Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: COMPLEXITY IN EUCLIDEAN PLANE GEOMETRY
Autor: SILVANA MARINI RODRIGUES LOPES
Colaborador(es): HUMBERTO JOSE BORTOLOSSI - Orientador
CARLOS TOMEI - Coorientador
Catalogação: 25/FEV/2003 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3279&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3279&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.3279
Resumo:
Two forms of complexity in Euclidean plane geometry are considered. In the first one, problems are described algebraically, and the complexity level is measured essentially by the degree of a polynomial. As a consequence, many familiar and general results in geometry can be proved by inspecting two or three special cases. The second form uses the syntactic description of a theorem allowing for a quanti.cation of the complexity in logic terms (number of quantifiers and atoms in the formula). Inspired by this approach, some procedures in mechanized proofs are described. We also present some traditional groups of operations in geometry which simplify the two approaches. The study of more advanced techniques in mathematics sheds new light on standard high school topics.
Descrição: Arquivo:   
COMPLETE PDF