Título: | PORTFOLIO SELECTION VIA DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION | ||||||||||||
Autor: |
JOAO GABRIEL FELIZARDO S SCHLITTLER |
||||||||||||
Colaborador(es): |
MARCOS CRAIZER - Orientador DAVI MICHEL VALLADAO - Orientador |
||||||||||||
Catalogação: | 07/JAN/2019 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36002&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36002&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36002 | ||||||||||||
Resumo: | |||||||||||||
Portfolio optimization traditionally assumes knowledge of the probability
distribution of returns or at least some of its moments. However is well
known that the probability distribution of returns changes over time, making
difficult the use of purely statistic models which undoubtedly rely on
an estimated distribution. On the other hand robust optimization consider
a total lack of knowledge about the distribution of returns and therefore it
seeks an optimal solution for all the possible realizations wuthin a set of
uncertainties of the returns. More recently the literature shows that distributionally
robust optimization techniques allow us to deal with ambiguity
regarding the distribution of returns. However these methods depend on
the construction of the set of ambiguity, that is, all distribution of probability
to be considered. This work proposes the construction of polyhedral
ambiguity sets based only on a sample of returns. In those sets, the relations
between variables are determined by the data in a non-parametric
way, being thus free of possible specification errors of a stochastic model.
We propose an algorithm for constructing the ambiguity set, and then a
computationally treatable reformulation of the portfolio optimization problem.
Numerical experiments show that a better performance of the model
compared to selected benchmarks.
|
|||||||||||||
|