and the
continuity of c, we have that ψ is an Lp-viscosity solution of J(x,D2ψ) +
c(x0)ψ = 0 in Rn for some measurable operator J still satisfying (H) with
coefficients of zero and first order term, d and b, equal to zero. Also, ψ(0) = 1
and ψ > 0 in Rn by SMP. This implies that 1 ≤ λ+

1 (J(c(x0)), BR) ≤ C0
c(x0)R2

for all R > 0, which gives a contradiction when we take R→ +∞.
Case 2: x0 ∈ ∂Ω. By passing to new coordinates, that come from

the smoothness property of the domain ∂Ω ∈ C1,1, we can suppose that
∂Ω ⊂ {xn = 0} and Ω ⊂ {xn > 0}.

Set ρk = dist(xk0, ∂Ω) = xk0 · en = xk0,n , where en = (0, . . . , 0, 1) and xk0 =
(xk0,1, . . . , xk0,n). Analogously, consider ψk(y) in y ∈ Bρk/rk(0) and the respective
equation G̃k as in case 1. Thus, for x, y satisfying rky = x− xk0 , we have that
the set {xn > 0} corresponds to Ak := {yn = (x−xk0) ·en/rk > −ρk/rk}. So we
need to analyze the behavior of the set Ak when we pass to limits as k → +∞.

We first claim that ρk/rk is bounded below by a constant C1 > 0, which
means that Ak does not converge to {yn > 0}. This is an easy consequence
of our C1,α boundary regularity and estimates in a half ball (theorem 3.14),
applied to ψk and G̃k. Indeed, since ‖Dψk‖L∞(B+

r (0)) ≤ C, r > 0 fixed, then

1 = |ϕ(xk0)− ϕ(x̄k0)| = |ψk(0, 0)− ψk(0,−ρk/rk)| ≤ Cρk/rk,

where x̄k0 = (xk0,1, . . . , xk0,n−1, 0) ∈ ∂Ω, from where we obtain the desired bound.
Next observe that we have two possibilities about the fraction ρk/rk,

either it converges to +∞ or it is uniformly bounded. In the first one, Ak → Rn

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



Chapter 4. The Eigenvalue Problem 72

and we finish as in case 1. In the second, Ak → {yn > %}, % ∈ (0,+∞), by
taking a subsequence. The proof carries on as in the case 1, since we have a
smooth domain which contains a ball with radius R = (2C0/c(x0) )1/2; this
gives the final contradiction. �

Lemma 4.10 Let c ∈ Lp(Ω), c ≥ δ in BR for some BR ⊂⊂ Ω and F satisfying
hypothesis (H), then

λ±1 (F (c),Ω) ≤ λ±1 (F (1), BR)
δ

.

Proof. Let us prove the λ+
1 case; for λ−1 we use G instead of F . We already

know that both quantities are nonnegative, by the properness of the operator
F . Hence, it is enough to verify that A ∩ {λ ≥ 0} ⊂ B/δ ∩ {λ ≥ 0}, where

λ+
1 (F (c),Ω) = sup

A
λ = sup

A∩{λ≥0}
λ , λ+

1 (F (1), BR) = sup
B
λ = sup

B∩{λ≥0}
λ

as defined before. Let λ ∈ A ∩ {λ ≥ 0}, then there exists ψ ∈ C(Ω) a
nonnegative Ln-viscosity solution of F [ψ] + c(x)λψ ≤ 0 in Ω. Then, ψ is also
a nonnegative Ln-viscosity solution of F [ψ] + δλψ ≤ 0 in BR , so δλ ∈ B. �

Proof of Theorem 4.2. First, from the fact that c > 0 in a set of positive
measure, there exists δ > 0 such that {c ≥ δ} is a nontrivial set. In fact, if this
was not true, i.e. if |{c ≥ δ}| = 0 for all δ, then {c > 0} = ⋃

δ>0{c ≥ δ} would
have measure zero, as the union of such sets, contradicting the hypothesis.
Namely, then, c ≥ δ > 0 a.e. in some ball BR ⊂⊂ Ω.

Let us prove the λ−1 case, applying Krein-Rutman results to G; for λ+
1

replace G by F . Let ε ∈ (0, 1) and define cε := c+ ε > 0 in Ω, for all ε. From
theorem 4.1, we obtain the existence of pairs αε1 > 0 and ϕε1 ∈ C1(Ω) such that


G[ϕε1] + αε1 cε(x)ϕε1 = 0 in Ω

ϕε1 > 0 in Ω
ϕε1 = 0 on ∂Ω

(4.10)

with maxΩ ϕε1 = 1 for all ε ∈ (0, 1). Then,

0 < αε1 ≤ λ+
1 (G(cε),Ω) = λ−1 (F (cε),Ω) ≤ C0

δR2 for all ε ∈ (0, 1). (4.11)

Next, αε1 → α1 ∈ [0, C0/δR
2] up to a subsequence. Then we apply

C1,α global regularity and estimates (theorem 3.1) in the case µ = 0 (recall
again that Ln-viscosity solutions are Lp-viscosity for p > n), by considering
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αε1 cε(x)ϕε1 ∈ Lp(Ω) as the right hand side, from where

‖ϕε1‖C1,α(Ω) ≤ C { ‖ϕε1‖L∞(Ω) + αε1 ‖cε‖Lp(Ω) ‖ϕε1‖∞ }

≤ C C1 (‖c‖Lp(Ω) + 1) } ≤ C.

Hence the compact inclusion C1,α(Ω) ⊂ C1(Ω) yields ϕε1 → ϕ1 ∈ C1(Ω),
up to a subsequence. Of course that this implies maxΩ ϕ1 = 1, ϕ1 ≥ 0 in Ω
and ϕ1 = 0 on ∂Ω.

Since cε → c in Lp(Ω) as ε → 0, by proposition 2.12 we have that ϕ1 is
an Lp-viscosity solution of G[ϕ1]+α1c(x)ϕ1 = 0 in Ω, which allows us to apply
C1,α regularity again to obtain that ϕ1 ∈ C1,α(Ω).

Using now that ϕ1 is a nonnegative Lp-viscosity solution of

L−[ϕ1]− (d(x)ω(1)− α1c(x))ϕ1 ≤ 0 in Ω,

together with SMP, we have that ϕ1 > 0 in Ω, since maxΩ ϕ1 = 1. Moreover,
we must have α1 > 0, because the case α1 = 0 would imply that ϕ1 is an
Lp-viscosity solution of L+[ϕ1] ≥ 0 in Ω ∩ {ϕ1 > 0} (since F is proper, and
so G) which, in turn, would give us ϕ1 ≤ 0 in Ω, by ABP. Thus, the existence
property is completed.

In order to conclude that, under W 2,p regularity assumptions over F ,
the α1 obtained is equal to λ−1 = λ−1 (F (c),Ω), related to the eigenfunction
ϕ−1 = ϕ−1 (F (c),Ω) = −ϕ1 < 0 in Ω, we have to work a little bit more, as in
proposition 4.7 in [28].

We already have α1 ≤ λ−1 . Suppose by contradiction that α1 < λ−1 . By
definition of λ−1 as a supremum, we know that α1 cannot be an upper bound,
that is, there exists λ > 0 such that Ψ−(F (c),Ω, λ) 6= ∅ and α1 < λ ≤ λ−1 .
Then we obtain ψ ∈ C(Ω) such that F [ψ]+λc(x)ψ ≥ 0 in Ω in the Ln-viscosity
sense, with ψ < 0 in Ω. Now, since c 	 0, we have c(x)(λ−α1) 	 0. Therefore
ψ is a negative Ln-viscosity solution of

F [ψ] + α1 c(x)ψ 	 F [ψ] + λ c(x)ψ ≥ 0 in Ω . (4.12)

Then, underW 2,p regularity, we have that ϕ−1 ∈ W 2,p(Ω) ⊂ W 2,n(Ω) is a strong
solution of 

F [ϕ−1 ] + α1 c(x)ϕ−1 = 0 in Ω
ϕ−1 < 0 in Ω
ϕ−1 = 0 on ∂Ω .
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Applying proposition 4.4 we obtain that ψ = tϕ−1 for some t > 0; but this
contradicts the strict inequality in (4.12). Thus, we must have α1 = λ−1 . The
case of λ+

1 is completely analogous, by reversing the inequalities.
From this last paragraph, underW 2,p regularity of the solutions, the only

possibility for α1 is to coincide with λ1. Therefore, by using proposition 4.9
(with c ≡ 1) and lemma 4.10, we obtain that λ−1 (F (cε),Ω) ≤ C1/δ, for all
ε ∈ (0, 1), where C1 depends on n, λ,Λ, R, ‖b‖Lp(Ω) and ω(1)‖d‖L∞(Ω). Thus,
we carry on this bound on λ1, instead of (4.11), in the limiting procedure, in
order to get the desired existence result for b ∈ Lp+(Ω). �

4.1
The Krein-Rutman Theorem

In this section we prove theorem 4.1. We start recalling the following
“Rabinowitz type” result about existence of solutions via Leray-Schauder
degree for perturbations of the identity, i.e. for operators in the form I − T ,
where T is completely continuous. We state it as in theorem 3.3 in [66] (see
there for a proof); see also theorem 3.5.3 in [80] and theorem 4.11 in [81]. For
this, consider the fixed point problem

x = T (λ, x). (4.13)

In the following we say continuum to mean a closed and connected set.

Proposition 4.11 Let T : R × E → E be such that Tλ = T (λ, ·) : E → E is
completely continuous for all λ ∈ R and T (λ, x) is continuous in λ uniformly
with respect to x in balls of E. Let (λ0, x0) be a solution of (4.13).

Suppose that U ⊂ E is an open bounded set such that x0 ∈ U and there
is no other solution x of x = T (λ0, x) in U , with deg(I − Tλ0 , U , 0) 6= 0.

Then there exist two continuums, C− ⊂ (−∞, λ0] × E and C+ ⊂
[λ0,+∞)×E, of solutions of (4.13) with (λ0, x0) ∈ C+∩ C− and such that one
of the following alternatives holds

(i) C+ is unbounded;

(ii) C+ ∩ ({λ0} × (E \ U)) 6= ∅, i.e. C+ bends back to λ0.

The same alternatives hold for C−.
In particular, if T (0, x) = 0 for all x ∈ E, then there exist two unbounded

continuums of solutions meeting each other at (0, 0).

With this tool at hand, we give a proof for the generalized Krein-Rutman
theorem in the sequel.
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Proof of Theorem 4.1. Fix u0 ∈ K \ {0}. We first claim that there exists
m > 0 such that mTu0 ≥ u0. If this was not true, i.e. if for all m > 0,
Tu0−u0/m 6∈ K, by taking the limit as m→ +∞ we would have Tu0 6∈ intK,
which contradicts item (iii). Now, for each ε > 0, define the map

Tε : [0,+∞)×K → K

(λ, u) 7→ λTu+ ελTu0

which is completely continuous, continuous in λ and satisfies Tε(0, ·) ≡ 0. By
theorem 4.11, there exists an unbounded connected component Cε of solutions
of Tε(λ, u) = u. Let us see that Cε is bounded in the λ-direction.

Claim 4.12 u ≥ ε
(
λ
m

)k
u0, for all k ∈ N and all (λ, u) ∈ Cε.

Notice that this claim implies that λ ≤ m. If not, if there would exists
(λ, u) ∈ Cε with λ > m, we would have u0 ≤ 1

ε

(
m
λ

)k
u → 0 as k → +∞

in the norm of E, yielding u0 6∈ K, a contradiction.

Proof. Let (λ, u) ∈ Cε , then u = λTu+ελTu0 ≥ ελTu0 ≥ ε λ
m
u0 and the claim

is proved for k = 1. Moreover, using that that T is increasing and positively
1-homogeneous, Tu ≥ T

(
ε λ
m
u0
)

= ε λ
M
Tu0 ≥ ε λ

m2u0. Since u ≥ λTu, it follows

that u ≥ ε
(
λ
m

)2
u0. By iteration we obtain the conclusion for all k ∈ N. �

Since Cε is unbounded, it has to be unbounded in the K-direction, that
is, there must exist a sequence of solutions (λ, u) ∈ Cε with ‖u‖E → +∞ for
each ε > 0; in particular, there exists (λε, uε) ∈ Cε with ‖uε‖E = 1. Then,
by taking the limit as ε → 0 we can obtain the desired pair (λ1, u1) with
λ1 ∈ [0,M ] and ‖u1‖E = 1 such that u1 = λ1Tu1.

Indeed, since T takes bounded sets into precompact ones, there exists
some v ∈ K such that Tuε → v in E, for a subsequence of ε→ 0. Then there
exists the limit of uε = λεTuε + ελεTuε → λ1v =: u1 for some λ1 ∈ [0,m], up
to a subsequence of ε→ 0. Finally, T continuous yields v = Tu1.

We notice that λ1 must be positive; otherwise we would have u1 ≡ 0,
contradicting ‖u1‖E = 1. Furthermore, since u1 ∈ K \ {0}, it follows that Tu1

belongs to the interior of K, and so does u1 = λ1Tu1. �

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



5
A Priori Bounds and Multiplicity Results

In this chapter we consider a family of fully nonlinear uniformly elliptic
problems of the following form −F (x, u,Du,D2u) = λc(x)u+ 〈M(x)Du,Du〉+ h(x) in Ω

u = 0 on ∂Ω
(Pλ)

where Ω is a bounded C1,1 domain in Rn, λ ∈ R, n ≥ 1, c, h ∈ Lp(Ω), M
is a bounded matrix, and F is a fully nonlinear uniformly elliptic operator of
Isaacs type. As it was already seen (chapter 1), a particular case, for which
all our multiplicity results are new as well, is when F is a linear operator in
nondivergence form (1.1).

In the recent years have appeared a series of papers which unveil the
complex nature of the solution set for noncoercive equations (λc 	 0), in the
particular case when F is the Laplacian. In 2013, Jeanjean and Sirakov [17]
used a mountain pass argument related to Cerami sequences, when a classical
exponential change of variables (as in lemma 5.11) reduces the equation to a
semilinear one in linear and divergence form. They extended the multiplicity
result in [12] under a smallness condition over c and µh (similar to the condition
on quadratic ABP) in the case M = const.I.

Later Arcoya, de Coster, Jeanjean and Tanaka [13] (2015, see also [82])
developed a method based on degree theory which applies to general gradient
terms. They stablished the existence of a continuum of solutions for the
problem with F = ∆, M(x) = µ(x)I for 0 < µ1 ≤ µ(x) ≤ µ2 and h 	 0.
Moreover, the authors proved the existence of a positive λ̄ such that (Pλ) there
is no nonnegative solutions for λ greater than λ̄. Therefore it was realized that
the sign of h definitely matters for the problem; this because few years earlier
(2007) Abdellaoui, Peral and Primo [83] exhibited one solution for the problem
with F = ∆, M(x) ≡ I, for a specific radial c and h � 0, for all λ > 0.

The work [13] was extended and completed by Jeanjean and Quorin [16]
and by Jeanjean and de Coster [15]. In the latter the authors gave a description
of the solution set in terms of the parameter λ; the sign of h could be replaced
by a more general condition over the sign of u0, which is the solution of (P0).
In fact, they obtained a continuum when (P0) has a solution and the existence
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of at least two solutions, for every λ < λ̄, with λ̄ being finite for u0 	 0 and
infinite if u0 � 0; still for the laplacian and M(x) = µ(x)I. A result with the
p-Laplacian is found in [14].

Souplet [18] showed that the study of (Pλ) is even more difficult if M
is allowed to vanish somewhere (note that in any case a hypothesis which
prevents M ≡ 0 is necessary). In all these works the crucial a priori bounds
for u in the L∞-norm rely on the fact that the second order operator is the
Laplacian, or a divergence form operator.

Hence, it appears to be a natural question if this same kind of multiplicity
result can be extended to a more general setting, namely for a nonlinearity F in
the nondivergence form, (Pλ) given in the Lp-viscosity sense. In the sequel we
see that the answer is affirmative. In other words, it is our goal here to perform
a similar study for general operators in nondivergence form, and extend the
results from [12] to noncoercive equations. Since c 	 0, this means to give
some description of the solution set of (Pλ) when the parameter λ is positive,
similar to [15].

5.1
Main Results

We start this section by introducing our hypotheses.
From now on Ω is a bounded domain in Rn with C1,1 boundary. We

assume that the matrix M satisfies the nondegeneracy condition

µ1I ≤M(x) ≤ µ2I a.e. in Ω (M)

for some µ1, µ2 > 0, and that (Pλ) has the (SC) structure, recalling

M−(X − Y )− b(x)|p− q| − d(x)ω((r − s)+)

≤ F (x, r, p,X)− F (x, s, q, Y ) (SC)

≤M+(X − Y ) + b(x)|p− q|+ d(x)ω((s− r)+) a.e. x ∈ Ω

F (·, 0, 0, 0) ≡ 0 , b, d, c, h ∈ Lp(Ω), p > n, b, d ≥ 0, ω a modulus.

Here, M± are the Pucci’s operators with constants 0 < λP ≤ ΛP
1. We

also consider L±[u] :=M±(D2u)±b(x)|Du|, b ∈ Lp+(Ω), for the corresponding
ellipticity coefficients λP , ΛP .

Notice that, for ease of notation, we included in (SC) the unboundedness
condition over the coefficients. On the other hand, we make the convention

1We are denoting the ellipticity coefficients by λP and ΛP instead of the usual λ and Λ
in order to avoid any confusions with λ in the problem (Pλ).
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that all of them are bounded functions when using the following stronger
assumption

M−(X − Y )− b(x)|p− q| ≤ F (x, r, p,X)− F (x, s, q, Y )

≤M+(X − Y ) + b(x)|p− q| a.e. x ∈ Ω (SC)0

F (·, 0, 0, 0) ≡ 0 , b, c, h ∈ L∞(Ω), b ≥ 0,

needed for most of our results. Observe that a very particular case of the last
hypothesis appears when F is the linear operator (1.1), but we can go much
further, allowing F to be an arbitrary supremum or infimum of such linear
operators, i.e. a Hamilton-Jacobi-Bellman (HJB) operator, and even to be a
sup-inf of linear operators (Isaacs operator).

We will also assume that for some θ > 0 , r0 > 0 and all x0 ∈ Ω

(
1
rn

ˆ
Br(x0)∩Ω

β̄F (x, x0)p
) 1
p

≤ θ, for all r ≤ r0 (Hβ)

where β̄ is defined in (3.5). As we already mentioned, this is satisfied, for
instance, if F (x, 0, 0, X) is continuous in x ∈ Ω (if F is linear this means aij(x)
are continuous, as in chapter 1). The conditions (M)-(SC)-(Hβ) guarantee that
the Lp-viscosity solutions of (Pλ) have global C1,α regularity and estimates, by
theorem 3.1 and remark 3.3.

Solutions of the Dirichlet problem (Pλ) are understood in the Lp-viscosity
sense and belong to C(Ω). Thus, we study and prove multiplicity of bounded
solutions. We note that multiple unbounded solutions can easily be found for
simple equations with natural growth. For instance, in [84] it was observed
that ∆u = |Du|2 admits infinitely many weak solutions in W 1,2

0 (B1), namely
uk = ln((|x|2−n − k)(1− k)−1), 0 ≤ k < 1, in the case n > 2.

Remember that strong solutions of (Pλ), for ∂Ω ∈ C1,1 are functions in
W 2,p(Ω) which satisfy the equation almost everywhere. Strong solutions are
Lp-viscosity solutions (see proposition 2.5). Conversely, if F is for instance
convex in the matrix X and satisfies (SC)0 (such are the HJB operators), then
Lp-viscosity solutions are strong from theorem 3.3; the convexity assumption
can be removed in some cases but not in general, see [85]. For some of our
results we will need to assume that Lp-viscosity solutions of (Pλ) are strong –
see hypothesis (H2) below.

Since we want to study the way the nature of the solution set changes
when we go from negative to positive zero order term, we will naturally assume
that the problem with λ = 0 has a solution. We also assume that the Dirichlet
problem for F is uniquely solvable, so that we can concentrate on the way
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the coefficients c and M influence the solvability. We now summarize these
conditions on F . First, we assume that

the problem (P0) has a strong solution u0. (H0)

Further, setting F [u] := F (x, u,Du,D2u), we assume that for each f ∈ Lp(Ω),

there exists a unique Lp-viscosity solution of

−F [u] = f(x) in Ω

u = 0 on ∂Ω.
(H1)

Given c, h for which we study (Pλ), if (P λ) denotes the problem (Pλ) with c
and h replaced by c and h, we sometimes require that Lp-viscosity solutions
uλ of (P λ) are such that

uλ ∈ W 2,p(Ω), for every 0 ≤ c ≤ c , |h| ≤ |h|+ 1 + c. (H2)

We observe that, by Theorem 1(iii) of [12], the function u0 is the unique
Lp-viscosity solution of (P0). Theorem 1(ii) of [12] shows that (H0) holds for
instance if Mh has small Lp-norm (examples showing that in general this
hypothesis cannot be removed are also found in that paper). Moreover, recall
that (H1) and (H2) are both true if F satisfies (SC)0 and is convex or concave
in X, by the results in [38] and chapter 3.

We now state our main multiplicity results. The following theorem
contains a crucial uniform estimate for solutions of (Pλ), which is both
important in itself and instrumental for the existence statements below.

Theorem 5.1 Let Ω ∈ C1,1 be a bounded domain. Suppose (SC)0, (H0) hold
and let Λ1, Λ2 with 0 < Λ1 < Λ2. Then every Lp-viscosity solution u of (Pλ)
satisfies

‖u−‖L∞(Ω) ≤ C , for all λ ∈ [0,Λ2], ‖u+‖L∞(Ω) ≤ C , for all λ ∈ [Λ1,Λ2],

where C depends on n, p, µ1, Ω, Λ1, Λ2, ‖b‖L∞(Ω), ‖c‖L∞(Ω), ‖h‖L∞(Ω),
‖u0‖L∞(Ω), λP , ΛP , the C1,1 character of the boundary, and the set where c > 0.

It will be clear from the next theorems that the restrictions on λ cannot
be removed. As in the previous works, we use the following order in the space
E := C1(Ω).

Definition 5.2 Let u, v ∈ E. We say that u � v if for every x ∈ Ω we have
u(x) < v(x) and for x0 ∈ ∂Ω we have either u(x0) < v(x0), or u(x0) = v(x0)
and ∂νu(x0) < ∂νv(x0) (recall that ~ν is the interior unit normal to ∂Ω).
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The hypotheses Ω ∈ C1,1 bounded domain, c 	 0 and (M) are implied
attached to the problem (Pλ); so we will no longer mention it each time.

Theorem 5.3 Assume (SC), (Hβ), (H0), and (H1).
1. Then, for λ ≤ 0, the problem (Pλ) has an Lp-viscosity solution uλ that

converges to u0 in E as λ→ 0−. Moreover, the set

Σ = { (λ, u) ∈ R× E ; u solves (Pλ) }

possesses an unbounded component C+ ⊂ [0,+∞]×E such that C+∩ ({0}×E)
reduces to {u0}. From now on we assume (SC)0.

2. The component from 1. is such that

(i) either it bifurcates from infinity to the right of the axis λ = 0 with the
corresponding solutions having a positive part blowing up to infinity in
C(Ω) as λ→ 0+;

(ii) or its projection on the λ axis is [0,+∞).

3. There exists λ̄ ∈ (0,+∞] such that, for every λ ∈ (0, λ̄), the problem
(Pλ) has at least two Lp-viscosity solutions, uλ,1 and uλ,2 , satisfying

uλ,1 −−−→
λ→0+

u0 in E , max
Ω

uλ,2 −−−→
λ→0+

+∞ ,

and, if λ̄ < +∞, the problem (Pλ̄) has at least one Lp-viscosity solution. The
latter is unique if F (x, r, p,X) is convex in (r, p,X).

4. If in addition (H2) holds, the solutions uλ for λ ≤ 0 are unique among
Lp-viscosity solutions; whereas the solutions from 3. for λ > 0 are ordered,
uλ,1 � uλ,2.

This theorem proves the multiplicity conjectures from [12], [86]. We recall
that theorem 5.3 is new even when F is a linear operator in nondivergence form
– in this case, it reduces to theorem 1.3.

The supplementary hypotheses for the uniqueness results in the above
theorem are unavoidable – we recall that, in the universe of Lp-viscosity
solutions, uniqueness is only available in the presence of a strong solution
(see [12] and the references in that paper).

In the next two theorems, we show that it is possible to obtain a more
precise description of the set Σ, provided we know the sign of u0. Such results
for the divergence case F = ∆ were already proved in theorems 1.4 and 1.5 in
[15]. Note that if h has a sign, then u0 has the same sign, by the maximum
principle (see remark 6.32).

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



Chapter 5. A Priori Bounds and Multiplicity Results 81

Theorem 5.4 Suppose (SC)0, (Hβ), (H1), (H2) and (H0) with u0 ≤ 0 and
cu0 � 0. Then every nonpositive solution of (Pλ) with λ > 0 satisfies
u � u0. Furthermore, for every λ > 0, the problem (Pλ) has at least two
nontrivial Lp-viscosity solutions uλ,1 � uλ,2 , such that uλ2,1 � uλ1,1 � u0 if
0 < λ1 < λ2 , and

uλ,1 −−−→
λ→0+

u0 in E , max
Ω

uλ,2 −−−→
λ→0+

+∞ .

If F (x, r, p,X) is convex in (r, p,X) then maxΩ uλ,2 > 0 for all λ > 0.

Figure 5.1: Illustration of theorem 5.4.

In this figure we put λ on the horizontal axis. On the negative side of
the vertical axis we have uλ,1(x0) for any fixed x0 ∈ Ω (or minΩ uλ,1), which is
a negative quantity for λ > 0; whereas on the positive side of the vertical axis
we find ‖uλ,2‖L∞(Ω) (or maxΩ uλ,2 if F is convex).

Theorem 5.5 Suppose (SC)0, (Hβ), (H1), (H2) and (H0) with u0 ≥ 0 and
cu0 	 0. Then every nonnegative solution of (Pλ) with λ > 0 satisfies u� u0.
Moreover, there exists λ̄ ∈ (0,+∞) such that

(i) for every λ ∈ (0, λ̄), the problem (Pλ) has at least two nontrivial
Lp-viscosity solutions with uλ,1 � uλ,2 , where u0 � uλ1,1 � uλ2,1 if
0 < λ1 < λ2 and

uλ,1 −−−→
λ→0+

u0 in E , max
Ω

uλ,2 −−−→
λ→0+

+∞ ;

(ii) the problem (Pλ̄) has at least one Lp-viscosity solution uλ̄ ; this solution
is unique if F is convex in (r, p,X);
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Figure 5.2: Illustration of theorem 5.5.

(iii) for λ > λ̄, the problem (Pλ) has no nonnegative solution.

Notice that, up to replacing u for −u, we are also taking into account,
indirectly, the case −µ2I ≤M(x) ≤ −µ1I for µ1, µ2 > 0. We only need to pay
attention to the sign of u0, which is reversed in this case.

5.2
A Priori Bounds

In this section we look at our family of problems (Pλ) for λ > 0, assuming
c 	 0 and that the matrix M satisfies (M). Here we consider (SC)0 i.e. we
suppose that all coefficients of the problem (Pλ) are bounded and d ≡ 0. With
the latter, the zero order term in (Pλ) is explicit, so we can obtain a clear
behavior of the solutions with respect to λ.

Theorem 5.6 Let Ω ∈ C1,1 be a bounded domain. Suppose (SC)0, (H0) hold
and let Λ1, Λ2 with 0 < Λ1 < Λ2. Then every Lp-viscosity solution u of (Pλ)
satisfies

‖u‖∞ ≤ C , for all λ ∈ [Λ1,Λ2],

where C depends on n, p, µ1,Ω,Λ1,Λ2, ‖b‖L∞(Ω), ‖c‖L∞(Ω), ‖h‖L∞(Ω), ‖u0‖L∞(Ω),
on the ellipticity coefficients λP ,ΛP , on the C1,1 character of the boundary, and
on the set where c > 0.

The proof of theorem 5.6 uses and develops the ideas sketched in [86],
adding some improvements in order to remove restrictions on the size of c. We
start by proving that all supersolutions stay uniformly bounded from below,
even when λ is close to zero.

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



Chapter 5. A Priori Bounds and Multiplicity Results 83

Proposition 5.7 Let Ω ∈ C1,1 be a bounded domain. Suppose (SC)0 and let
Λ2 > 0. Then every Lp-viscosity supersolution u of (Pλ) satisfies

‖u−‖∞ ≤ C , for all λ ∈ [0,Λ2]

where C depends only on n, p, µ1,Λ2, ‖b‖L∞(Ω), ‖c‖L∞(Ω), ‖h−‖L∞(Ω), λP ,ΛP , |Ω|
and on the C1,1 norm of ∂Ω.

Proof. First observe that both −u and 0 are Lp-viscosity subsolutions of

F̃ (x, U,DU,D2U) ≤ λc(x)U − µ1|DU |2 + h−(x) in Ω,

where F̃ (x, r, p,X) = −F (x,−r,−p,−X). Then, using (SC)0, these functions
are also Lp-viscosity subsolutions of M

+(D2U) + b(x)|DU | − µ1|DU |2 ≥ −λc(x)U − h−(x) in Ω
U ≤ 0 on ∂Ω

and so is U := u− = max{−u, 0}, as the maximum of subsolutions. Moreover,
U ≥ 0 in Ω and U = 0 on ∂Ω. We make the following exponential change

w := 1− e−mU
m

, with m = µ1

ΛP

where ΛP is the constant from the definition of Pucci’s operators. From
lemma 2.20, we know that w is an Lp-viscosity solution of −L

+
1 [w] ≤ h−(x) + λ

m
c(x) |ln(1−mw)|(1−mw) in Ω

w = 0 on ∂Ω
(Qλ)

where L+
1 [w] := L+[w] − mh−(x)w. Notice that the logarithm above is well

defined, since
0 ≤ w = 1

m
{1− e−mU} < 1

m
in Ω.

Now set w1 := 1
m

(1 − e−mu
−
1 ), where u1 is some fixed supersolution of

(Pλ), λ ≥ 0 (if there was not such supersolution, we would have nothing to
prove). Then, by the above argument, w1 ∈ [0, 1/m) is an Lp-viscosity solution
of (Qλ). Define w := supA, where

A := {w : w is an Lp-viscosity solution of (Qλ); 0 ≤ w < 1/m in Ω }.

Then A 6= ∅, since w1 ∈ A, and w1 ≤ w ≤ 1/m in Ω. Also, as a supremum
of subsolutions (locally bounded, since it belongs to the interval [0, 1/m]), w
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is an Lp-viscosity solution2 (possibly discontinuous) of the first inequality in
(Qλ). Clearly, w = 0 on ∂Ω.

Observe that L+
1 is a coercive operator and the function

f(x) := fλ(x,w(x)) = h−(x) + λ

m
c(x) |ln(1−mw)|(1−mw) ∈ Lp+(Ω)

with
‖f+‖Lp(Ω) ≤ ‖h−‖Lp(Ω) + Λ2

m
‖c‖Lp(Ω)C0

since A(w) := |ln(1−mw)| (1−mw) ≤ C0. Indeed, from limt→0+ t lnt = 0 there
exists a δ ∈ (0, 1) such that t|lnt| ≤ 1, for all 0 < t < δ i.e. A(w) ≤ 1 when
x ∈

{
w > 1−δ

m

}
. If x ∈

{
w ≤ 1−δ

m

}
then A(w) ≤ |lnδ| (notice that 1−mw ≤ 1)

so take C0 = max{1, |lnδ|}.

Therefore, by the proof of the boundary Lipschitz bound (see theorem 2.3
in [23], which does not require any continuity assumption on w),

w(x) ≤ C‖f+‖Lp(Ω) dist(x, ∂Ω)→ 0 as x→ ∂Ω

and so w 6≡ 1
m
. Observe that the function w can be equal to 1/m at some

interior points.
If there was a sequence of supersolutions uk of (Pλ) in Ω with unbounded

negative parts, then there would exist a subsequence such that

u−k (xk) = ‖u−k ‖∞ −−−→
k→∞

+∞, xk ∈ Ω, xk −→
k
x0 ∈ Ω

with xk ∈ Ω for large k, since uk ≥ 0 on ∂Ω. Then the respective sequence

wk(xk) = 1
m
{1− e−mu

−
k

(xk)} −−−→
k→∞

1
m
, wk ∈ A

i.e. for every ε > 0, there exists some k0 ∈ N such that

1
m
≥ w(xk) ≥ wk(xk) ≥

1
m
− ε, for all k ≥ k0

thus there exists the limit limk w(xk) = 1
m

and also

w(x0) ≥ lim
xk→x0

w(xk) = lim
k→∞

w(xk) = 1
m
.

2If we need to use the fact that the supremum of C-viscosity subsolutions is still a
C-viscosity subsolution, we apply theorem 4.2 in [33] for continuous equations. Indeed, in
the problem (Qλ), we consider γ, h0 and c0 (instead of b(x), h−(x) and c(x)) such that
b(x) ≤ γ, h− ≤ h0, c(x) ≤ c0, and the logarithm term on the right hand side being defined
as 0 at points where w = 1/m; we can also take L+ instead of L+

1 , since mh−w ≥ 0.
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Hence x0 ∈ Ω, since w = 0 on ∂Ω, and w(x0) = 1
m
.

Finally, define z := 1−mw. Then z is an Lp-viscosity supersolution of

−L−1 z ≥ −λc(x) |lnz|z in Ω, z � 0 in Ω, z(x0) = 0,

where L−1 := L−−mh− is a coercive operator. But this contradicts the following
nonlinear version of the SMP. �

Lemma 5.8 Set L−1 [u] :=M−(D2u)− γ |Du| − du, for a constant d ≥ 0. Let
f ∈ C[0,+∞) be defined by f(s) = a s |lns| if s > 0, f(0) = 0, where a ≥ 0.
Then, the SMP holds for the operator L−1 [·] − f(·), i.e. if u is a C-viscosity
solution (possibly discontinuous) of

 L
−
1 [u] ≤ f(u) in Ω
u ≥ 0 in Ω

then either u > 0 in Ω or u ≡ 0 in Ω.

This lemma can be seen as a form of the Vazquez’s strong maximum
principle [87] for our operators, since one over the square root of the primitive
of z |lnz| is not integrable at 0. The proof of lemma 5.8 is given in section 5.2.1.

Note that we apply lemma 5.8 with d = m ‖h−‖∞ and a = Λ2 ‖c‖∞.

Remark 5.9 Notice that, by lemma 2.7, given any pair of Lp-viscosity sub
and supersolutions α, β of (P0), we have that α ≤ u ≤ β in Ω, for any strong
solution u of (P0).

Before giving the proof of Theorem 5.6 we recall once more that the
class of equations we study is invariant with respect to diffeomorphic changes
of the spatial variable. In particular we can assume that the boundary of Ω is a
hyperplane in a neighborhood of any given point of ∂Ω. Indeed, straightening of
the boundary leads to an equation of the same type, as showed in section 3.2.3,
with bounds on the the coefficient norms depending on the C1,1 norm of ∂Ω.

Proof of Theorem 5.6. Fix Λ1,Λ2 with 0 < Λ1 < Λ2. From proposition 5.7,
there exists a constant C1 > 0 such that

u− ≤ C1 , for every supersolution u of (Pλ), for all λ ∈ [0,Λ2]. (5.1)

Suppose then, in order to obtain a contradiction, that solutions are not
bounded from above in [Λ1,Λ2], by picking out a sequence uk of Lp-viscosity
solutions of (Pλ) such that

u+
k (xk) −−−→

k→∞
+∞, xk ∈ Ω, xk −→

k
x0 ∈ Ω.
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where xk is the point of maximum of |uk| in Ω, i.e. ‖uk‖∞ = |u(xk)|. Here,
‖uk‖∞ = u+

k (xk) + u−k (xk) and u−k (xk) ∈ [0, C1].
We claim that, up to changing the blow-up limit point x0, we can suppose

that there is a ball around x0 in which c is not identically zero.
To prove the claim, consider G, a maximal domain such that c ≡ 0 in G.

Obviously there is no need of such argument if |{c = 0}| = 0 or even if c 	 0 in
a neighborhood of x0. Suppose, hence, that x0 is an interior point of G, and so
xk ∈ G for large k (considering a half ball in G if x0 ∈ ∂Ω, after a diffeomorphic
change of independent variable which straightens the boundary). Notice that
both uk and u0 satisfy the same equation

−F (x, u,Du,D2u) = 〈M(x)Du,Du〉+ h(x) in G (5.2)

in the Lp-viscosity sense, for each k ∈ N (recall c = 0 in G). Because of
(SC)0 we have F (x, r, p,X) = F (x, r + a, p,X) for a ∈ R, hence the functions
vk := uk − inf∂G uk and v0 := u0 − supΩ u0 still satisfy equation (5.2). Also
vk ≤ 0 ≤ v0 on ∂G, so vk and v0 are respectively Lp-viscosity sub and
supersolution of (P0), with v0 strong. We apply lemma 2.7 (see remark 5.9) to
obtain that vk ≤ v0 in G and, in particular, for large k,

u+
k ≥ u+

k (xk)− 2‖u0‖L∞(Ω) − C1 −−−→
k→∞

+∞ on ∂G.

This means that we have blow-up also at the boundary of G, in the sense that
there exists a sequence yk ∈ ∂G with u+

k (yk) → +∞ and yk → y0 ∈ ∂G, as
k →∞. Next, since G is maximal, so ∂G ⊂ ∂Ω∪∂({c = 0}), and using uk = 0
on ∂Ω, we have yk ∈ ∂({c = 0}). Therefore, we can take a ball Br(y0) centered
at y0 (or a half ball if y0 ∈ ∂Ω) which, by enlarging r if necessary, becomes a
neighborhood which meets the set {c > 0}; in other words, such that c 	 0 in
Br(y0). Hence, up to changing xk and x0 by yk and y0, we can suppose that
c 	 0 in Br(x0), or in a half ball if x0 ∈ ∂Ω, after straightening the boundary
around x0.

Suppose we are in the more difficult case of a half ball. For simplicity, and
up to rescaling, say c 	 0 in B+

1 = B+
1 (x0), with our equation being defined in

B+
2 (x0) ⊂ Ω.

We make the convention of assuming that the constant C may change
from line to line and depends on n, p, λP , ΛP , Λ1, Λ2, µ1, ‖b‖Lp(Ω), ‖h‖Lp(Ω),
‖c‖Lp(Ω) and C1. The constant C1 is fixed in (5.1) with its dependence described
in the statement of proposition 5.7.

Notice that, from (5.1), for every Lp-viscosity solution u of (Pλ), the
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function v := u+ C1 is a nonnegative Lp-viscosity solution of

M−(D2v)− b(x)|Dv| ≤ F (x, v − C1, Dv,D
2v)

= −λc(x)v − 〈M(x)Dv,Dv〉 − h(x) + λc(x)C1

≤ −λc(x)v − µ1|Dv|2 + h̃(x)

where h̃(x) := h−(x) + Λ2 c(x)C1 ≥ 0 , by (SC)0. Thus, by lemma 2.20, the
function

v1 := 1
m1
{em1v − 1} , where m1 = µ1

ΛP

(5.3)

is a nonnegative Lp-viscosity supersolution of

L−1 [v1] ≤ f1(x) in B+
2 (5.4)

where L−1 [v1] :=M−(D2v1)− b(x)|Dv1| −m1 h̃(x) v1 and

f1(x) := − λ
m1
c(x)(1 +m1v1) ln(1 +m1v1) + h̃(x) ∈ Lp(Ω)

since v1 ∈ L∞(Ω). Notice that, in the set B+
2 ∩ {f1 ≥ 0}, we have

0 ≤ λ
m1
c(x)(1 +m1v1) ln(1 +m1v1) ≤ h̃

and f+
1 = |f1| ≤ λ

m1
c(x)(1 +m1v1) ln(1 +m1v1) + h̃ ≤ 2 h̃, so

‖f+
1 ‖Lp(B+

2 ) ≤ 2‖h̃‖Lp(B+
2 ) ≤ 2‖h−‖Lp(Ω) + 2Λ2‖c‖Lp(Ω)C1 ≤ C. (5.5)

Then, using proposition 2.15 (BQSMP, case p = q > n) applied to (5.4),
we obtain positive constants c0, C0 and ε ≤ 1, depending on n, λ, ΛP , p and
‖b‖Lp(Ω), such that

I : = inf
B+

1

v1

xn
≥ c0

ˆ
B+

3/2

(f−1 )ε
1/ε

− C0 ‖f+
1 ‖Lp(B+

2 )

= c0

ˆ
B+

3/2


(
λ

m1
c(x)(1 +m1v1) ln(1 +m1v1)− h̃(x)

)+

ε1/ε

− C

≥ c0 inf
B+

1

v1

xn

(ˆ
B+

1

((
λc(x)1 +m1v1

m1v1
xn ln(1 +m1v1)

−h̃(x)1 +m1v1

v1
xn

)+)ε) 1
ε

− C

≥ c0 I

(ˆ
B+

1

{(
λc(x)xn ln(1 + I m1xn)−m1 h̃(x)xn

)+
}ε)1/ε

− C
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using (5.5) and that v1(x) ≥ xnI for all x ∈ B+
1 . Thus,

I

c0

(ˆ
B+

1

xεn

((
λc(x) ln(1 + I m1xn)−m1 h̃(x)

)+
)ε)1/ε

− 1

 ≤ C̄. (5.6)

We claim that this is only possible if I ≤ C, with a constant that does
not depend on v1 (and consequently on u), neither λ ∈ [Λ1,Λ2]. Indeed, if
this was not the case, we would obtain a sequence of supersolutions vk1 of
L−1 [vk1 ] ≤ fk1 (x) in B+

2 such that Ik := infB+
1

vk1
xn
→ +∞ when k → +∞ and

(5.6) holding with I replaced by Ik . So, up to a subsequence and renumbering,
we can assume that Ik ≥ k2 and C̄

k2 ≤ 1 for all k ≥ k0, from where it follows

ˆ
B+

1

xεn

((
λc(x) ln(1 + Ikm1xn)−m1 h̃(x)

)+
)ε
≤ c−ε0

(
1 + C̄

k2

)ε
≤ C

and finally, using λ ≥ Λ1,

ˆ
B+

1 ∩{xn≥1/k}
xεn

(Λ1c(x)−m1
h̃(x)

ln(1 +m1k)

)+ε ≤ C

ln(1 +m1k) . (5.7)

Passing to limits as k → +∞ we have
´
B+

1
(xn c(x))ε dx = 0, since Λ1 > 0,

which contradicts c(x) 	 0 in B+
1 . More precisely, for the limit in (5.7) we

can use, for example, the dominated convergence theorem: for ε = 1 this is
obvious; for 0 < ε < 1 we use Young’s inequality to estimate((

λc(x)−m1 h̃(x)/ln(1 +m1k)
)+
)ε
≤
(
λc(x)−m1h̃(x)/ln(1 +m1k)

)+
+ 1

ensuring the desired convergence. In this way we establish the claim

inf
B+

1

v1

xn
≤ C.

Thus, by theorem 2.16 (BWHI, again with p = q > n) applied to (5.4),
we obtain that there exists other positive constants ε, c0, C0, depending on
n, λP , ΛP , p and ‖b‖Lp(Ω), such that

ˆ
B+

3/2

v1
ε

1/ε

≤ c0

ˆ
B+

3/2

(
v1

xn

)ε1/ε

≤ inf
B+

1

v1

xn
+ C0 ‖f+

1 ‖Lp(B+
2 ) ≤ C. (5.8)

Now we go back to u and define

v2 := 1
m2
{em2u − 1} , with m2 = µ2

λP
(5.9)
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which by lemma 2.20 and (SC)0 is an Lp-viscosity solution of
 M

+(D2v2) + b(x)|Dv2|+ ν(x)v2 ≥ −h+(x) in B+
2

v2 = 0 on B0
2

(5.10)

where ν(x) := λ
m2v2

c(x)(1 +m2v2) ln(1 +m2v2) +m2h
+(x) ∈ Lp(B+

2 ).

Notice that by the definitions (5.3) and (5.9),

v2 = 1
m2

{
(1 +m1v1)

m2
m1 e−m2C1 − 1

}
. (5.11)

As in [15], observe that

λc(x)
∣∣∣∣∣(1 +m2v2)

m2v2
ln(1 +m2v2)

∣∣∣∣∣ ≤ Cs c(x) (1 + |v2|s) (5.12)

for any s > 0. Indeed, v2 ≥ R1, for R1 := 1
m2
{e−C1m2 − 1} ∈ (−1/m2, 0) by

(5.1). Then, since limt→0
ln(1+t)

t
= 1, there exists a δ ∈ (0,−R1) such that the

expression inside the modulus sign in (5.12) is less than 1 + m2δ, for every
x ∈ { |v2| < δ}. Further, from limt→+∞

1+t
t

= 1 and limt→+∞
ln(1+t)
ts

= 0, there
exists aR2 > 0 such that this expression is less than 2 v2

s, for all x ∈ {v2 ≥ R2}.
Finally, the same term is bounded by a constant which depends on R1, R2 and
δ if v2 ∈ [R1,−δ] ∪ [δ, R2], and so (5.12) holds for any s > 0.

Now, if we take s = ε m1
m2

p−n
p(p+n) and p1 = p+n

2 ∈ (n, p) then, by Holder’s
inequality, the right hand side in (5.12) belongs to Lp1(B+

2 ) and

‖ c |v2|s‖Lp1 (B+
2 ) ≤ ‖c‖Lp(B+

2 )‖ |v2|s‖Lp2 (B+
2 ) , with 1

p1
= 1
p

+ 1
p2

≤ ‖c‖Lp(B+
2 )

(ˆ
B+

2

|v2|ε
m1
m2

) p−n
p(p+n)

≤ C (5.13)

and then

‖ν‖Lp1 (B+
2 ) ≤ Cn,p ‖c‖Lp(Ω) + ‖ c |v2|s‖Lp1 (B+

2 ) +m2‖h+‖Lp(Ω) ≤ C. (5.14)

Next, the uniform bound on (5.14) allows us to use theorem 2.1 (BLMP,
case p = q > n) applied to (5.10), for v2 and r = εm1

m2
as in (5.13), to obtain

v2
+ ≤ C


ˆ

B+
3/2

|v2|r
1/r

+ ‖h+‖Lp(Ω)

 ≤ C in B+
1 .

Hence, u+ = 1
m2

ln(1 + m2v2
+) is uniformly bounded in B+

1 , for every
Lp-viscosity solution of (Pλ), for all λ ∈ [Λ1,Λ2]. �
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5.2.1
Proof of Lemma 5.8

We show that the result is valid for the most general notion of C-viscosity
solutions (see [3], [33]), which can be discontinuous functions. We can suppose
u ∈ LSC(Ω), just replacing u by its lower semicontinuous envelope u∗,
see chapter 2. Remember that, in this case, we say that u is a C-viscosity
supersolution provided u∗ is.

In this section, for simplicity, we denote L−1 [u] =M−
λ,Λ(D2u)−γ|Du|−du,

with ellipticity coefficients λ and Λ.
By contradiction, let u be a nonnegative C-viscosity supersolution of

L−1 [u] ≤ f(u) in Ω

with both Ω0 := {x ∈ Ω; u(x) = 0} and Ω+ := {x ∈ Ω; u(x) > 0} nonempty
sets. Notice that Ω+ is open, since u ∈ LSC(Ω). As in the usual proof of SMP
(see, for instance, [39]), choose x̃ ∈ Ω+ such that dist(x̃,Ω0) < dist(x̃, ∂Ω) and
consider the ball BR = BR(x̃) ⊂ Ω+ such that ∂BR(x̃) ∩ ∂Ω0 6= ∅.

Observe that f is a strictly increasing function on the interval (0, δ), for
some δ < 1.

Fix a x0 ∈ ∂BR(x̃) ∩ ∂Ω0, so u(x0) = 0 and u(x) > 0 in BR = BR(x̃).
Note that, up to diminishing R, we can suppose also that u < δ in BR(x̃).
Indeed, since u(x0) = 0 there exists a ball Br0(x0) such that u < δ in this ball;
so by taking R1 < R with BR1(x̃1) ⊂ Br0(x0) for a point x̃1 ∈ Ω+, now just
replace x̃, R by x̃1, R1.

Consider the annulus ER = BR \ BR/2 centered in x̃ and set µ as the
quantity µ = min∂BR/2 u ∈ (0, δ). We need to find a good barrier in ER for our
nonlinear problem. This is accomplished in the following claim.

Claim 5.10 There exists a nonnegative classical subsolution v ∈ C2(ER) of

L−1 [v] > f(v) in ER

v = µ on ∂BR/2

v = 0 on ∂BR ,

radially decreasing in r = |x− x̃|, convex and such that ∂νv > 0 on ∂BR.

Proof. We start choosing a large α > 1 such that

1
R2 {α [λ(α + 1) + (n− 1)Λ− γR ]− dR2 } > C0 α , (5.15)

for C0 := a (|lnµ|+ 2|lnR|+ |ln2|+ |ln(R/2) |) +m0 , m0 := maxs∈[0,1] f(s) > 0.
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Let ε > 0 be such that ε = ε(α) := µ {(R/2)−α −R−α}−1, and set

v(x) := ε {|x− x̃|−α −R−α}. (5.16)

Remark 5.11 (For instance, lemma 2.2 in [12].) Let u ∈ C2(B) be a radial
function, u(x) = ϕ(|x− x0|), defined in a ball B in Rn centered on x0. Then

spec(D2u(x) ) =
{
ϕ′(|x− x0|)
|x− x0|

, . . . ,
ϕ′(|x− x0|)
|x− x0|

, ϕ′′(|x− x0|)
}
.

With this choice of ε, of course v = µ on ∂BR/2 and v = 0 on ∂BR. Notice
that v(x) = ϕ(r) with r = |x− x̃|, thus ϕ′(r) = −2αε r−α−1 < 0 and so

∂νv(x) = Dv(x) · ~ν = −ϕ′(R) x− x̃
|x− x̃|

· x− x̃
|x− x̃|

= −ϕ′(R) > 0

for every x ∈ ∂BR = ∂BR(x̃), where ~ν = − x−x̃
|x−x̃| is the interior unit normal

to the ball BR. Further, ϕ′′(r) = α(α + 1)ε r−α−2 > 0, and by remark 5.11 we
have, in ER,

L−1 [v] =M−
λ,Λ(D2v)− γ |Dv| − d v(x)

= αε|x− x̃|−α−2 {λ(α + 1) + (n− 1)Λ} − γαε|x− x̃|−α−1

− dε|x− x̃|−α + dεR−α

≥ ε|x− x̃|−αR−2 {α [λ(α + 1) + (n− 1)Λ− γR ]− dR2 }

> α εC0 |x− x̃|−α

by the choice of α in (5.15). Now we claim that

f(v) ≤ α εC0 |x− x̃|−α in ER (5.17)

and this will finish the proof of the claim 5.10. For r = R this is obvious. Note
that, for r 6= R, (5.17) is equivalent to

a
(

1− rα

Rα

) ∣∣∣∣ lnε− ln(rα) + ln
(

1− rα

Rα

)∣∣∣∣ ≤ αC0. (5.18)

Set y := 1 −
(
r
R

)α
∈
[
0, 1− 1

2α
]
for r ∈

[
R
2 , R

]
. But now the left hand side of

(5.18) is less or equal than

a |lnε|+ α a |lnr|+ ay |lny|

≤ a { |lnµ|+ α |lnR|+ |ln(2α − 1)| }+ αa { |lnR|+ |ln(R/2)| }+ ay|lny|

≤ αC0
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by using α > 1 and definitions of ε and m0. �

By construction, u ≥ v on ∂ER = ∂BR ∪ ∂BR/2.

Claim 5.12 u ≥ v in ER.

Proof. Suppose not, i.e. that the open set O := ER ∩ {u < v} is not empty.
Notice that since v is decreasing in r and v = µ < δ on r = R/2, then

both u, v ∈ (0, δ) in ER = BR \BR/2, and we can use the monotonicity of f in
the interval (0, δ) to obtain

 L
−
1 [v]− L−1 [u] > f(v)− f(u) ≥ 0 in O

v ≤ u on ∂O ⊂ ∂ER ∪ {v = u}

in the C-viscosity sense, and so the comparison principle (for example
proposition 3.3 in [33]), gives us that v ≤ u in O, which contradicts the
definition of the set O. �

To finish the proof of lemma 5.8, if u ∈ C1(Ω), we can just use the
fact that u has a minimum at the interior point x0, so by claim 5.12 we have
0 = ∂νu(x0) ≥ ∂νv(x0) > 0, a contradiction.

Assume u is only in LSC(Ω). Let ρ < R/2. Observe that v is a C2

function in Bρ(x0) with v < 0 ≤ u in Bρ(x0) \ER and, since v ≤ u in ER with
u(x0) = v(x0) = 0, then v touches u from below at the interior point x0. Thus,
the definition of u being a C-viscosity supersolution on Ω yields

0 < L−[v](x0)− dv(x0)− f(v(x0)) = L−[v](x0)

= L−[v](x0)− du(x0)− f(u(x0)) ≤ 0,

a contradiction.
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6
The Degree Theory Approach

This chapter is devoted to the proof of theorems 5.3, 5.4 and 5.5, split in
sections 6.3, 6.4 and 6.5, respectively. However, the first section in the sequel
is completely independent from the others sections and only requires the usual
bounds necessary to the application of C1,α regularity and estimates from
chapter 3.

6.1
Existence results through fixed point theorems

In this section we construct and study an auxiliary fixed point problem
in order to obtain the existence statements in theorems 5.3–5.5.

Consider the problem (Pλ) without λ dependence, i.e.
 −F (x, u,Du,D2u) = c(x)u+ 〈M(x)Du,Du〉+ h(x) in Ω

u = 0 on ∂Ω
(P)

under (SC). In this section all results hold for functions b, c and h in Lp(Ω).
About the matrix M , we only need to assume that M ∈ L∞(Ω). We set
µ = ‖M‖L∞(Ω). As for c, no sign condition is needed in this section.

We define, under hypothesis (H1), the operator T : E → E that takes a
function u ∈ E = C1(Ω) into U = T u , the unique Lp-viscosity solution of the
problem −F (x, U,DU,D2U) = c(x)u+ 〈M(x)Du,Du〉+ h(x) in Ω

U = 0 on ∂Ω
(Tu)

Claim 6.1 The operator T is completely continuous.

Proof. Let uk ∈ E, uk → u in E. Then ‖uk‖E ≤ C0, for all k ∈ N. Set
fk(x) := c(x)uk + 〈M(x)Duk, Duk〉+ h(x) so

‖fk‖Lp(Ω) ≤ ‖h‖Lp(Ω) + C0 ‖c‖Lp(Ω) + µC2
0 ≤ C.

Next, ABP on the sequence Uk = T uk produces ‖Uk‖L∞ ≤ C ‖fk‖Lp(Ω) ≤ C.
Therefore the C1,α global estimate (theorem 3.1 and remark 3.3, see also
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remark 3.2) gives us ‖Uk‖C1,α(Ω) ≤ C. By the compact inclusion of C1,α(Ω)
into E, there exists U ∈ E and a subsequence such that Uk → U in E. This
already shows that T takes bounded sets into precompact ones.

We need to see that U = T u. This easily follows from stability
(proposition 2.12), by defining, for each ϕ ∈ W 2,p

loc (Ω),

gk(x) := −F (x, Uk, Dϕ,D2ϕ)− fk(x) , g(x) := −F (x, U,Dϕ,D2ϕ)− f(x)

a.e. x ∈ Ω, where f is the same as fk with uk replaced by u. Indeed, by (SC),

‖gk − g‖Lp(Ω) ≤ ‖d‖Lp(Ω) ω(‖Uk − U‖L∞(Ω)) + ‖c‖Lp(Ω)‖uk − u‖L∞(Ω)

+ µ (‖Duk‖L∞(Ω) + ‖Du‖L∞(Ω)) ‖Duk −Du‖L∞(Ω)|Ω|1/p

≤ ‖d‖Lp(Ω) ω(‖Uk − U‖L∞(Ω)) + { ‖c‖Lp(Ω) + 2C0 µ |Ω|1/p} ‖uk − u‖E,

which converges to zero as k → +∞, since ω is increasing, continuous in 0,
with ω(0) = 0. Since the problem (Tu) has a unique solution, U = T u. On
the other hand, since this argument can be made for any subsequence of the
original (Uk)k∈N, the whole sequence converges to U = T u. �

The next existence statement is a typical result about existence between
sub and supersolutions, and it is a version of theorem 2.1 of [15] for fully
nonlinear equations. We start with a definition.

Definition 6.2 An Lp-viscosity subsolution α ∈ E (supersolution β) of (P) is
said to be strict if every Lp-viscosity supersolution (subsolution) u ∈ E of (P)
such that α ≤ u (u ≤ β) in Ω, also satisfies α� u (u� β) in Ω.

Set Br = BEr (0) := {u ∈ E; ‖u‖E < r}, for any r > 0, E = C1(Ω).

Theorem 6.3 Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C1,1. Suppose
(SC), (Hβ) and (H1). Let α = max1≤i≤κ αi , β = min1≤j≤ι βj , where αi , βj ∈
W 2,p(Ω) are strong sub and supersolutions of (P) respectively, with α ≤ β in Ω.
Then (P) has an Lp-viscosity solution satisfying α ≤ u ≤ β in Ω. Furthermore,

(i) If α and β are strict in the sense of definition 6.2, then for large R > 0
we have

deg(I − T ,S, 0) = 1

where S = O ∩ BR, for O = Oα,β := {u ∈ C1
0(Ω); α� u� β in Ω}.

(ii) If (H2) holds, there exists a minimal solution u and a maximal solution
u of (P) in the sense that every (strong) solution u of (P) in the order
interval [α, β] (i.e. such that α(x) ≤ u(x) ≤ β(x) for all x ∈ Ω) satisfies

α ≤ u ≤ u ≤ u ≤ β in Ω.
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Notice that, under the assumptions of theorem 6.3 and by the global
C1,α estimate (theorem 3.1 and remark 3.3), every solution u of (P) satisfying
α ≤ u ≤ β in Ω is such that

‖u‖C1,α(Ω) ≤ C, (6.1)

where C depends on r0, n, p, µ, ‖b‖Lp(Ω), ‖c‖Lp(Ω), ‖h‖Lp(Ω), ω(1)‖d‖Lp(Ω),
diam(Ω), λP , ΛP , on the C1,1 character of the boundary and, of course, on the
L∞ uniform bounds on u given by ‖α‖∞ and ‖β‖∞.

Proof. Consider any R ≥ max{C, ‖α‖E, ‖β‖E}+ 1, with C from (6.1).
Part 1. Existence of a solution in the order interval [α, β].
First of all, we construct a modified problem, similar to but a little bit

simpler than the one given in [15]. In order to avoid technicalities, consider
κ = ι = 1; later we indicate the corresponding changes. We set

f(x, r, p) := h(x) + c(x) r + 〈M(x) p, p〉;

f(x, r, p) := h(x) + c(x) r + 〈M(x) p, p〉

for

M(x) = M(x, p) :=

M(x) , if |p| < R

M(x) R2

|p|2 , if |p| ≥ R,

and also

f̃(x, r, p) :=


f(x, α(x), Dα(x)) , if r < α(x)

f(x, r, p) , if α ≤ r ≤ β(x)

f(x, β(x), Dβ(x)) , if r > β(x).

Consider the problems

−F [u] = f(x, u,Du) in Ω, (P)

−F [u] = f(x, u,Du) in Ω, (P)

−F [u] = f̃(x, u,Du) in Ω, (P̃)

and u = 0 on ∂Ω.

Notice that, by the construction of f, f̃ and |Dα|, |Dβ| < R, we have

f̃(x, α(x), Dα(x)) = f(x, α(x), Dα(x)) = f(x, α(x), Dα(x)) a.e. in Ω (6.2)
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and the same for β. So, α, β are also a pair of strong sub and supersolutions
for (P) and (P̃). Observe also that ‖M‖L∞(Ω) ≤ µ .

Claim 6.4 The operator F (x, r, p,X) + 〈M(x)p, p〉 still satisfies (SC)µ.

Proof. We need to estimate the difference Ap,q := 〈M(x, p)p, p〉−〈M(x, q)q, q〉.
First, if both |p|, |q| < R, thenM(x, p) = M(x, q) = M(x) and we have nothing
to prove (see remark 2.2). In the second place, if both |p|, |q| ≥ R then

Ap,q = R2

|p|2
〈M(x)p, p〉 − R2

|q|2
〈M(x)q, q〉 ≤ 〈M(x)p, p〉 − R2

|q|2
〈M(x)q, q〉.

So, reversing the roles of p, q, it is enough to consider |p| < R and |q| ≥ R. In
this case, the modulus of the last expression above is equal to

1
|q2|
|〈M(x)|q| p, |q| p〉 − 〈M(x)Rq,Rq〉| ≤ µ

| |q|p−Rq |
|q|

|q| |p|+R|q|
|q|

≤ µ | p−Rq/|q| | (|p|+R) ≤ µ |p− q| (|p|+ |q|)

since the distance between p and q is greater1 or equal than the distance
between p and the projection of q on the ball BR. �

By claim 6.4, (6.1) and the definition of R, every solution u of (P) with
α ≤ u ≤ β in Ω is C1,α up to the boundary and satisfies

‖u‖E < R , (6.3)

so M(x) = M(x,Du) = M(x), and u is a solution of the original problem (P).

Claim 6.5 Every Lp-viscosity solution u of (P̃) satisfies α ≤ u ≤ β in Ω,
hence is a solution of (P), and, by the above, a solution of (P).

Proof. Let u be an Lp-viscosity solution of (P̃). As in the proof of lemma 2.7,
assume v := u − α is such that minΩ v = v(x0) < 0 in order to produce a
contradiction. Since v ≥ 0 on ∂Ω, it follows that x0 ∈ Ω. Consider, then, the
set Ω̃ := {v < 0} 6= ∅.

We claim that v is an Lp-viscosity supersolution of

M−(D2v)− b(x)|Dv| ≤ 0 in Ω̃. (6.4)

Indeed, let ϕ ∈ W 2,p
loc (Ω̃) and x̂ ∈ Ω̃ such that v − ϕ has a local maximum at

x̂ in Ω̃. Then, α + ϕ ∈ W 2,p
loc (Ω̃) and u− (α + ϕ) has also a local maximum at

1Observe that |p− q| is the length of the opposite side to the obtuse angle.
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x̂. By definition of u as an Lp-viscosity supersolution of (P̃), for every ε > 0,
there exists an r > 0 such that for a.e. in Br(x̂) ∩ Ω̃,

−F (x, u,D(α + ϕ,D2(α + ϕ)))− f(x, α,Dα) ≥ −ε, (6.5)

since u < α in Ω̃. Further, from (6.2), −F (x, α,Dα,D2α) − f(x, u,Dα) ≤ 0
a.e. in Ω̃. Subtracting this from (6.5) and using (SC), we obtain L−[u] ≤ ε a.e.
in Br(x̂) ∩ Ω̃, since d(x)ω(v+) ≡ 0 in Ω̃. Hence, (6.4) is proved.

Now, (6.4) and ABP imply that v ≥ 0 in Ω̃, contradicting the definition
of Ω̃. So, minΩ v ≥ 0 i.e. u ≥ α in Ω. Analogously, u ≤ β in Ω. �

Next, we move to build a solution for the operator T̃ : E → E that takes
a function u ∈ E into U = T̃u , the unique Lp-viscosity solution of the problem −F [U ] = f̃(x, u,Du) in Ω

U = 0 on ∂Ω.
(T̃u)

Solutions of (P̃) are fixed points of T̃ , and belong to the order interval
[α, β], by claim 6.5. Moreover,

‖T̃ u‖E < R0 , for all u ∈ E, (6.6)

for an appropriate R0 > R. In fact, by observing that

|〈M(x) p, p〉| =

 |〈M(x) p, p〉| , if |p| < R

R2

|p|2 |〈M(x) p, p〉| , if |p| ≥ R
≤ µR2 , for all p ∈ Rn,

then |f̃(x, r, p)| ≤ |h(x)|+µR2 + |c(x)|max{‖α‖∞, ‖β‖∞}. In addition, for the
function γ(x) := f̃(x, u(x), Du(x)),

‖γ‖Lp(Ω) ≤ ‖h‖Lp(Ω) + µR2 + ‖c‖Lp(Ω) max{‖α‖∞, ‖β‖∞},

for every u ∈ E. Thus, C1,α estimates (theorem 3.1 and remark 3.3, see also
remark 3.2) together with ABP, applied to the problem (T̃u), give us that
U = T̃ u ∈ C1,α(Ω) and ‖U‖C1,α(Ω) ≤ C < R0. Thus, (6.6) follows.

Notice that T̃ takes bounded sets in E into precompact ones, by the above
and the compact inclusion C1,α ⊂ E. Also, if uk → u in E, then Uk = T̃ uk → U

in E up to a subsequence; thus we can conclude that T̃ is completely continuous
if we show that U = T̃ u. To prove the latter, similarly to the argument with
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T we set, for ϕ ∈ W 2,p
loc (Ω),

gk(x) :=− F (x, Uk, Dϕ,D2ϕ)− c(x) ũk − 〈M(x,Duk)Duk, Duk〉 − h(x)

g(x) :=− F (x, U,Dϕ,D2ϕ)− c(x) ũ− 〈M(x,Du)Du,Du〉 − h(x),

where, for each fixed function v, the function ṽ is the following truncation

ṽ(x) :=


α(x) if v(x) < α(x)
v(x) if α(x) ≤ v(x) ≤ β(x)
β(x) if v(x) > β(x).

Observe that

ũk(x)− ũ(x) =



uk(x)− u(x) if x ∈ {α ≤ uk ≤ β} ∩ {α ≤ u ≤ β}
uk(x)− α(x) if x ∈ {α ≤ uk ≤ β} ∩ {u < α}
uk(x)− β(x) if x ∈ {α ≤ uk ≤ β} ∩ {u > β}
α(x)− u(x) if x ∈ {uk < α} ∩ {α ≤ u ≤ β}
β(x)− u(x) if x ∈ {uk > β} ∩ {α ≤ u ≤ β}
β(x)− α(x) if x ∈ {uk > β} ∩ {u < α}
α(x)− β(x) if x ∈ {uk < α} ∩ {u > β}

0 otherwise

thus |ũk − ũ| is given by


|uk − u| in {α ≤ uk ≤ β} ∩ {α ≤ u ≤ β}
uk − α < uk − u in {α ≤ uk ≤ β} ∩ {u < α}
β − uk < u− uk in {α ≤ uk ≤ β} ∩ {u > β}
u− α < u− uk in {uk < α} ∩ {α ≤ u ≤ β}
β − u < uk − u in {uk > β} ∩ {α ≤ u ≤ β}
β − α < |uk − u| in ({uk > β} ∩ {u < α}) ∪ ({uk < α} ∩ {u > β})

0 otherwise

and then ‖ũk − ũ‖L∞(Ω) ≤ ‖uk − u‖L∞(Ω) → 0 as k → ∞. By the estimates
for T and using that the function p 7→ 〈M(x, p)p, p〉 is continuous in p for a.e.
x ∈ Ω, we get ‖gk − g‖Lp(Ω) → 0 as k →∞ and so U = T̃ u.

By complete continuity of T and (6.6), the degree deg(I − T̃ ,BR0 , 0) is
well defined and is equal to one. Indeed, set Ht(u) := t T̃ u for all t ∈ [0, 1] and
notice that (I −Ht)u = 0 ⇔ u = t T̃ u ∈ BR0 . Then I −Ht does not vanish
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on ∂BR0 and

deg(I − T̃ ,BR0 , 0) = deg(I −H1 ,BR0 , 0)

= deg(I −H0 ,BR0 , 0) = deg(I,BR0 , 0) = 1 .

Therefore, T̃ has a fixed point u ∈ E, which is a solution of (P̃). By
claim 6.5, the first existence statement in theorem 6.3 is proved in the case
κ = ι = 1.

If α and β are in the general case as the maximum and minimum of
strong sub and supersolutions, respectively, we define f̃ as

f̃(x, r, p) :=


max1≤i≤κ f(x, αi(x), Dαi(x)) , if r < α(x)

f(x, r, p) , if α ≤ r ≤ β(x)

min1≤j≤ι f(x, βj(x), Dβj(x)) , if r > β(x)

and consider R > max{‖αi‖E, ‖βj‖E ; 1 ≤ i ≤ κ, 1 ≤ j ≤ ι}. In claim 6.5,
choose i ∈ {1, . . . , κ} such that minΩ (u− α) = (u− αi)(x0), define v = u− αi
and replace α by αi ∈ W 2,p(Ω) until the end of the proof, observing that
x ∈ Ω̃ = {v < 0} implies u(x) < α(x). The rest of the proof is exactly the same.

Denote by H the set of fixed points of T belonging to the order interval
[α, β]. In claim 6.5 we saw that this set contains the set of fixed points of T̃ .
The converse is also true, since any solution of (P) in the order interval [α, β]
satisfies f(x, u,Du) = f(x, u,Du) and (6.3), hence is a solution of (P̃), i.e.

H = {u ∈ E ; u = T u , α ≤ u ≤ β in Ω} = {u ∈ E ; u = T̃ u} . (6.7)

Notice that we just proved that this set is nonempty.

Part 2. Degree computation in S under strictness of α, β – proof of (i)
Suppose α, β are strict, and consider the set S as in the statement of

theorem 6.3. Since there exists a solution u ∈ C1
0(Ω) of (P) with α ≤ u ≤ β in

Ω, by definition 6.2 we have α � u � β in Ω and so S is a nonempty open
set in C1

0(Ω). Further, from part 1, we see that all fixed points of T̃ are in
S ⊂ BR ⊂ BR0 , the degree over BR0 is equal to 1 and solutions of (P) and (P̃)
in S coincide, leading to

deg(I − T ,S, 0) = deg(I − T̃ , S, 0) = deg(I − T̃ , BR0 , 0) = 1.
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Part 3. Existence of extremal solutions under (H2) – proof of (ii).
From the proof of part 1, we know that for any sequence (uk)k∈N in E

with uk → u in E there exists U ∈ E such that T̃ uk → U = T̃ u in E. Then,
if additionally uk = T̃ uk , we obtain that u = T̃ u thus the set H in (6.7) is a
(nonempty) compact set in E.

Now consider, for each u ∈ H , the set Cu := {z ∈ H ; z ≤ u in Ω}.

Claim 6.6 The family {Cu}u∈H has the finite intersection property, i.e. the
intersection of any finite number of sets Cu is not empty.

Proof. Let u1, ..., uκ ∈ H. Observe that β̃ := min1≤i≤κ ui is an Lp-viscosity
supersolution of (P), with α ≤ β̃ ≤ β in Ω . Furthermore, under hypothesis
(H2), such β̃ is a minimum of strong solutions of (P), which is exactly what
we need in order to use part 1 of the above proof, obtaining the existence of a
solution v of (P) with α ≤ v ≤ β̃ ≤ β in Ω, i.e. v ∈ H and v ≤ ui , for every
i ∈ {1, ..., κ}, so v ∈ ∩1≤i≤κ Cui 6= ∅. �

By the definition of compacity of H by open covers and claim 6.6, there
exists u ∈ ∩u∈H Cu (see, for example, theorem 26.9 in [88]). But then there
exists a solution u of (P) with α ≤ u ≤ u in Ω, for all u ∈ H. Analogously we
prove the existence of u, with u ≤ u ≤ β in Ω, for every u ∈ H. �

Remark 6.7 The conclusion of the theorem 6.3 is still true if, instead of c(x),
we have some c(x, u) such that c(x, u)u = c(x)Tau, where Ta is a truncation of
u, i.e. Ta(u) = u for u ≥ a, Ta(u) = a for u < a. In this case, similiar to the
“tilde” truncation, |Tauk − Tau| ≤ |uk − u| and the rest of the proof carries on
in the same way.

6.2
Some auxiliary results

We start by constructing an auxiliary problem (Pλ,k), for which we can
assure that there are no solutions for large k, and that (Pλ,0) reduces to the
problem (Pλ). This is a typical but essential argument (see [66], [15]) that
allows us to find a second solution via degree theory, by homotopy invariance
in k.

Fix Λ2 > 0. Recall that proposition 5.7 gives us an a priori lower uniform
bound C0, depending only on n, p, λP ,ΛP , µ1, Ω, Λ2, ‖b‖L∞(Ω), ‖c‖L∞(Ω) and
‖h−‖L∞(Ω), such that

u ≥ −C0 , for all Lp-visc. supersol. u of (Pλ), for all λ ∈ [0,Λ2]. (6.8)
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Consider, thus, the problem −F [u] = λc(x)u+ h(x) + 〈M(x)Du,Du〉+ k c̃(x) in Ω
u = 0 on ∂Ω

(Pλ,k)

for k ≥ 0, λ ∈ [0,Λ2], F satisfying (SC)0, (Hβ) and (H1), M satisfying (M),
c � 0, c, h ∈ L∞(Ω) and c̃ being defined as

c̃(x) = c̃Λ2(x) := Ac(x) + h−(x) + Λ2C0 c(x) ∈ L∞+ (Ω), (6.9)

with A := λ1/m , m = µ1/ΛP , where λ1 = λ+
1 (L−(c),Ω) > 0 is the first

eigenvalue with weight c of the proper operator L−, associated to the positive
eigenfunction ϕ1 ∈ W 2,p(Ω), given by proposition 4.3, that is,


(L− + λ1c) [ϕ1] = 0 in Ω

ϕ1 > 0 in Ω
ϕ1 = 0 on ∂Ω.

(6.10)

Note that every Lp-viscosity solution of (Pλ,k) is also an Lp-viscosity
supersolution of (Pλ), since k c̃ ≥ 0, and so satisfies (6.8). From this and (6.9)
we have, for all k ≥ 1 and for a.e. in Ω,

λc(x)u+ h(x) + k c̃(x) ≥ −Λ2C0 c(x)− h−(x) + c̃(x) = Ac(x) 	 0. (6.11)

Lemma 6.8 For each fixed Λ2 > 0, (Pλ,k) has no solutions for all k ≥ 1 and
λ ∈ [0,Λ2].

Proof. First observe that every Lp-viscosity solution of (Pλ,k), for λ ∈ [0,Λ2],
is positive in Ω. Indeed, from (6.11), (SC)0 and M ≥ 0, we have that u is an
Lp-viscosity solution of  L

−[u] � 0 in Ω
u = 0 on ∂Ω,

and this implies that u ≥ 0 in Ω by ABP. Then u > 0 in Ω by SMP.
Assume, in order to obtain a contradiction, that (Pλ,k) has a solution u.

Again by (M), (6.11) and (SC)0, u is also an Lp-viscosity solution of
 L

−[u] ≤ −µ1|Du|2 − Ac(x) in Ω
u > 0 in Ω,
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and from lemma 2.20, (L− + λ1c)[v] ≤ −Ac(x) in Ω
v > 0 in Ω,

(6.12)

using mA = λ1 , where v = 1
m
{emu − 1}, for m and A given by (6.9). Then

(6.12) and (6.10), together with proposition 4.4 (see also remark 4.6), yields
v = tϕ1 for some t > 0. But this contradicts the first inequality in (6.12), since
Ac(x) � 0 and (L− + λ1c)[ tϕ1] = t (L− + λ1c)[ϕ1] = 0 in Ω. �

When we are assuming hypothesis (H2) we just say solutions to mean
strong solutions of (P λ). However, sub and supersolutions of such equations,
in general, are not assumed strong (since we are considering the problem in
the Lp-viscosity sense), unless specified otherwise. To avoid possible confusion,
we always make explicit the notion of sub/supersolution we are referring to.

The next result is important in degree arguments, bearing in mind the
set S in theorem 6.3.

Lemma 6.9 Suppose (SC)0, (Hβ) and (H2). Then, for every λ > 0, there
exists a strong strict subsolution αλ of (Pλ) which is strong minimal, in the
sense that every strong supersolution β of (Pλ) satisfies αλ ≤ β in Ω.

When u0 has a sign, we will see in the proofs of theorems 5.4 and 5.5
that u0 can be taken as β and α, respectively, in theorem 6.3 for the problem
(Pλ), for all λ > 0. In the second case, lemma 6.9 will not be necessary.

Proof. Let K be the positive constant from proposition 5.7 such that every
Lp-viscosity supersolution β of −F [β] ≥ λc(x)β + 〈M(x)Dβ,Dβ〉 − h−(x)− 1 in Ω

β ≥ 0 on ∂Ω
(P̃λ)

satisfies β ≥ −K in Ω. Let α0 be the strong solution of the problem L
−[α0] = λKc(x) + h−(x) + 1 in Ω
α0 = 0 on ∂Ω,

(6.13)

given, for example, by proposition 3.5. Then, as the right hand side of (6.13)
is positive, by ABP, SMP and Hopf, we have α0 � 0 in Ω.

Claim 6.10 Every Lp-viscosity supersolution β of (Pλ) satisfies β ≥ α0 in Ω.

Proof. First notice that β is an Lp-viscosity supersolution of (P̃λ) and so
satisfies β ≥ −K. Second, by (SC)0 and M ≥ 0, β is also an Lp-viscosity
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supersolution of

−L−[β] ≥ λc(x)β + h(x) ≥ −λKc(x)− h−(x)− 1 in Ω

and setting v := β − α0 in Ω, v is an Lp-viscosity solution of

L−[v] ≤M−(D2β)+M+(−D2α0)−b(x)|Dβ|+b(x)|Dα0| = L−[β]−L−[α0] ≤ 0

since α0 is strong. Further, v ≥ 0 on ∂Ω then, by ABP, v ≥ 0 in Ω. �

Set

c (x, t) =

 c(x) if t ≥ −K

−K c(x)/t if t < −K.

Note that 0 ≤ c (x, t) ≤ c(x) a.e. in Ω and c(x, t)t ≥ −Kc(x) for t ∈ R. Then,

−F [α0] ≤ −L−[α0] = −λKc(x)− h−(x)− 1

≤ λ c (x, α0)α0 + 〈M(x)Dα0, Dα0〉 − h−(x)− 1

since M ≥ 0 and α0 is a strong subsolution of (P λ).

Consider the problem (P λ), which we define as the problem (Pλ) with
c, h replaced by c = c(x, u), h = −h− − 1. So, solutions of (P λ) are strong, by
hypothesis (H2). Moreover, observe that we are in the situation of remark 6.7,
since c̄(x, u)u = c(x)T−Ku as in there, which allows us to use theorem 6.3 in
order to obtain solutions of (P λ).

Let β0 be some fixed strong supersolution of (Pλ) (if there were not
strong supersolutions of (Pλ), the proof is finished). Then, by claim 6.10, we
have α0 ≤ β0 in Ω. Also, in that proof we observed that β0 ≥ −K, then
c (x, β0) ≡ c(x) a.e. x ∈ Ω, which means that

−F [β0] ≥ λc(x)β0 + 〈M(x)Dβ0, Dβ0〉+ h(x)

≥ λ c (x)β0 + 〈M(x)Dβ0, Dβ0〉 − h−(x)− 1

and so β0 is a strong supersolution of (P λ). By theorem 6.3 and remark 6.7,
we obtain an Lp-viscosity solution w of this problem, with α0 ≤ w ≤ β0 in Ω,
which is strong and can be chosen as the minimal solution in the order interval
[α0, β0], by hypothesis (H2).
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Remark 6.11 Notice that c (x, t)t ≥ c(x)t a.e. x ∈ Ω for all t ∈ R, so

−F [w] = λ c (x,w)w + 〈M(x)Dw,Dw〉 − h−(x)− 1

≥ λ c(x)w + 〈M(x)Dw,Dw〉 − h−(x)− 1 (6.14)

a.e. in Ω, that is, w is also a strong supersolution of (P̃λ).

Claim 6.12 For every β strong supersolution of (Pλ), β ≥ w in Ω.

Proof. Let β be any strong supersolution of (Pλ). As in the argument above
for β0, we have that β is also a strong supersolution of (P λ). Suppose that the
conclusion is not verified, i.e. that there exists x0 ∈ Ω such that β(x0) < w(x0)
and define

β1 := min{w , β} 6≡ w.

Then β1 is the minimum of strong supersolutions, hence itself is an Lp-viscosity
supersolution of (P λ) and of (P̃λ), by remark 6.11. Following the same lines
as in claim 6.10, β1 ≥ α0 in Ω. Thus, by theorem 6.3 and remark 6.7,
there exists an Lp-viscosity solution w1 of (P λ), strong by (H2), such that
α0 ≤ w1 ≤ β1 � w ≤ β0 in Ω, which contradicts the minimality of w. �

Claim 6.13 w is a strong strict subsolution of (Pλ).

Proof. From remark 6.11, w ≥ −K and c (x,w) ≡ c(x), which implies that w
actually satisfies (6.14) with equality, from where

−F [w] < λc(x)w + 〈M(x)Dw,Dw〉+ h(x) a.e. in Ω, (6.15)

with w = 0 on ∂Ω. Thus w is a strong subsolution of (Pλ). What remains to
be proved is that w is strict, in order to choose αλ as w. Therefore, in the
sense of definition 6.2, let u ∈ E be an Lp-viscosity supersolution of (Pλ) with
u ≥ w in Ω. Then, since w is strong, U := u − w ≥ 0 in Ω is an Lp-viscosity
supersolution of

−L−[U ] ≥ λc(x)U + 〈M(x)DU,DU〉+ 〈M(x)DU,Dw〉+ 〈M(x)Dw,DU〉

in Ω, using (SC)0 and 0 ≤ M(x) ≤ µ2. Hence, for b̃ = b + 2µ2|Dw| ∈ Lp+(Ω),
U satisfies  M

−(D2U)− b̃(x)|DU | < 0 in Ω
U ≥ 0 in Ω

in the Lp-viscosity sense and by SMP, U > 0 in Ω. If there exists x0 ∈ ∂Ω with
U(x0) = 0, Hopf lemma implies that ∂νU(x0) > 0. Then, U � 0 in Ω. � �
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6.3
Proof of Theorem 5.3

Suppose, at first, (SC), (Hβ) and (H1).
We start proving the first statement in theorem 5.3, about existence of

solutions for λ < 0. Set α := u0 − ‖u0‖∞ and β := u0 + ‖u0‖∞. Thus, α, β is
a pair of strong sub and supersolutions of (Pλ), for each λ < 0, with α ≤ β in
Ω. Indeed, using (SC), α ≤ u0 and 0 ≤ λc(x)α, we have
 −F [α] ≤ −F [u0] ≤ λc(x)α + h(x) + 〈M(x)Dα,Dα〉 in Ω

α ≤ u0 = 0 on ∂Ω
(6.16)

and similarly for β, with β ≥ u0, 0 ≥ λc(x)β and reversed inequalities.
Therefore, theorem 6.3 gives us a solution uλ ∈ [α, β], for all λ < 0.

Observe that, since α ≤ uλ ≤ β, we can say that ‖uλ‖C1,α(Ω) ≤ C for
all λ ∈ [0, 1], by the C1,α estimates (theorem 3.1 and remark 3.3). Thus,
take a sequence λk ≤ 0 with λk → 0 as k → ∞. Next, the compact inclusion
C1,α(Ω) ⊂ E gives us some u ∈ E such that uk → u in E, up to a subsequence.
Hence we can define, for each ϕ ∈ W 2,p

loc (Ω),
 gk(x) := F (x, uk, Dϕ,D2ϕ) + h(x) + λkc(x)uk,

g(x) := F (x, u,Dϕ,D2ϕ) + h(x).
(6.17)

Therefore

‖gk − g‖Lp(Ω) ≤ |λk| ‖c‖Lp(Ω) ‖u0‖∞ + ‖d‖Lp(Ω) ω(‖uk − u‖L∞(Ω))→ 0

as k → ∞. By proposition 2.12, we have that u is an Lp-viscosity solution of
(P0). From the uniqueness of the solution at λ = 0, u needs to be equal to
u0. Finally, since the sequence of λ converging to zero is arbitrary, we obtain
‖uλ − u0‖E → 0 as k →∞.

Now we prove the existence of a continuum from u0.
Fix an ε > 0 and consider another pair of sub and supersolutions given

by α := u0 − ε and β := u0 + ε. Analogously to (6.16), we see that α, β is a
pair of strong sub and supersolutions for (P0). Notice that they are not a pair
for (Pλ) with λ < 0, since they do not have a sign. However, α < u0 < β in
Ω, which implies that α � u0 � β in Ω . Since u0 is the unique Lp-viscosity
solution of the problem (P0), then α, β are strict in the sense of definition 6.2.
Then, theorem 6.3 (i) gives us, for S = O ∩ BR defined there, that

deg(I − T0 ,S, 0) = 1. (6.18)
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Using again that u0 is the unique Lp-viscosity solution of (P0), we have
further that ind(I − T0 , u0) = 1. Then, by proposition 4.11 (since Tλ is
continuous in λ, uniformly with respect to u in balls of E, by stability), there
exists a continuum C ⊂ Σ such that both components

C ∩ ([0,+∞)× E) and C ∩ ((−∞, 0]× E)

are unbounded in R± × E. This proves item 1.

From now on, we suppose (SC)0.
Let us prove point 2. in theorem 5.3. The continuum C ⊂ Σ is such that

its projection on the λ-axis is either R (and we obtain (ii) in theorem 5.3) or
it is (−∞, λ̄], with 0 < λ̄ < +∞. In the second case, since we know that the
component C+ is unbounded in R+ × E, its projection on the E axis must be
unbounded in E.

Under (SC)0, by theorem 5.6, for any 0 < Λ1 < Λ2 there is an L∞ a
priori bound for the solutions of (Pλ), for all λ ∈ [Λ1,Λ2]. Then, by C1,α global
estimate (theorem 3.1), we have also a C1,α a priori bound for these solutions
i.e. the projection of C+ ∩ ([Λ1,Λ2]×E) on E is bounded. So, C+ needs to be
unbounded in E when we approach λ = 0 from the right.

Now, by proposition 5.7, there is a lower L∞ bound for the solutions, for
every λ ≤ Λ2. Therefore, C+ must emanate from plus infinity to the right of
λ = 0, with the positive part of its solutions blowing up to infinity in C(Ω).
Thus, (i) and (ii) in 2. are proved.

Now we pass to the multiplicity results in item 3. of theorem 5.3.
Observe that, up to taking a larger R in (6.18), by C1,α estimates we can

suppose that for every u, Lp-viscosity solution of (Pλ) in [u0 − ε, u0 + ε],

‖u‖C1,α(Ω) < R, for all λ ∈ [0, 1]. (6.19)

Claim 6.14 There exists a λ0 > 0 such that

deg(I − Tλ ,S, 0) = 1, for all λ ∈ (0, λ0).

Proof. Let us prove the existence of a λ0 > 0 such that, for all λ ∈ (0, λ0),
(Pλ) has no solution on ∂S. Suppose not, i.e. that for all λ0 > 0, there exists a
λ ∈ (0, λ0) such that Tλ has a fixed point on ∂S. Then for every k ∈ N, there
exists λk ∈

(
0, 1

k

)
and uk ∈ ∂S a solution of (Pλk). By (6.19), uk 6∈ ∂BR and

so uk ∈ ∂O, for all k ∈ N. Note that

∂O = {u ∈ C1
0(Ω) ; α ≤ u ≤ β in Ω and u “touches” α or β }
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where “touches” in the above, as in [66], has the following meaning.

Definition 6.15 Let u, v ∈ C1
0(Ω). We say that u touches v if there exists

x ∈ Ω with u(x) = v(x) or if there exists x ∈ ∂Ω with ∂νu(x) = ∂νv(x). In
any case, u(x) = v(x) at a point x ∈ Ω.

If uk touches α, there exists a x ∈ Ω such that uk(x) = u0(x) − ε, and
since uk ≥ u0 − ε, then maxΩ (u0 − uk) = ε. If on the other side uk touches
β, there exists a x ∈ Ω ; uk(x) = u0(x) + ε, and since uk ≤ u0 + ε, then
maxΩ (uk − u0) = ε. Anyway,

‖uk − u0‖∞ = max
Ω
|uk − u0| = ε , for all k ∈ N. (6.20)

By (6.19) and compact inclusion C1,α(Ω) ⊂ E, there exists u ∈ E such
that uk → u in E as k →∞, up to taking a subsequence. Hence, by stability
(proposition 2.12), u is an Lp-viscosity solution of (P0). Indeed, we define g
and gk as in (6.17), for each ϕ ∈ W 2,p

loc (Ω), from where

‖gk − g‖Lp(Ω) ≤ λk ‖c‖Lp(Ω) (‖u0‖∞ + ε)→ 0 as k →∞.

By uniqueness in λ = 0, u = u0, which contradicts (6.20) by passing to limits.
Therefore, the following degree is well defined and by the homotopy

invariance and (6.18) we obtain

deg(I − Tλ ,S, 0) = deg(I − T0 ,S, 0) = 1, for all λ ∈ (0, λ0).

�

Claim 6.16 (Pλ) has two solutions when λ ∈ (0, λ0/2].

Proof. The existence of a first solution uλ,1 with u0 − ε � uλ,1 � u0 + ε is
ensured by claim 6.14. Set Λ2 := λ0/2. Then, lemma 6.8 implies that (Pλ,k)
has no solutions for k ≥ 1 and λ ∈ (0,Λ2].

Fix a λ ∈ (0,Λ2]. With h replaced by h + kc̃ (see (6.9)) we have, by
theorem 5.6, an L∞ a priori bound for solutions of (Pλ,k), for every k ∈ [0, 1].
Precisely, we get an L∞ a priori bound for solutions of (Pµ,k), for all µ ∈ [λ,Λ2],
depending on λ and Λ2. This provides, by the C1,α estimates (theorem 3.1),
an a priori bound for solutions in E, namely

‖u‖E < R0 , for every u Lp-viscosity solution of (Pλ,k), for all k ∈ [0, 1],

and for some R0 > R that depends, in addition to the coefficients of the
equation, also on λ and the Lp-norm of c̃. By the homotopy invariance of the
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degree in k ∈ [0, 1] and the fact that, for k = 1, (Pλ,k) has no solution,

deg(I − Tλ ,BR0 , 0) = deg(I − Tλ,0 ,BR0 , 0) = deg(I − Tλ,1 ,BR0 , 0) = 0

where Tλ,k is the operator Tλ in which we replace h by h+ kc̃ (of course Tλ,k is
still completely continuous). But then, by the excision property of the degree,

deg(I − Tλ ,BR0 \ S, 0) = deg(I − Tλ ,BR0 , 0)− deg(I − Tλ ,S, 0) = −1

which provides the second solution uλ,2 ∈ BR0 \ S that we were looking for.
�

Next, by claim 6.16, the quantity

λ̄ := sup{µ ; ∀λ ∈ (0, µ), (Pλ) has at least two solutions} ∈ (0,+∞]

it is well defined and greater or equal than λ0/2.

Claim 6.17 uλ,1 → u0 in E and maxΩ uλ,2 → +∞ as λ→ 0+.

Proof. Let (λk)k∈N ⊂ (0, λ̄) be a decreasing sequence with λk → 0. Say
λk ≤ λ0/2 for k ≥ k0. Since uλk,1 ∈ S, u0 − ε ≤ uλk,1 ≤ u0 + ε in Ω, therefore
it is bounded in C1,α(Ω) by theorem 3.1. Hence, exactly as in (6.17), we show
by stability that uλk,1 → u in E, where u is a solution of (P0). Then u = u0.

If, in turn, the respective sequence uλk,2 were uniformly bounded from
above, it would be unifomly bounded in C(Ω) using proposition 5.7, so bounded
in C1,α(Ω) and the paragraph above would imply that uλk,2 → u0 in E. Since
u0 ∈ S and S is open in E, then uλk,2 should belong to BEr (u0) ⊂ S for large
k, for some r > 0. But this contradicts the fact that uλk,2 /∈ S. �

Claim 6.18 In case λ̄ < +∞, the problem (Pλ̄) has at least one solution.

Proof. Let λk ∈ (0, λ̄) be such that λk → λ̄ and let uk be a sequence
of solutions for (Pλk). Say λk ∈ [ λ̄/2 , λ̄ ] for k ≥ k0. This provides an
L∞ a priori bound for uk, by theorem 5.6, i.e. ‖uk‖∞ ≤ C1, which implies
that ‖uk‖C1,α(Ω) ≤ C2. Again, by compact inclusion and stability, we obtain
uk → u in E, where u is a solution of (Pλ̄). Surely, for stability we need
to consider, this time, g(x) := F (x, u,Dϕ,D2ϕ) + λ̄c(x)u + h(x) and so
‖gk − g‖Lp(Ω) ≤ (λ̄− λk) ‖c‖Lp(Ω)C2 + λ̄ ‖c‖Lp(Ω)‖uk − u‖∞ → 0 as k →∞. �

To finish the proof of theorem 5.3, it remains to show the last statements
in item 4. concerning ordering and uniqueness considerations, in which we
assume (H2). Notice that this automatically implies that solutions uλ,1 and
uλ,2 are strong, as well as every Lp-viscosity solution of (Pλ).
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Further, note that (H2) provided existence of minimal and maximal
solutions on the order interval [α, β] in theorem 6.3. Such existence of minimal
solution made it possible to find a minimal strong subsolution αλ of (Pλ) in
lemma 6.9.

Claim 6.19 uλ,1 � uλ,2, for all λ ∈ (0, λ̄).

Proof. Fix a λ ∈ (0, λ̄) and consider the strict strong subsolution α = αλ

given by lemma 6.9. Since in particular α ≤ u for every (strong) solution of
(Pλ), we can choose uλ,1 as the minimal strong solution such that uλ,1 ≥ α in
Ω. This choice implies that

uλ,1 � uλ,2 in Ω. (6.21)

Indeed, uλ,1 6= uλ,2 and, if there would exist a point x0 ∈ Ω such that
uλ,1(x0) > uλ,2(x0), by defining uλ := min{uλ,1, uλ,2}, as the minimum of
strong supersolutions greater or equal than α, so uλ ≥ α in Ω. Therefore,
theorem 6.3 would give us a solution u of (Pλ) such that α ≤ u ≤ uλ � uλ,1,
which contradicts the minimality of uλ,1 and implies (6.21).

To finish the proof, define v := uλ,2−uλ,1 	 0 in Ω by (6.21). Then, since
uλ,1 and uλ,2 are strong, v satisfies, almost everywhere in Ω,

−L−[v] ≥− F [uλ,2] + F [uλ,1]

=λc(x)v + 〈M(x)Dv,Dv〉+ 〈M(x)Dv,Duλ,1〉+ 〈M(x)Duλ,1, Dv〉

≥ − 2µ2|Duλ,1| |Dv|.

Hence, v is a nonnegative strong solution of M−(D2v) − b̃(x)|Dv| ≤ 0 in Ω,
for b̃ = b + 2µ2|Duλ,1| ∈ Lp+(Ω). Then SMP gives us that v > 0 in Ω, since
v 6≡ 0. Now, Hopf lemma and v = 0 on ∂Ω imply ∂νv|∂Ω > 0, so v � 0 in Ω.

�

As far as uniqueness is concerned, from theorem 1(iii) in [12], if the
coercive problem for λ ≤ 0 has a strong solution uλ, it is the unique
Lp-viscosity solution of (Pλ). So, under (H2), uλ is strong, then unique, in
the Lp-viscosity sense, for all λ < 0. Observe that, in this case, we must have
{ (λ, uλ), λ ≤ 0 } ⊂ C. In other words, the projection of C on the λ-axis
contains (−∞, 0], as in theorems 1.1 and 1.2 in [13] for the Laplacian.

We finish the proof of 4. with the following claim.

Claim 6.20 If λ̄ < +∞ and F is convex in (r, p,X), the solution uλ̄ of (Pλ̄),
obtained in claim 6.18, is unique.
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Proof. Suppose, in order to obtain a contradiction, that there exist two
different solutions u1 and u2 of (Pλ̄), both strong by (H2). Consider β = βλ̄

defined as 1
2(u1 + u2). Then, a.e. in Ω,

−F [β] ≥ −{F [u1] + F [u2]}/2

= λ̄c(x)β + h(x) + {〈M(x)Du1, Du1〉+ 〈M(x)Du2, Du2〉}/2

	 λ̄c(x)β + h(x) + 〈M(x)Dβ,Dβ〉

using also the convexity of p 7→ 〈M(x)p, p〉. Hence β is a strong supersolution
of (Pλ̄) which is not a solution. Let us see that it is strict. Set U := β − u,
where u ∈ E is an Lp-viscosity subsolution of (Pλ̄) with u ≤ β in Ω. Thus, U
is an Lp-viscosity solution of

−L−[U ] 	 λ̄c(x)U − 〈M(x)DU,DU〉+ 〈M(x)DU,Dβ〉+ 〈M(x)Dβ,DU〉

≥ −µ2|DU |2 − 2µ2|Dβ| |DU |,

and so, by lemma 2.20, the function w := 1
m

(1− e−mU), where m = µ2/λP , is
a nonnegative Lp-viscosity solution of M−(D2w) − b̃(x)|Dw| � 0 in Ω, with
b̃ = b + 2µ2|Dβ| ∈ Lp+(Ω). Then SMP gives us w > 0 in Ω. Now, Hopf and
w ≥ 0 on ∂Ω imply that ∂νv|∂Ω > 0 in the boundary points where w = 0, and
so w � 0 on Ω. Consequently, U � 0 in Ω and therefore β is a strict strong
supersolution of (Pλ̄).

Consider also α = αλ̄ the strict strong subsolution of (Pλ̄) given by
proposition 6.9 and look at the set Ō = {α � u � β} = {αλ̄ � u � βλ̄}.
Again, by the C1,α estimates in chapter 3,

‖u‖C1,α(Ω) ≤ C for all u ∈ [α, β] Lp-visc. sol. of (Pλ), λ ∈ [λ̄, λ̄+ 1] (6.22)

for some C > 0 that depends on the L∞-norm of α. Then, by theorem 6.3, we
obtain R > C such that deg(I − Tλ̄ , S̄, 0) = 1, where S̄ = Ō ∩ BR.

We claim that there exists ε > 0 such that

deg(I − Tλ , S̄, 0) = 1, for all λ ∈ [ λ̄, λ̄+ ε]. (6.23)

As in the proof of claim 6.14, we will verify that there exists some ε ∈ (0, 1)
such that there is no fixed points of Tλ on the boundary of S̄, for all λ in
the preceding interval. Indeed, if this were not the case, there would exist a
sequence λk → λ̄ with the respective solutions uk of (Pλk) belonging to ∂S̄.
Say λk ∈ [λ̄, λ̄+ 1] for k ≥ k0. Then, since α ≤ uk ≤ β in Ω, by (6.22) we must
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have uk ∈ ∂Ō for k ≥ k0, which means that for each such k,

max
Ω

(α− uk) = 0 or max
Ω

(uk − β) = 0. (6.24)

By (6.22) and the compact inclusion C1,α(Ω) ⊂ E, uk → u in E for some
u ∈ E, up to a subsequence. This u is an Lp-viscosity solution of (Pλ̄) by
stability (proposition 2.12); and α ≤ u ≤ β in Ω by taking the limit as
k → +∞ in the corresponding inequalities for uk. Thus α � u � β in Ω,
since α and β are strict. Passing to limits in (6.24), we obtain that u touches
α or β, which contradicts the definition of α� u� β.

Hence, obtaining (6.23) it is just a question of applying homotopy
invariance in λ in the interval [λ̄, λ̄+ ε]. Next, with (6.23) at hand, we repeat
exactly the same argument done in claim 6.16 to obtain the existence of a
second solution uλ,2 of (Pλ), for all λ ∈ [λ̄, λ̄+ ε]. But this, finally, contradicts
the definition of λ̄. �

6.4
Proof of Theorem 5.4

Suppose u0 ≤ 0 with cu0 � 0 in Ω and (H2).

Claim 6.21 u0 is a strict strong supersolution of (Pλ), for all λ > 0.

Proof. Since λc(x)u0 � 0 in Ω, u0 is a strong supersolution of (Pλ) which is not
a solution. To see that it is strict, we take u ∈ E an Lp-viscosity subsolution
of (Pλ) such that u ≤ u0 in Ω, and set U := u0 − u. Then, since u0 is strong,
U is an Lp-viscosity supersolution of

−L−[U ] ≥ λc(x)U − 〈M(x)DU,DU〉+ 〈M(x)Du0, DU〉+ 〈M(x)Du0, DU〉

≥ −µ2 |DU |2 − 2µ2 |Du0| |DU |.

Moreover, M−(D2w) − b̃(x)|Dw| ≤ 0 in Ω in the Lp-viscosity sense, where
b̃ = b+2µ2 |Du0| ∈ Lp+(Ω) and w = 1

m
{1−e−mU}, m = µ2/λP , by lemma 2.20.

Using SMP and the fact that u0 is not a solution of (Pλ), we have w > 0 in Ω.
Since w ≥ 0 on ∂Ω, at points belonging to ∂Ω such that w > 0 we are done.
If in turn x0 ∈ ∂Ω is such that w(x0) = 0, then ∂νU(x0) > 0 by Hopf. Thus
w � 0 and so U � 0 in Ω. �

We now prove that for all λ > 0, (Pλ) has at least two solutions, uλ,1 and
uλ,2, with uλ,1 � u0 and uλ,1 � uλ,2.

Fix a λ > 0. From lemma 6.9 and claim 6.21, we get a pair of strong
strict sub and supersolutions, α = αλ and u0, which implies, by theorem 6.3,
the existence of a first solution uλ,1 ∈ S, where
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S = Sλ = {u ∈ C1
0(Ω); α� u� u0 in Ω} ∩ BR for some R > 0.

Remark 6.22 We already know, from theorem 5.3, that at least two solutions
exist. Here we redefine, as in [15], the set S in order to obtain more precise
informations about Σ. Notice that, with this new definition, we automatically
have uλ,1 � u0 ≤ 0.

Fix a λ > 0 and set Λ2 := 2λ. As in the proof of claim 6.16, we observe
that, by lemma 6.8, (Pλ,k) has no solutions for k ≥ 1. Moreover, for h replaced
by h + kc̃, theorem 5.6 gives us an L∞ a priori bound for solutions of (Pλ,k)
for every k ∈ [0, 1], which depends on λ. This provides, by the C1,α global
estimates (theorem 3.1), an a priori bound for solutions in E, i.e. ‖u‖E < R0

for every u solution of (Pλ,k), for all k ∈ [0, 1], where R0 > R also depends on
λ. By the homotopy invariance of the degree,

deg(I − Tλ ,BR0 , 0) = deg(I − Tλ,0 ,BR0 , 0) = deg(I − Tλ,1 ,BR0 , 0) = 0.

Therefore, by the excision property of the degree

deg(I − Tλ ,BR0 \ S, 0) = deg(I − Tλ ,BR0 , 0)− deg(I − Tλ ,S, 0) = −1

and the existence of a second solution uλ,2 ∈ BR0 \ S is derived.
Since the argument above can be done for any λ > 0, we obtain the

existence of at least two solutions for every positive λ. Exactly the same
reasoning from claims 6.19 and 6.17 applies to check that uλ,1 � uλ,2 in Ω
and to get their behavior when λ→ 0+, respectively, since λ̄ is the same from
theorem 5.3. Of course, here λ̄ = +∞.

Claim 6.23 For λ1 < λ2 , we have uλ2,1 � uλ1,1 in Ω.

Proof. For fixed λ1 < λ2 note that λ1 c(x)uλ1,1 	 λ2 c(x)uλ1,1 since uλ,1 < 0.
Then, uλ1,1 is a strong supersolution of (Pλ2) which is not a solution and, in
particular, uλ1,1 6= uλ2,1.

We first infer that uλ2,1 � uλ1,1 in Ω. In fact, similarly to the argument
in the proof of claim 6.19, recall that α = αλ2 , given by lemma 6.9, is such
that α ≤ u for every strong supersolution of (Pλ2), and in particular α ≤ uλ1,1.
Remember also that uλ2,1 is the minimal strong solution such that uλ2,1 ≥ α in
Ω. Now, if there was a point x0 ∈ Ω such that uλ2,1(x0) > uλ1,1(x0), by defining
β := min{uλ1,1, uλ2,1}, as the minimum of strong supersolutions of (Pλ2) not
less than α, we have α ≤ β in Ω. Thus, theorem 6.3 provides a solution u of
(Pλ2) such that α ≤ u ≤ β � uλ2,1 in Ω, contradicting the minimality of uλ2,1.
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Proceeding as usual, the function v := uλ1,1−uλ2,1 is a nonnegative strong
supersolution ofM−(D2v)− b̃(x)|Dv| ≤ 0 in Ω, then SMP gives us that v > 0
in Ω, since v 6≡ 0. Next, Hopf and v = 0 on ∂Ω imply that ∂νv|∂Ω > 0, hence
v � 0 in Ω. �

Remark 6.24 Notice that u � u0 in Ω, for every nonpositive Lp-viscosity
subsolution u of (Pλ) in E. Indeed, since λc(x)u ≤ 0 in Ω, u is also an
Lp-viscosity subsolution of (P0). By remark 5.9 we have u ≤ u0, since u0

is strong. Now, by claim 6.21 and definition of strict supersolution, we get
u � u0 in Ω. In particular, u ≡ 0 is never a solution of (Pλ), for any λ > 0
(recall that cu0 6≡ 0).

Claim 6.25 In addition to the hypotheses of theorem 5.4, suppose that F
is convex in (r, p,X). Then, (Pλ) has at most one nonpositive solution. In
particular, maxΩ uλ,2 > 0.

Proof. Suppose, in order to obtain a contradiction, that there exist two
different nonpositive solutions u1 and u2, strong by (H2). By remark 6.24
we know that u1 � u0 and u2 � u0 in Ω. We can assume that they are
ordered, in the sense that u1 � u2. Indeed, observe that max{u1, u2} ≤ u0, then
theorem 6.3 yields a solution u3 of (Pλ) with u2 ≤ max{u1, u2} ≤ u3 ≤ u0 ≤ 0
in Ω. Thus, if the solutions u1 and u2 do not satisfy u1 � u2, then there is a
point x0 ∈ Ω with u1(x0) > u2(x0), which implies that u2 6≡ max{u1, u2} and
so u2 � u3; in this case we just replace u1, u2 by u2, u3 respectively.

Since u2 � 0 (from u2 � u0 and ∂νu0 ≤ 0), the quantity

τ := inf{t > 0; (1 + t)u2 ≤ u1 in Ω}

is well defined and finite. Further, τ > 0, since u2 − u1 	 0, so this infimum is
attained. Then, by setting w := 1

τ
{(1+τ)u2−u1}, we have that w ≤ 0 satisfies

u2 = τ
1+τw + 1

1+τ u1 and it is a strong subsolution of

F [w] ≥ 1 + τ

τ
F [u2]− 1

τ
F [u1] = 1 + τ

τ
{λc(x)u2 + 〈M(x)Du2, Du2〉+ h(x) }

− 1
τ
{λc(x)u1 + 〈M(x)Du1, Du1〉+ h(x) }

≥ λc(x)w + 〈M(x)Dw,Dw〉+ h(x) in Ω,

since F is convex in (r, p,X) and p 7→ 〈M(x)p, p〉 is convex in p. Now, by
remark 6.24 we have w � u0 in Ω, i.e. w = wτ < 0 in Ω. Then, there exists
a little bit smaller t ∈ (0, τ) such that wt < 0 in Ω (see the argument in
proposition 4.4, by taking a compact set with small measure containing the
boundary). Therefore, this last contradicts the definition of τ as a minimum. �
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6.5
Proof of Theorem 5.5

Suppose, for the time being, just u0 ≥ 0 with cu0 	 0 in Ω and (SC)0.

Claim 6.26 We have u� u0, for every nonnegative Lp-viscosity supersolution
u ∈ E of (Pλ), for all λ > 0.

Proof. Notice that λc(x)u ≥ 0 in Ω implies that u is an Lp-viscosity
supersolution of (P0). Since u0 is strong, by remark 5.9, u ≥ u0 in Ω. But
u0 is not a solution of (Pλ) for λ > 0 since cu0 6≡ 0, which means that u0 6≡ u.

Set v := u− u0 in Ω. Then, using M ≥ 0, we see that v is a nonnegative
Lp-viscosity supersolution of

M−(D2v)− b̃(x)|Dv| ≤ 0 in Ω

with b̃ := b + 2µ2 |Du0|, as usual. By SMP, v > 0 in Ω. If v > 0 on ∂Ω it is
done; if on the other side there exists x0 ∈ ∂Ω with v(x0) = 0, we apply Hopf
lemma to obtain ∂νv(x0) > 0. Therefore, v � 0 in Ω. �

Claim 6.27 (Pλ) has no nonnegative Lp-viscosity solutions for λ large.

Proof. Let λ ≥ λ̃1, where λ̃1 = λ̃+
1 (L̃−(c),Ω) > 0 is the principal weighted

eigenvalue of

L̃− [v] :=M−(D2v) + b̃(x)|Dv| , b̃(x) := b(x) + 2µ2 |Du0| ∈ Lp+(Ω),

associated to ϕ̃1 = ϕ̃+
1 (L̃−(c),Ω) ∈ W 2,p(Ω), from proposition 4.3, i.e.


(L̃− + λ̃1c)[ϕ̃1] = 0 in Ω
ϕ̃1 > 0 in Ω
ϕ̃1 = 0 on ∂Ω

(6.25)

Suppose, in order to obtain a contradiction, that there exists a
nonnegative Lp-viscosity solution u of (Pλ) and set v := u − u0 in Ω. By
claim 6.26, it follows that v � 0 in Ω.

Since u0 is strong, we can use it as a test function into the definition
of Lp-viscosity supersolution of u, together with (SC)0 and µ2I ≥ M ≥ 0, to
obtain that

−L−[v] ≥ λc(x)v + λc(x)u0 + 〈M(x)Dv,Dv〉+ 〈M(x)Dv,Du0〉

+ 〈M(x)Du0, Dv〉 	 λ̃1c(x)v − 2µ2|Du0| |Dv|
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since c(x)u0 	 0, and so v satisfies
 (L̃− + λ̃1c) [v] � 0 in Ω

v > 0 in Ω
(6.26)

in the Lp-viscosity sense. As the proof of lemma 6.8, applying proposition 4.4
(and remark 4.6) to (6.26) and (6.25), we get v = tϕ̃1 for t > 0. But this
contradicts the first line in (6.26), since (L̃− + λ̃1c) [ tϕ̃1] = 0 in Ω. �

Define

λ̄ := sup {λ ; (Pλ) has an Lp-viscosity solution uλ ≥ 0 in Ω }

which is finite, by claim 6.27. Of course it is well defined and nonnegative,
since u0 ≥ 0. Also, by the definition of λ̄, (Pλ) has no nonnegative solutions
for λ > λ̄.

It is a subtle but important detail that λ̄ is a positive number. In fact, by
the existence of the continuum (theorem 5.3) we know that, for λ small, there
exists a solution uλ of (Pλ) such that uλ 6≡ 0, since ‖u0‖E > 0. But why can
we infer that uλ ≥ 0 for small λ positive? This is the subject of the next claim.

Consider (H2) from now. Then, Lp-viscosity solutions of (Pλ) are strong.

Claim 6.28 λ̄ > 0.

Proof. Let λ ∈ (0,Λ0), where Λ0 is such that there exists a nontrivial solution
of (Pλ) in this interval, as indicated above. Suppose Λ0 ≤ min{1, 1/C0}, where
C0 is a lower bound for the solutions of (Pλ) such that u ≥ −C0, for all
λ ∈ [0, 1]. We are supposing here C0 > 0, otherwise every solution of (Pλ)
would be nonnegative for λ ≤ 1.

Suppose firstly that h ≥ c. In this case every nontrivial solution u of (Pλ)
satisfies −L

−[u] ≥ −F [u] ≥ c(x)(1− Λ0C0) + 〈M(x)Du,Du〉 ≥ 0 in Ω
u = 0 on ∂Ω.

Then u ≥ 0 in Ω by ABP, for all λ ∈ (0,Λ0).
In the general case, let uc a nontrivial nonnegative solution of the problem −F [uc] = h̃(x) + λc(x)uc + 〈M(x)Duc, Duc〉 ≥ 0 in Ω

uc = 0 on ∂Ω

for h̃ := max{h, c} ≥ c. Notice that uc is strong under (H2), since |h̃| ≤ |h|+c.
Moreover, since h̃ ≥ h, then uc is a supersolution of (Pλ). Therefore uc ≥ u0
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by claim 6.26. Further, since λc(x)u0 ≥ 0, u0 is a strong subsolution of (Pλ).
Thus, applying theorem 6.3, we obtain an Lp-viscosity solution u of (Pλ) with
u0 ≤ u ≤ uc in Ω. In particular this solution is nonnegative and nontrivial. �

Remark 6.29 Another way to prove claim 6.5 is through arguments on first
eigenvalues, which provide an estimate on the smallness of λ.

Set v := u0 − u, with u an Lp-viscosity solution of (Pλ) for positive λ
such that λ < (CA ‖c‖Lp(Ω))−1, where CA is the constant from ABP for µ = 0.
Of course, negativity of v yields u ≥ u0 ≥ 0 in Ω. So, in order to obtain a
contradiction, suppose that supΩ v > 0.

Notice that v is an Lp-viscosity solution of L̃+[v] ≥ −λc(x)v+ in Ω, with
v = 0 on ∂Ω. Thus, as in the proof of proposition 3.4 in [12], we use ABP to
obtain that supΩ v ≤ λCA‖c‖Lp(Ω) supΩ v

+ which, by the choice of λ, yields a
contradiction.

Claim 6.30 For each λ ∈ (0, λ̄), (Pλ) has a well ordered strict pair of strong
sub and supersolutions, namely u0 � βλ in Ω.

Proof. Let λ ∈ (0, λ̄). As the strict subsolution we just consider u0 again,
which is strong. Note that u0 is strict, since for any supersolution u ∈ E such
that u ≥ u0 in Ω, we have u � u0, by repeating the final paragraph in the
proof of claim 6.26.

Note that, from the definition of λ̄, there exists µ ∈ (λ, λ̄) and a
nonnegative solution uµ of (Pµ). By claim 6.26, uµ � u0 in Ω. On the other
hand, since

c(x)(µ− λ)uµ ≥ c(x)(µ− λ)u0 	 0,

we have µc(x)uµ 	 λc(x)uµ and so uµ is a supersolution of (Pλ) which is not a
solution. In addition, uµ is strict because if u ∈ E is an Lp-viscosity subsolution
of (Pλ) with u ≤ uµ in Ω, by defining v = uµ − u and arguing as usual when
we have a strong supersolution, v becomes an Lp-viscosity supersolution of

M−(D2v)− b̃(x)|Dv| − µ2 |Dv|2 � 0 in Ω

with b̃ := b+2µ2 |Duµ| ∈ Lp+(Ω). Thus, w = 1
m
{1−e−mv}, form = µ2/λP , is an

Lp-viscosity supersolution ofM−(D2w) − b̃(x)|Dw| � 0 in Ω by lemma 2.20.
Then, SMP gives us w > 0 in Ω and so w � 0 in Ω, by applying Hopf at the
boundary bounds where w = 0. Consequently, v � 0 in Ω.

Therefore, we can define βλ := uµ for µ = µ(λ), for all λ ∈ (0, λ̄). �

Hence, by claim 6.30 and theorem 6.3, there exists a solution uλ,1 of (Pλ)
with u0 ≤ uλ,1 ≤ βλ in Ω and deg(I − Tλ,S, 0) = 1, for all λ > 0.
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Next, we work a little bit more to construct the second solution uλ,2 that
also satisfies uλ,2 � u0 but is not in S (as in [15]). For this, fix a λ ∈ (0, λ̄)
and consider the open subset of E defined by

D = {u ∈ C1
0(Ω); u0 � u in Ω},

which contains the set S from theorem 6.3, since

S = {u ∈ BR ; u� βλ in Ω} ∩ D.

Analogously to the proof of claim 6.16, we obtain an a priori L∞ bound
for the solutions of (Pλ,k) which depends on λ but not on k ∈ [0, 1], related
to Λ2 := λ̄ − δ for some small δ > 0. This provides a R0 = R0 (λ, δ) > R

which bounds the E-norm of the solutions, by the C1,α estimates. Then, by
the homotopy invariance of the degree in k and the fact that there is no
solution for k = 1, we have deg(I−Tλ,BR0 ∩D, 0) = 0. Therefore, by excision,
deg(I−Tλ, (BR0∩D)\S, 0) = −1, which provides a second solution uλ,2 ∈ D\S,
i.e. a solution that satisfies, by construction, uλ,2 � u0 in Ω, for λ ∈ (0, λ̄− δ],
for every δ > 0. In particular, this second solution is also nonnegative and
nontrivial for all λ < λ̄.

Under (H2), theorem 6.3 (ii) allows us to choose uλ,1 as the minimal
strong solution between u0 and βλ. As the proof of claim 6.19, this implies
(6.21). Indeed, uλ,1 6= uλ,2 and, if would exist x0 ∈ Ω with uλ,1(x0) >

uλ,2(x0), by defining β̃ = β̃λ := min{uλ,1, uλ,2, βλ}, as the minimum of strong
supersolutions greater or equal than u0 , we have β̃ ≥ u0 in Ω. Also, β̃ ≤ βλ in
Ω. By theorem 6.3 there exists a solution u of (Pλ) such that u0 ≤ u ≤ β̃ � uλ,1,
which contradicts the minimality of uλ,1, since u is a solution which belongs
to the order interval [u0, βλ].

Therefore, defining v = uλ,2−uλ,1 	 0 in Ω, we see that v is a nonnegative
strong solution of M−(D2v) − b̃(x)|Dv| ≤ 0 in Ω. Thus, since v 6≡ 0, SMP
yields v > 0 in Ω and Hopf concludes that v � 0 in Ω, i.e.

uλ,1 � uλ,2 in Ω, for all λ ∈ (0, λ̄).

Claim 6.31 For λ1 < λ2 , we have uλ1,1 � uλ2,1 in Ω.

Proof. The proof is similar to the proof of claim 6.30, but a little bit simpler
since both uλ1,1 and uλ2,2 are strong. We repeat it here to avoid confusions
about notation. For fixed λ1 < λ2 , we have λ2 c(x)uλ2,1 	 λ1 c(x)uλ2,1 since

(λ2 − λ1)c(x)uλ2,1 ≥ (λ2 − λ1)c(x)u0 	 0.
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Then, uλ2,1 is a supersolution of (Pλ1) that is not a solution. In particular it
follows that uλ1,1 6= uλ2,1.

Next uλ1,1 � uλ2,1 in Ω. In fact, if there was a point x0 ∈ Ω such that
uλ1,1(x0) > uλ2,1(x0), by defining β̃ = min{uλ1,1, uλ2,1, βλ1}, the minimum of
strong supersolutions of (Pλ1) larger than u0, we would have that u0 ≤ β̃ in Ω.
By theorem 6.3, there exists a solution u of (Pλ2) such that u0 ≤ u ≤ β̃ � uλ1,1,
which contradicts the minimality of uλ1,1, since u is a solution that belongs to
the order interval [u0, βλ1 ].

Hence the function v := uλ2,1 − uλ1,1 	 0 is a strong supersolution of
M−(D2v) − b̃(x)|Dv| ≤ 0 in Ω, for b̃ = b + 2µ2 |Duλ1,1|. Then SMP yields
v > 0 in Ω, since v 6≡ 0. Next, Hopf and v = 0 on ∂Ω give us ∂νv|∂Ω > 0, from
where v � 0 in Ω. �

The existence proof of at least one solution for (Pλ̄) follows exactly the
same lines as the proof of claim 6.18 since, in there, we only used the fact that
there exists one sequence of solutions corresponding to a maximizing sequence
of λ’s converging to the supremum λ̄. Furthermore, uniqueness is true if F is
convex in (r, p,X), by following the proof of claim 6.20. Finally, the behavior
of the solutions is the same as in claim 6.17 and this finishes the proof of
theorem 5.5.

Remark 6.32 Particular cases of theorems 5.4 and 5.5 are h � 0 and h 	 0,
respectively, when the hypothesis (H0) holds. Indeed, if h 	 0, then u0 is a
strong supersolution of

−L−[u0] ≥ −F [u0] = h(x) + 〈M(x)Du0, Du0〉 	 0 in Ω

with u0 = 0 on ∂Ω. Then SPM gives us u0 > 0 in Ω and so cu0 6≡ 0.
Furthermore, by Hopf, u0 � 0 in Ω.

On the other hand, if h � 0, then u0 is a strong subsolution of

−L+[u0] ≤ −F [u0] � 〈M(x)Du0, Du0〉 in Ω

and so v0 := 1
m

(emu0−1), for m = µ2
λP

, is a strong subsolution of L+[v0] 	 0 in
Ω by lemma 2.20, with v0 = 0 on ∂Ω. Again by SMP we get v0 < 0 in Ω (then
v0 � 0 in Ω by Hopf ) and so does u0 (with u0 � 0), from where cu0 6≡ 0.

Notice that in the case h ≡ 0, we have that u ≡ 0 is a strong solution of
(Pλ), for all λ ∈ R. By theorem 1(iii) in [12], this is the unique Lp-viscosity
solution for all λ ≤ 0. By theorem 5.3 we obtain the existence of λ̄ such that
(Pλ) has at least one more nontrivial solution, for all λ ∈ (0, λ̄).
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A
Notations

Here we list some notations used throughout the text.

• Sn is the set of n×n symmetric matrices with real entries, Sn ⊂Mn×n(R);

• Br(x0) = {x ∈ Rn; |x − x0| < r} is a ball with radius r in Rn centered
at x0, for r > 0, Br = Br(0);

• B+
r = Br ∩ {xn > 0}, Tr = Br ∩ {xn = 0}, for r > 0;

• Bν
r (x0) = Br(x0) ∩ {xn > −ν}, Tνr(x0) = Br(x0) ∩ {xn = −ν}, r, ν > 0;

• ω is a Lipschitz modulus if ω(r) ≤ ω(1)r for all r ≥ 0;

• Ω is a bounded domain (open and connected) in Rn; u : Ω→ R;

• ∂ν is the derivative in the direction of the interior unit normal;

• We say f ∈ Lp+(Ω) to mean a real function f : Ω → R such that
f ∈ Lp(Ω) and f ≥ 0;

• Du = (ux1 , . . . , uxn) is the gradient of u;

• D2u = (∂iju)ni,j=1 is the Hessian matrix of u, where ∂iju = ∂2u
∂xi∂xj

;

• ∆u = ∑n
i=1 ∂iiu = tr(D2u) is the Laplacian of u;

• u ∈ USC(Ω) means that limy→x u(y) = u(x) for all x ∈ Ω, and it is
equivalent to have {x ∈ Ω; u(x) < α} open for all α ∈ R;

• L±[u] =M±(D2u)±b(x)|Du| denote both L+[u] =M+(D2u)+b(x)|Du|
and L−[u] =M−(D2u)− b(x)|Du|;

• In chapters 5 and 6, E = C1(Ω) and Br = BEr (0) = {u ∈ E; ‖u‖E < r}
is the ball in E, for any r > 0.
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B
Quadratic ABP

In this chapter we give a simple proof of quadratic ABP in the case p > n,
with µ a positive constant. The proof is a version of theorem 3.1 in [63] (for
constant b). For more general conditions see also theorems 2.6 in [25] and 3.4
in [37] (see also theorem 3.3 of [24]), even for unbounded µ.

Proof of Proposition 2.6. We prove the result for subsolutions, since in
the supersolution case we just need to apply the former result to −u. We can
suppose 0 ∈ Ω and consider B = B2d(0) for d = diam(Ω). We define g : B → R,

g := f− + d−
n
p ‖f−‖Lp(Ω) in Ω , g := 0 in B \ Ω

then ‖g‖Lp(B) ≤ ‖f−‖Lp(Ω) + d−
n
p ‖f−‖Lp(Ω)|Ω|

1
p ≤ (1 + |B1|

1
p ) ‖f−‖Lp(Ω). Also,

by Holder’s inequality, ‖g‖Ln(B) ≤ |B|
1
n
− 1
p‖g‖Lp(B) ≤ d1−n

p Cn,p ‖f−‖Lp(Ω).
By theorem 3.51, there exists a unique strong solution w ∈ W 2,p(B) of

M+
λ,Λ(D2w) + b(x)|Dw| = −g(x) in B

with w = 0 on ∂B, for b ∈ Lp+(B) defined as zero in B \ Ω, with

‖w‖L∞(B) ≤ CA ‖g‖Ln(B) ≤ d1−n
p Cn,pCA ‖f−‖Lp(Ω) ,

where CA = dC1 is the constant from ABP in the Ln case, and also

‖w‖W 2,p(B′) ≤ C{‖w‖L∞(B) + ‖g‖Lp(B)} ≤ C2‖f−‖Lp(Ω)

for all B′ ⊂⊂ B, where C2 = C2(n, p, λ,Λ, ‖b‖Lp(Ω), d, dist(B′, ∂B)). By the
Sobolev embedding W 2,p ⊂ W 1,∞, the last inequality and the Lp estimate for
g, we obtain, for B′ := Bd(0) ⊂⊂ B = B2d(0),

‖Dw‖L∞(Ω) ≤ ‖Dw‖L∞(B′) ≤ Cn‖w‖W 2,p(B′) ≤ C0‖f−‖Lp(Ω)

where C0 = CnC2 = C0(n, p, λ,Λ, ‖b‖Lp(Ω), d).
1Of course, we use that C1,α regularity and theorem 3.5, for unbounded coefficients in

the case µ = 0, are already available. After, we come back here and show quadratic ABP
for µ 6= 0, which is needed to prove C1,α regularity for µ 6= 0.

DBD
PUC-Rio - Certificação Digital Nº 1412641/CA



Appendix B. Quadratic ABP 130

We first claim that if µ‖f−‖Lp(Ω) d
n
p ≤ δ =: 1/C2

0 , then the function
v := u− w −max∂Ω u is an Lp-viscosity subsolution of

M+
λ,Λ(D2v) + b̃(x)|Dv|+ µ|Dv|2 ≥ 0 in Ω, v ≤ 0 on ∂Ω,

where b̃(x) = b(x) + 2µ‖Dw‖L∞(Ω) ∈ Lp(Ω). To prove this, let φ ∈ W 2,p
loc (Ω).

Since w is a strong solution, we can write that

M+
λ,Λ(D2(w + φ)) + b(x)|D(w + φ)|+ µ|D(w + φ)|2

≤ {M+
λ,Λ(D2w) + b(x)|Dw|}+M+

λ,Λ(D2φ)

+ b(x)|Dφ|+ 2µ|Dw||Dφ|+ µ|Dφ|2 + µ|Dw|2

≤ −g(x) + {M+
λ,Λ(D2φ) + b̃(x)|Dφ|+ µ|Dφ|2}+ µ|‖Dw‖2

L∞(Ω)

≤ −f−(x)− d−
n
p ‖f−‖Lp(Ω) + µC2

0‖f−‖2
Lp(Ω)

+ {M+
λ,Λ(D2φ) + b̃(x)|Dφ|+ µ|Dφ|2}

≤ f(x) + {M+
λ,Λ(D2φ) + b̃(x)|Dφ|+ µ|Dφ|2} for a.e. x ∈ Ω

by the choice µC2
0 ‖f−‖Lp(Ω) d

n
p ≤ 1. So, if v−φ attains a maximum at x0 ∈ Ω,

then u−(w+φ) attains a maximum at x0 ∈ Ω, where w+ϕ ∈ W 2,p
loc (Ω). Hence,

by the definition of u being an Lp-viscosity subsolution,

0 ≤ ess lim
x→x0

{
M+

λ,Λ(D2(w + φ)) + b(x)|D(w + φ)|+ µ|D(w + φ)|2 − f(x)
}

≤ ess lim
x→x0

{
M+

λ,Λ(D2φ) + b̃(x)|Dφ|+ µ|Dφ|2
}
.

Of course, v ≤ 0 on ∂Ω by construction and the claim is established.

Next, v ≤ 0 in Ω. Indeed, V := 1
m

(emv − 1) is an Lp-viscosity solution
ofM+

λ,Λ(D2V ) + b̃(x)|DV | ≥ 0 in Ω by lemma 2.20, where m = µ/λ. Further,
V ≤ 0 on ∂Ω. Then by ABP we have V ≤ 0 in Ω, as well as for v. Therefore,

u−max∂Ω u ≤ w ≤ ‖w‖L∞(Ω) ≤ CB ‖f−‖Lp(Ω) in Ω,

where CB := d2−n
p Cn,pC1 depends on n, p, λ, Λ, diam(Ω), ‖b‖Lp(Ω) and it

remains bounded if these quantities are bounded. �

See the foregoing works [25], [37], [24] for a quadratic version of ABP
for p0 < p ≤ n (which is known as GMP); their proofs are based on the
iterative method.
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C
A property of functions

To prove C1,α estimates, the usual way is to show that some function u,
solution of a given equation in the Lp-viscosity sense, satisfies

|u(x)− u(y)−Du(y) · (x− y)| ≤ C|x− y|1+α , |Du(y)| ≤ C (C.1)

for all x, y in a suitable domain. How this implies that Du belongs to Cα and

|Du(x)−Du(y)| ≤ C|x− y|α, (C.2)

is a well known universal fact which does not depend on the equation, it is
only a property of functions. A direct proof for it can be found in [27]. We
reproduce it below for completeness, adding some improvements done by Prof.
Boyan Sirakov. We also refer to the appendix of [62] for an elementary proof.

In the one dimensional case n = 1, (C.2) is evident from (C.1), since for
each x, y ∈ B1/2 = (−1/2, 1/2), x > y, we have
max{u(x)− u(y)− u′(y)(x− y),−u(x) + u(y) + u′(y)(x− y)} ≤ C|x− y|α+1

max{u(y)− u(x)− u′(x)(y − x),−u(y) + u(x) + u′(x)(y − x)} ≤ C|x− y|α+1

and thus, by summing, |u′(x)− u′(y)|(x− y) ≤ C|x− y|α+1.

In the general case we argue by induction on n. Suppose (C.2) valid for
each function of n−1 variables which satisfies (C.1) and let u be a differentiable
function of n variables satisfying (C.1) for each x, y ∈ B1/2. Fix x̄, ȳ ∈ B1/2.
We want to show that

|Du(x̄)−Du(ȳ)| ≤ C|x̄− ȳ|α, (C.3)

where C depends on the right quantities. Without loss we can assume that
x̄, ȳ belong to the plane {xn = 0} (otherwise just rotate the space). Set

v = u|xn=0 : (Rn−1 ≈ Rn ∩ {xn = 0}) ∩B1 → R
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so the induction hypothesis holds for v and gives us

|Dx′u(x)−Dx′u(y)| ≤ C|x− y|α , for all x, y ∈ {xn = 0} ∩B1/2.

where x = (x′, xn). Thus we only need to show that

|∂xnu(x̄)− ∂xnu(ȳ)| ≤ C|x̄− ȳ|α.

We can assume |x̄ − ȳ| < 1/4 (otherwise we are done since the gradient
of u is bounded). Set r = 2|x̄− ȳ| and fix some point z ∈ Br(x̄)∩Br(ȳ)∩B1/2

such that zn = r/4. Then

|∂xnu(x̄)− ∂xnu(ȳ)| = 4
r
|∂xnu(x̄) · zn − ∂xnu(ȳ) · zn|

= 4
r
|u(z)− u(ȳ)−Dx′u(ȳ) · (z′ − ȳ′)− ∂xnu(ȳ) · zn

− {u(z)− u(ȳ)−Dx′u(ȳ) · (z′ − ȳ′)}

− {u(z)− u(x̄)−Dx′u(x̄) · (z′ − x̄′)− ∂xnu(x̄) · zn}

+ u(z)− u(x̄)−Dx′u(x̄) · (z′ − x̄′)|

= 4
r
|u(z)− u(ȳ)−Dxu(ȳ) · (z − ȳ)− {u(z)− u(x̄)−Dxu(x̄) · (z − x̄)}

+ u(ȳ)− u(x̄) +Dx′u(ȳ) · (z′ − ȳ′)−Dx′u(x̄) · (z′ − x̄′)|

≤ 4
r
{|u(z)− u(ȳ)−Dxu(ȳ) · (z − ȳ)|+ |u(z)− u(x̄)−Dxu(x̄) · (z − x̄)|

+ |u(ȳ)− u(x̄)−Dx′u(x̄) · (ȳ′ − x̄′)|+ |(Dx′u(ȳ)−Dx′u(x̄)) · (z′ − ȳ′)|}

where we subtracted and added Dx′u(x̄) · (z′ − ȳ′) to get the last expression.
Now we estimate each one of the above terms separately. By using (C.1),

|u(z)− u(ȳ)−Dxu(ȳ) · (z − ȳ)| ≤ C|z − ȳ|α+1 ≤ Crα+1 = C2α+1|x̄− ȳ|α+1;

|u(z)− u(x̄)−Dxu(x̄) · (z − x̄)| ≤ C|z − x̄|α+1 ≤ Crα+1 = C2α+1|x̄− ȳ|α+1;

|u(ȳ)− u(x̄)−Dx′u(x̄) · (ȳ′ − x̄′)| ≤ C|x̄− ȳ|α+1

since Dx′u(x̄) · (ȳ′ − x̄′) = Dxu(x̄) · (ȳ − x̄). Finally, we conclude by using, in
the last modulus, the induction hypothesis

|Dx′u(ȳ)−Dx′u(x̄)| |z′ − ȳ′| ≤ C|x̄− ȳ|αr = 2C|x̄− ȳ|α+1.

Consequently, from (C.2), we derive the estimate

‖u‖1,α = ‖u‖∞ + ‖Du‖∞ + [Du]α ≤ (1 + 2C)W,

with C replaced by CW (which is the appropriate constant), W being equal
to ‖u‖∞ plus another terms, depending on each case, local or global one.
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D
The Local Maximum Principle for C-viscosity solutions

We present a detailed proof of theorem 2.2 in the case b is bounded and ν
is continuous in B3, following the ideas of [89], [90], [41], [33] and [91]. Consider
here L±[u] :=M±

λ,Λ(D2u)± γ |Du|, γ ≥ 0.

Prof of Theorem 2.2. Let 1 ≤ r < p, for the time being. The conclusion is
trivial if u ≡ 0 in B2, thus suppose u 6≡ 0. So v := u+ 	 0 in B2.

Case 1. f ∈ C(B3): In this case consider the sup-convolution of v as

vε := supy∈B5/2

{
v(y)− |x−y|

2

2ε

}
.

Then, as in lemma 6.1 in [89], we know that vε ∈ C0,1(B5/2), it is twice
differentiable a.e. in B2 and vε → v uniformly in B, for every B ⊂⊂ B5/2.
Moreover, from (2.6), vε satisfies, in the C-viscosity sense (and also a.e.),

L+[vε] + ν(x)vε ≥ −fε(x) in Bε
5/2 = {x ∈ B5/2; dist(x, ∂Ω) > δε}

(and in particular in B2 for ε ≤ ε0), for δε = 2
(
ε‖v‖L∞(B5/2)

)1/2
and

vε(x) := sup
|x−y|<δε

vε(y), fε(x) := sup
|x−y|<δε

f+(y). (D.1)

Set wε := η vε in B2−δε , where η ∈ [0, 1] is a cut-off function defined as

η(x) = ηε(x) := ((2−δε)2−|x|2)β
(2−δε)2β

for some β ≥ 2 to be chosen. Notice that, for δ = δε , Dη(x) = − 2β x
(2−δ)2 η

1− 1
β

and D2η(x) = 2β
(2−δ)4 {2(β − 1)x⊗ x− ((2− δ)2 − |x|2) I } η1− 2

β .

Thus it holds a.e. that

−L+[wε] =M−(−ηD2vε − 2Dη ⊗Dvε − vεD2η)− γ |ηDvε + vεDη|

≤ M−(−ηD2vε) + 2M+((−Dη)⊗Dvε) +M+(−vεD2η)

− η γ|Dvε|+ γ|vεDη|

≤ −ηL+[vε] + 2Λ|Dη| |Dvε|+ γ |vε| |Dη|

+ 2β
(2− δ)4

{
2(β − 1)M+(−vε x⊗ x) + ((2− δ)2 − |x|2)M+(vεI)

}
η1− 2

β
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Appendix D. The Local Maximum Principle for C-viscosity solutions 134

≤ η {ν(x)vε + fε(x)}+ 4βΛ
(2− δ)2 |x| |Dv

ε| η1− 1
β + 2β

(2− δ)2 γ |x| |v
ε| η1− 1

β

+ 2βΛ
(2− δ)4 |v

ε|
{

2(β − 1)|x|2 + n
(
(2− δ)2 − |x|2

) }
η1− 2

β (D.2)

since the only nonzero eigenvalue of x⊗ x is |x|2. Since vε is Lipschitz in B5/2,
it belongs to W 1,∞(B) [29, p. 294]. So u is differentiable a.e., its derivative
coincides with the weak derivative a.e. [29, p. 295] and Dvε ∈ L∞(B5/2). Thus,
naming by H the right hand side of the above, we have that H ∈ Lp(B2−δ),
since

‖ η vεν‖|Lp(B2−δ) ≤ ‖ν‖Lp1 (B2)‖ η vε‖Lq1 (B2−δ) , where 1
p

= 1
p1

+ 1
q1

(D.3)

i.e. for q1 = p p1
p1−p > p ≥ n, Holder’s inequality and Young yield

‖η vε‖Lq1 (B2−δ) ≤ θ‖ η vε‖Lq2 (B2−δ) + θ−µ‖ η vε‖Lr(B2−δ), µ = 1/r − 1/q1

1/q1 − 1/q2
(D.4)

where 1 ≤ r ≤ q1 ≤ q2 and θ > 0.

Remark D.1 (Contact sets in ABP in the case µ = 0) If b ∈ L∞+ (Ω) or
if u ∈ W 2,p

loc (Ω), the Lp norm of the function f can be taken over Γ+
u ∩ Ω+

(respectively Γ−u ∩ Ω−), the upper (lower) contact set of the function u, where

Γ+
u (Γ−u ) := {x ∈ Ω; ∃ p ∈ Rn; u(y) ≤ (≥)u(x) + p · (y − x), ∀ y ∈ Ω}.

See the proofs of proposition 6.2 in [33] and theorem 9.1 in [41].

Now we use lemma 2.8 in [4] (see also lemma 7.10 in [33]) to obtain that
wε is also an Lp-viscosity solution of (D.2). Then, by ABP and remark D.1,

sup
B2−δ

wε ≤ CA (2− δ)2−n
p ‖H‖Lp(Γ+

ε ∩{wε>0}). (D.5)

Claim D.2 wε(x) ≥ |Dwε(x)| (2− δ − |x|) , a.e. x ∈ Γ+
ε .

Proof. Fix a point x ∈ Γ+
ε of differentiability of w = wε with |Dw(x)| > 0

(otherwise it is obvious). Notice that |x| = 2− δ−mx , mx ∈ (0, 2− δ], so take
k0 = k0(x) ∈ N such that mx >

1
k0
≥ 1

k
, for all k ≥ k0 . Next choose

yk = yk(x) := x− tk Dw(x)
|Dw(x)| , for tk = 2− δ − |x| − 1

k
.

Then yk ∈ B2−δ(0), since |yk| − |x| ≤ |yk − x| = 2− δ− |x| − 1
k
⇒ |yk| < 2− δ,

and so 0 ≤ w(yk) ≤ w(x)+Dw(x) ·(yk−x) = w(x)− tk |Dw(x)| for all k ≥ k0 ,
which proves claim D.2 by passing to limits as k → +∞. �
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Then, using claim D.2 and definition of η, we have for a.e. x ∈ Γ+
ε ,

|Dvε| ≤ 1
η
{ |Dwε|+ vε|Dη| } ≤ 1

η

{
wε

2− δ + |x| + vε
2β|x|

(2− δ)2 η
1− 1

β

}

≤ vεη−
1
β

{
2(2− δ)

(2− δ)2/β + 2β(2− δ)
(2− δ)2

}
≤ 4(1 + β) vεη−

1
β

with ε ≤ ε0 = ε(‖v‖∞) chosen such that δ = δε ≤ 1. Thus

|H| ≤ η ν(x)vε + η fε(x) + 16βΛ
2− δ (1 + β) vε η1− 2

β + 2βγ
2− δ v

ε η1− 1
β

+ 4βΛ
(2− δ)2 (β − 1 + n) vεη1− 2

β

≤ η ν(x)vε + η fε(x) + {16βΛ(1 + β) + 2βγ + 4βΛ(β − 1 + n)}wε η−
2
β

≤ η ν(x)vε + fε(x) + C w
1− 2

β
ε (wε/η)

2
β

where C = C (n, β, γ,Λ). Hence, for Lp = Lp(B2−δ),

‖H‖Lp(Γ+
ε ) ≤ ‖η ν(x)vε‖Lp + ‖fε‖Lp + C (supΓ+

ε
wε)1− 2

β ‖(vε)
2
β ‖Lp .

Therefore, by the latter, (D.3) and (D.4) applied to (D.5), we obtain

sup
B2−δ

wε ≤ C0 θ‖ν‖Lp1 (B2)‖ η vε‖Lq2 (B2−δ) + C0 θ
−µ‖ν‖Lp1 (B2)‖ η vε‖Lr(B2)

+ C0 ‖fε‖Lp(B3) + c0 (supΓ+
ε
wε)1− 2

β

(ˆ
B2

(vε)r
)1/p

(D.6)

for C0 = 21−n
p CA, by choosing β = 2p/r ≥ 2, since 1 ≤ r ≤ p.

We are going to use Young’s inequality in the form

ab ≤ σap0 + σ
− q0
p0 bq0 , for p0, q0 ∈ (1,+∞) such that 1

p0
+ 1
q0

= 1. (D.7)

By taking a = (supΓ+
ε
wε)1− 2

β , b = 1, p0 = 1/
(
1− 2

β

)
= p

p−r > 1, so q0 = p
r
> 1,

and choosing σ = 1
2c0

(´
B2

(vε)r
)−1/p

, we have

c0 (supΓ+
ε
wε)1− 2

β

(ˆ
B2

(vε)r
)1/p

≤ 1
2 sup
B2−δ

wε + c

(ˆ
B2

(vε)r
)1/r

. (D.8)

Note that if ‖ν‖Lp1 (B2) = 0, the first two addends on the right hand
side of (D.6) disappear. Therefore, in (D.6) we assume ‖ν‖Lp1 (B2) > 0 and set
θ = (4C0|B2|1/q2‖ν‖Lp1 (B2))−1; thus

sup
B2−δ

wε ≤
1
2 sup
B2−δ

(η vε) + c ‖ν‖µ+1
Lp1 ‖ η vε‖Lr + 2C0 ‖fε‖Lp + 2c

(ˆ
B2

(vε)r
)1/r
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and it follows that

supB2−δ
wε − 1

2 supB2−δ
(η vε) ≤ C

{
‖fε‖Lp(B3) +

(´
B2

(vε)r
)1/r

}
.

This produces the desired bound by letting ε→ 0, since vε, vε → v uniformly
in B2, B1 ⊂ B2−δε for all ε ≤ ε0 and fε → f+ in this case.

If 0 < r < 1, we use the result just proved for r = 2 to write(´
B2
v2
)1/2

=
(´

B2
v2−rvr

)1/2
≤ (supB2v)1− r2

(´
B2
vr
)1/2

.

Then, by using (D.7) again with p0 = (1 − r
2)−1 = 2

2−r , q0 = 2
r
> 1 and

σ = 1
2C (
´
B2
vr)−1/2, we obtain

supB2 v ≤ 2C
{
‖f+‖Lp(B3) +

(´
B2
vr
)1/r

}
.

On the other hand, if r ≥ p, we just apply Holder’s inequality on the
right hand to derive the respective estimate with r.

Case 2. f ∈ Lp(B3): Let fk ∈ Lp(Ω) ∩ C(B3) such that fk → f+ in
Lp(B3) and let ψk ∈ W 2,p

loc (B3) ∩ C(B3) be the Lp-viscosity solution of

−L−[ψk] = fk − f+ in B3, ψk = 0 on ∂B3

given, for instance, by theorem 4.6 in [38] (or by proposition 3.5). By ABP,
‖ψk‖L∞(B2) → 0. Now set vk := v + ψk. So, since ψk is strong,

−f+ − ν(x)v ≤ L+[v] ≤ L+[vk]− L−[ψk] = L+[vk] + fk − f+

i.e. L+[vk] ≥ v(x)vk + fk(x) = ν(x)vk + f̃k(x) in B3 in the Lp-viscosity sense,
where f̃k := fk + ν(v − vk) ∈ C(B3). Then case 1 yields the result, by

supB2 vk ≤ 2C
{
‖f̃+

k ‖Lp(B3) +
(´

B2
vrk
)1/r

}
and letting k → +∞, since f̃k = fk − ν(x)ψk → f+ in Lp(B3). �

Remark D.3 Notice that this version of LMP is sufficient for our purposes
in section 5.2. We assumed ν(x) continuous in the proof above, but it is just a
technicality when the functions c and h+ in the problem (Pλ) are bounded, with
ν(x) = Λ2 c0 (1 + m2v2) |ln(1 + m2v2)| /m2v2 as in the proof of theorem 5.6.
Indeed, say c(x) ≤ c0, h+(x) ≤ h0, then ν v2 ≤ |ν| |v2| ≤ ν̃ |v2|, where ν̃, defined
as ν̃(x) = ν(x) if v2 6= 0 and ν̃(x) = Λ2 c0 if v2 = 0, is a continuous function
in B+

2 . Now observe that the proof above remains true if, instead of ν(x)u, we
have ν(x)|u|, since v = u+ is still an Lp-viscosity subsolution of (2.6), and the
rest of the proof carries on in the same way.
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