Título: | NUMERICAL SIMULATION OF MULTIPHASE FLOWS WITH ENHANCED CURVATURE COMPUTATION BY POINT-CLOUD SAMPLING | ||||||||||||
Autor: |
BRUNO DE BARROS MENDES KASSAR |
||||||||||||
Colaborador(es): |
ANGELA OURIVIO NIECKELE - Orientador JOAO NEUENSCHWANDER ESCOSTEGUY CARNEIRO - Coorientador |
||||||||||||
Catalogação: | 28/SET/2016 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27512&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27512&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.27512 | ||||||||||||
Resumo: | |||||||||||||
Volume of Fluid (VOF) is a widely employed method for multiphase
flows prediction for its simplicity, good mass conservation characteristics
and natural handling of topologically complex interfaces. For surface tension
dominated flows, however, literature has shown that accuracy in surface
tension estimations is still an issue, what may cause parasitic currents and
inaccurate prediction of pressure jump condition across interfaces. It occurs
mainly due to abrupt changes in the volume fraction field across the interfaces,
which takes to inaccurate estimates of interfacial curvatures. Therefore,
different approaches have been proposed to mitigate this problem including
height-functions, volume fraction smoothing, parabolic fittings, among
others. This work proposes a novel approach for curvature estimation in
VOF, but not limited to it, that sheds a new light on this persistent problem.
The idea is to sample the interfaces with clouds of points and normals
at the 0.5 level isosurface of the volume fraction field and to compute the
curvature for each point of the cloud by a Computer Graphics technique
(normal fitting). The curvatures are then projected onto the Eulerian grid
in a Front-Tracking fashion. The new method was implemented in the standard
OpenFOAM VOF solver (interFoam) resulting in improvements on the
pressure jump estimations and in significant reduction of spurious currents.
Numerical simulations were performed and results compared to benchmark
data showing the feasibility of the idea.
|
|||||||||||||
|