
Bruno de Barros Mendes Kassar

Numerical simulation of multiphase flows with

enhanced curvature computation by

point-cloud sampling

TESE DE DOUTORADO

Thesis presented to the Postgraduate Program in Engenharia
Mecânica at PUC–Rio in partial fulfillment of the requirements
for the degree of Doctor in Engenharia Mecânica.

Advisor : Profa. Angela Ourivio Nieckele
Co–Advisor: Dr. João Neuenschwander Escosteguy Carneiro

Rio de Janeiro
July 2016

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bruno de Barros Mendes Kassar

Numerical simulation of multiphase flows with

enhanced curvature computation by

point-cloud sampling

Thesis presented to the Postgraduate Program in Mechani-
cal Engineering of the Departamento de Engenharia Mecânica,
Centro Técnico Cient́ıfico da PUC-Rio as partial fulfillment of
the requirements for the degree of Doutor.

Profa. Angela Ourivio Nieckele

Advisor
Departamento de Engenharia Mecânica – PUC-Rio

Dr. João Neuenschwander Escosteguy Carneiro

Co–Advisor
Instituto Sintef do Brasil

Prof. Márcio da Silveira Carvalho

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Igor Braga de Paula

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Aristeu da Silveira Neto

Universidade Federal de Uberlândia

Prof. Daniel Fuster

Université Pierre et Marie Curie

Prof. Márcio da Silveira Carvalho

Coordinator of the Centro Técnico Cient́ıfico – PUC–Rio

Rio de Janeiro, July 28, 2016

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

All rights reserved.

Bruno de Barros Mendes Kassar

Engenheiro Mecânico e Mestre em Engenharia Mecânica pela
PUC–Rio

Ficha Catalográfica

Kassar, Bruno de Barros Mendes

Numerical simulation of multiphase flows with enhanced
curvature computation by point-cloud sampling / Bruno de
Barros Mendes Kassar; advisor: Angela Ourivio Nieckele; co–
advisor: João Neuenschwander Escosteguy Carneiro. — 2016.

152 f.: il. color. ; 30 cm

Tese (doutorado) – Pontif́ıcia Universidade Católica do
Rio de Janeiro, Departamento de Engenharia Mecânica, 2016.

Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. Escoamento multifá-
sico. 3. Método dos Volumes Finitos. 4. VOF. 5. Curvatura. I.
Nieckele, Angela Ourivio. II. Carneiro, João Neuenschwander
Escosteguy. III. Pontif́ıcia Universidade Católica do Rio de
Janeiro. Departamento de Engenharia Mecânica. IV. T́ıtulo.

CDD: 621

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

To my grandfather, Dr. José Nobre Mendes,
in memoriam

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Acknowledgments

First of all, I would like to thank my advisors Professor Angela Nieckele

and Dr. João Carneiro for all the support, all the time spent with me over the

codes, discussing results and planning each step of this work. I would like to

thank them for the careful revision of this thesis manuscript and Dr. Carneiro

for suggesting the name of the method: PC-VOF. Also, I wish to thank them for

the friendship and support during the International Conference on Multiphase

Flow (ICMF 2016), in Florence.

I would like to thank CAPES and CNPQ for financial support.

Professor Luiz Eduardo Bittencourt for helping me during my early

introduction to OpenFOAMr and for the countless times discussing over

interFoam code. Professor Igor de Paula for the discussions, in the early

beginning of this work, about flow instability, for running the experiment of

stratified flow transition specially for our discussions and for accepting to be

member of the jury. Professor Marcio Carvalho, who advised me during the

MSc., for the advices since I started pursuing the doctorate; for his suggestions

and discussions during the thesis proposal and for accepting to be member of

the jury. Professors Ivan Menezes and Anderson Pereira for the friendship

and discussions on the optimization problems. Professors Waldemar Celes and

Hélio Lopes for many ideas shared regarding curvature computation and field

initialization. Dr. Luis Cristóvão Gomes Coelho for the support during the

whole process of this work. I would like to thank the support team and specially

Walter Habitzreuter for helping me on the setup of Linux environments in the

remote machines that I used to run the simulations, at the Tecgraf Institute.

I would like to thank Professor Francisco Ricardo for showing interest in this

work and for the discussions on curvature computation during Cobem 2015.

I would like to thank the jury for accepting the invitation, specially the

ones who are not from Rio, Professor Aristeu and Dr. Fuster.

I would like to acknowledge the influence of Fernandes Antonio, my first

Physics teacher. My interest in Mechanics and Physics started in his remarkable

classes, more than fifteen years ago at Colégio Santo Agostinho. Also, Dr. José

Nazar for his friendship and support since my early decision to pursue the

doctorate!

I wish also to acknowledge and thank Professor Marcelo Gattass for the

support, opportunity and influence in my career!

I wish to thank my friends and colleagues, who were kind and patient

with me during these years of doctorate. And finally, I would like to thank my

sister, Fernanda, for her friendship and my parents, Maria Lucia and Raphael,

for everything!

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Abstract

Kassar, Bruno de Barros Mendes; Nieckele, Angela Ourivio (Ad-
visor); Carneiro, João Neuenschwander Escosteguy (Co-Advisor).
Numerical simulation of multiphase flows with enhanced
curvature computation by point-cloud sampling . Rio de Ja-
neiro, 2016. 152p. Doctoral Thesis — Departamento de Engenharia
Mecânica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Volume of Fluid (VOF) is a widely employed method for multiphase

flows prediction for its simplicity, good mass conservation characteristics

and natural handling of topologically complex interfaces. For surface ten-

sion dominated flows, however, literature has shown that accuracy in surface

tension estimations is still an issue, what may cause parasitic currents and

inaccurate prediction of pressure jump condition across interfaces. It occurs

mainly due to abrupt changes in the volume fraction field across the interfa-

ces, which takes to inaccurate estimates of interfacial curvatures. Therefore,

different approaches have been proposed to mitigate this problem inclu-

ding height-functions, volume fraction smoothing, parabolic fittings, among

others. This work proposes a novel approach for curvature estimation in

VOF, but not limited to it, that sheds a new light on this persistent pro-

blem. The idea is to sample the interfaces with clouds of points and normals

at the 0.5 level isosurface of the volume fraction field and to compute the

curvature for each point of the cloud by a Computer Graphics technique

(normal fitting). The curvatures are then projected onto the Eulerian grid

in a Front-Tracking fashion. The new method was implemented in the stan-

dard OpenFOAM VOF solver (interFoam) resulting in improvements on the

pressure jump estimations and in significant reduction of spurious currents.

Numerical simulations were performed and results compared to benchmark

data showing the feasibility of the idea.

Keywords

Multiphase flow; Finite Volume Method; Volume of Fluid; Curvature.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Resumo

Kassar, Bruno de Barros Mendes; Nieckele, Angela Ourivio; Car-
neiro, João Neuenschwander Escosteguy. Simulação numérica de
escoamentos multifásicos com aprimoramento no cálculo
da curvatura pela amostragem por nuvem de pontos . Rio
de Janeiro, 2016. 152p. Tese de Doutorado — Departamento de
Engenharia Mecânica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

Volume of Fluid (VOF) é um método amplamente empregado na pre-

dição de escoamentos multifásicos devido à sua simplicidade, boas caracte-

ŕısticas de conservação de massa e natural tratamento de interfaces topolo-

gicamente complexas. No entanto, para escoamentos dominados por tensão

interfacial, a literatura tem mostrado que a precisão nas estimativas da ten-

são interfacial ainda é um problema em questão, que pode levar a correntes

paraśıticas e previsão imprecisa da condição de salto de pressão através

das interfaces. Isto ocorre principalmente devido às variações abruptas do

campo de fração volumétrica através das interfaces, que leva a imprecisão

no cálculo das curvaturas interfaciais. Portanto, diferentes abordagens têm

sido apresentadas para mitigar este problema, incluindo funções-altura, sua-

vização da fração volumétrica, ajuste parabólico, entre outros. Este trabalho

propõe uma nova abordagem para estimativa de curvatura em VOF, mas

não limitado a este, que lança uma nova luz a este problema persistente. A

ideia é amostrar a interface por nuvens de pontos e normais na isosuperf́ıcie

de ńıvel 0.5 do campo de fração volumétrica e calcular a curvatura para cada

ponto da nuvem por uma técnica de Computação Gráfica (ajuste de nor-

mais). As curvaturas são, então, projetadas na malha Euleriana de maneira

tal como no método Front-Tracking. O novo método foi implementado no

código padrão de VOF do OpenFOAM (interFoam) resultando em melhorias

nas estimativas de salto de pressão e em significativa redução das correntes

espúrias. Simulações numéricas foram realizadas e resultados comparados a

dados de referência demonstrando a viabilidade da ideia.

Palavras–chave

Escoamento multifásico; Método dos Volumes Finitos; VOF; Curvatura.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Contents

1 Introduction 17

1.1 Two Phase Flow Simulation 19
Front-Tracking Method 20

Marker and Cell Method 21

Advection of Marker Functions: Volume of Fluid and Level Set Methods 21

1.2 Objectives 26

1.3 Thesis Organization 26

2 Literature Review 28

2.1 Surface Tension Improvements for VOF method 29
Smoothing VOF field 30

Parabolic Reconstruction 31

Coupling VOF with Level Set 31

Reconstructed Distance Function 32

Height-Function 32

2.2 Interface Surface Reconstruction and VOF Advection 35

3 Mathematical Formulation 37

3.1 Two-Phase Formulation 37

3.2 VOF Two-Phase Formulation 41

4 Numerical Formulation 43

4.1 OpenFOAM 45
Mesh Generation 46

General Solver Information 47

4.2 Standard OpenFOAM VOF solver: interFoam 47
Transport of VOF field 49

Momentum and Mass Transport 52

4.3 Field Initialization 56

5 Interface Treatment 60

5.1 Point-Cloud Construction 60

5.2 Interface Points Sampling 61
Linear interpolation of volume fraction 63

Cubic interpolation of volume fraction 63

5.3 Normal Vectors Sampling 64
First step: rough estimate 64

Second step: geometric refinement 64

Fan Triangulation 64
Least-Squares Plane Fitting 66

5.4 Curvature Computation 69

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

5.5 Curvature Computation on a Point-Cloud 70

5.6 Curvature Estimation by Normal Fitting 71

5.7 Projection of Surface Traction onto the Finite Volumes Grid 72

5.8 Curvature Computation Algorithm Overview 75

6 Verification and Validation Tests 77

6.1 Curvature Accuracy 77

6.2 Circle Moving in an Initially Prescribed Velocity Field 81

6.3 Oscillating Drop 86

6.4 Execution Time 90

6.5 Square Interface 91

7 Bubble in a liquid column 94

7.1 Two-Dimensional Bubble in a Liquid Column 94
Zero Gravity Condition 97

Test Case 1 98
Test Case 2 104

Rising Condition 109

Test Case 1 109
Test Case 2 116

7.2 Initialization Performance 122
Test Case 1 122

Test Case 2 125

7.3 Three-Dimensional Bubble in a Liquid Column 128
Comparison to Benchmark Data 130

Mesh Convergence 133

8 Final Remarks 136

A Appendix 138

A.1 Cubic Equation Real Roots 138

A.2 Eigenvalues of an n by n Matrix 139
2 by 2 matrix 139

A.3 OpenFOAM Code Examples 140

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

List of Figures

1.1 Flow examples in nature. 17
1.2 Oil drops immersed in water. 18
1.3 Flow patterns in vertical and horizontal pipes. 18
1.4 Illustration of two immiscible fluids. 19
1.5 Representation of the interface in the Front-Tracking method. 20
1.6 Representation of the fluid domain in Marker and Cell method. 21
1.7 Representation of the volume fraction α field in Volume of Fluid

method. 22
1.8 Illustration of different method of surface reconstruction in VOF

method. 23
1.9 Representation of the interface as a distance field. 25
1.10 Illustration of Level Set field for a circular interface. (a) the

distance function.(b) the signed distance function. 25

3.1 Two phases separated by an interface. 38
3.2 Thin control volume containing the interface. 39

4.1 Two adjacent finite volumes through face f . 44
4.2 The three cases of cell positioning with respect to the interface. 48
4.3 Interface smearing. 48
4.4 VOF field initialized by setFields algorithm. 56
4.5 A circle interceting two types of cell. 58
4.6 VOF field initialized by Monte Carlo Integration in setFracFields. 59

5.1 Vertex Pi and its three neighboring cells with centers C1, C2 and
C3. 61

5.2 Interface between two fluid phases at α = 0.5. 62
5.3 Linear and cubic variation of α along and edge from P0 to P1. 63
5.4 An interface point on an edge and its direct neighboring points. 65
5.5 Sorting the first layer of neighboring points. 65
5.6 Triangle fan around interfacial point P0. 66
5.7 An interface point on an edge and its first and second degrees

neighboring points. 67
5.8 A plane defined by the center-point C and normal vector ŵ and

a point P with distance d from the plane. 67
5.9 Local frame around interface point E0. 71
5.10 The area of interface enclosed by a cell. Each of the four portions

are assigned to their respective points. 73
5.11 An interface point Pi and the area assigned to it as a contribution

from its four neighboring cells. 74
5.12 A surface element, or surfel. 74

6.1 Setup for the static and moving circular interface. 77
6.2 Average radius deviation. 79
6.3 Average unit normal deviation. 79

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

6.4 Average curvature. 80
6.5 Curvature standard deviation. 80
6.6 VRMS values for simulations performed with interFoam. 83
6.7 VRMS mesh convergence for interFoam and PC-VOF with nor-

mals computed by TFAN and LSQR. 84
6.8 Mesh convergence regarding average curvature avg(〈κ〉) and its

standard deviation stdev(〈κ〉) with interFoam and PC-VOF with
normals computed by TFAN and LSQR. 85

6.9 Initial drop shape. 87
6.10 Drop diameter aspect ratio for simulations performed by inter-

Foam and PC-VOF with normals computed by TFAN, TWEI and
LSQR for the finest grid resolution. 88

6.11 Drop diameter aspect ratio for simulations performed by inter-

Foam and PC-VOF with normals computed by TFAN, TWEI and
LSQR. 89

6.12 Execution time. 90
6.13 Square initial configuration. 91
6.14 Square initial and final shapes for σ = 10. 91
6.15 Circularity evolution for different values of surface tension coeffi-

cient σ. 92
6.16 Shape evolution of square for σ = 100. 93

7.1 Bubble initial configuration. 95
7.2 Quadrangular mesh and equivalent triangular for 1/h = 20. 97
7.3 Pressure jump in TC1 for regular quads meshes. 98
7.4 Pressure jump in TC1 for triangular meshes. 99
7.5 Pressure jump convergence in TC1. 99
7.6 Spurious currents in TC1 for quadrangular meshes. 100
7.7 Spurious currents in TC1 for triangular meshes. 100
7.8 Spurious currents convergence with mesh resolution in TC1. 101
7.9 Pressure fields for TC1 test case at t = 3 s. Exact value is

∆p = 98Pa. 102
7.10 Pressure fields for TC1 test case at t = 3 s. Exact value is

∆p = 98Pa. 103
7.11 Pressure jump in TC2 for structured quads meshes. 104
7.12 Pressure jump in TC2 for triangular meshes. 104
7.13 Pressure jump convergence in TC2. 105
7.14 Spurious currents in TC2 for quadrangular meshes. 105
7.15 Spurious currents in TC2 for triangular meshes. 106
7.16 Spurious currents convergence with mesh resolution in TC2. 106
7.17 Pressure fields for TC2 test case at t = 3 s. Exact value is

∆p = 7.84 Pa. 107
7.18 Pressure fields for TC2 test case at t = 3 s. Exact value is

∆p = 7.84 Pa. 108
7.19 TC1 bubble shapes with interFoam in quadrangular meshes. 110
7.20 TC1 bubble shapes with PC-VOF in quadrangular meshes. 110
7.21 TC1 bubble shapes with interFoam in triangular meshes. 111
7.22 TC1 bubble shapes with PC-VOF in triangular meshes. 111
7.23 TC1 circularity. 112

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

7.24 TC1 bubble center of mass evolution. 113
7.25 TC1 bubble rise velocity evolution. 114
7.26 TC1 bubble circularity at t = 3 s convergence with mesh refinement.114
7.27 TC1 bubble rise velocity at t = 3 s convergence with mesh

refinement. 115
7.28 TC1 bubble center of mass y coordinate at t = 3 s convergence

with mesh refinement. 115
7.29 TC2 bubble shapes with interFoam in quadrangular meshes. 116
7.30 TC2 bubble shapes with PC-VOF in quadrangular meshes. 116
7.31 TC2 bubble shapes with interFoam in triangular meshes. 117
7.32 TC2 bubble shapes with PC-VOF in triangular meshes. 117
7.33 TC2 circularity. 118
7.34 TC2 bubble center of mass evolution. 119
7.35 TC2 bubble rise velocity evolution. 120
7.36 TC2 bubble rise velocity at t = 3 s convergence with mesh

refinement. 120
7.37 TC2 bubble center of mass y coordinate at t = 3 s convergence

with mesh refinement. 121
7.38 TC2 bubble circularity at t = 3 s convergence with mesh refinement.121
7.39 Pressure jump in TC1 for for different initialization methods. 122
7.40 Pressure jump ∆p behavior with mesh refinement in TC1. 123
7.41 Parasitic currents evolution in TC1 for different initialization

methods. 124
7.42 Spurious currents convergence with mesh resolution in TC1. 124
7.43 Pressure jump in TC2 for for different initialization methods. 125
7.44 Pressure jump ∆p behavior with mesh refinement in TC2. 126
7.45 Parasitic currents evolution in TC2 for different initialization

methods. 126
7.46 Spurious currents convergence with mesh resolution in TC2. 127
7.47 Bubble initial configuration in the 3D domain. 128
7.48 3D bubble rise velocity. 130
7.49 3D bubble center of mass y coordinate. 131
7.50 3D bubble sphericity and aspect ratio during simulation. 131
7.51 3D bubble diameters during simulation time. 132
7.52 3D bubble rise velocity 133
7.53 3D bubble center of mass vertical coordinate. 133
7.54 3D sphericity for varying mesh resolutions. 134
7.55 3D rising bubble aspect ration E for varying mesh resolutions. 134
7.56 3D bubble diameters for varying mesh resolutions. 135
7.57 Bubble pictures at different time steps. PC-VOF and interFoam

side by side. 135

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

List of Tables

7.1 Test cases parameters. 96
7.2 TC1 parameters. 129
7.3 Times steps, in seconds, for each mesh resolution. 129

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Nomenclature

Ca capillary number

Eo Eötvös number

La Laplace number

Re Reynolds number

We Weber number

∆Sj boundary faces of cell j

∆t time step

∀ volume

∀j volume of cell j

Γ general diffusion coefficient

γ Level Set signed distance function

κ interface curvature

τ viscous stress tensor

I identity matrix

µ dynamic viscosity

Ω domain region

Ωi region occupied by fluid component i

φ general dependent variable

ρ specific mass

σ surface tension coefficient

−→
V velocity vector

−→x position vector

−→∇ gradient operator

−→∇· divergent operator

−→
fσ surface tension force

−→g gravity acceleration

−→
Sf area vector of face f

Cα interface compression coefficient

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

d diameter

Dk 3D bubble diameter (length) in k direction

E bubble aspect ratio

g gravity acceleration magnitude

h mesh spacing

p pressure

pρgh modified pressure

Q least-squares plane objective function

SC constant term of the source term

Sf area of face f

SP linear coefficient of the source term

t time variable

tf final simulation time

Vt bubble terminal rising velocity

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

“Ho visto un angelo nel marmo ed ho scolpito
fino a liberarlo.”
(I saw an angel in the marble and carved until
I set him free.)

Michelangelo Buonarroti.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

1

Introduction

Multiphase flows are flows in which different fluids coexist interacting with each

other. It can be constituted by different, miscible or not, fluids or the same fluid

in different phases – gas, liquid or solid. It is characterized by the existence of

interfaces between fluids/phases, with discontinuities of flow properties across

these interfaces. For liquid-liquid flows, the term phase will still be used even

though not meaning phase of matter, but fluid component.

Multiphase flows are often found in nature and industry. Ocean waves,

rain, clouds, sandstorms are some examples of multiphase flows in nature, just

to name a few. In industry, a wide variety of examples can be found, such as

fluidized beds, refrigeration, pipeline transport of oil and gas, flow of slurries

or pulverized particles, pressurized water nuclear reactors; boiling water and so

on (Ishii & Hibiki, 2011). Figures1 1.1 and 1.2 display examples of multiphase

flows in nature and industry, respectively. Figure 1.1(a) shows dispersed air

bubbles in water waves. Figure 1.1(b) presents drops of water bouncing on

the free surface due to surface tension. At the same time it causes ripples on

the free surface. In Fig.1.2, drops of oil are immersed in the continuous water

phase, what is found frequently in oil and gas industry.

The main difficulty in the prediction of multiphase flows is to keep track

of the fluid phases along the domain. Depending on several parameters such

as geometry, fluid properties and flow regime, the phases can be arranged in

different configurations.

1.1(a): Air bubbles dispersed in water
waves.

1.1(b): Bouncing droplet.

Figure 1.1: Flow examples in nature.

1Images under Creative Commons CC0 license. Downloaded from pixabay.com.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 18

Figure 1.2: Oil drops immersed in water.

A common characterization of multiphase flows in the literature is by its

phases geometric arrangement and can be generally divided in dispersed flows

and separated flows. Dispersed flows consist of finite particles, drops or bubbles

spread in a continuous phase. The dispersed entities often have length scales

which are much smaller than the characteristic length scales of the flow. On

the other hand, separated flows are identified by different continuous phases

separated by large scale interfaces (Brennen, 2005). Combination of these two

configurations often exists.

In pipe flows, the phases geometric arrangement are usually designated

flow patterns (or flow regimes). Figure 1.3 illustrates some of the flow patterns

found in horizontal and vertical pipes, including stratified, slug, churn, annular

flows, among others.

Figure 1.3: Flow patterns in vertical and horizontal pipes.

Exchange rates of mass, momentum and energy are affected by the

geometric distribution of the flow components and interfacial shapes (Brennen,

2005). These exchanges are influenced by the area available for transfer between

the phases, which clearly depends on the interface shape. Interaction between

phases is another factor, as well as the interface evolution. Each phase behavior

is dependent on the other phase, characterizing a two-way coupling.

Since the interaction between fluid components strongly depends on the

geometric characteristics of these interfaces, for each pattern different forces

may be more relevant than others. In this way, with respect to the geometric

distribution, different formulations may be better suited than others.

Section 1.1 will present some of the most discussed methods available in

the literature to predict multiphase flows. Algorithms developed to calculate

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 19

two-phase flows must be capable of solving and keeping track of the interface

position as accurately as possible, since this position is part of the solution.

1.1

Two Phase Flow Simulation

Acoording to Prosperetti & Tryggvason (2007), there are two main classes

of models to simulate multiphase flows: Multi-Fluid Model and One-Fluid

Model. In the first class, the conservation equations for each phase are obtained

through a phase average procedure as described by Ishii & Hibiki (2011).

Therefore, a complete set of conservation equations – of mass, momentum

and energy – are solved, one set for each phase. The phases are coupled with

each other by interfacial interaction terms – representing the exchange of mass,

momentum and heat at the interfaces – and are usually defined with the aid of

empirical or semi-empirical correlations. This type of approach is well suited

for dispersed flows, although it is not limited to it. For each fluid component,

the quantities are determined in an average way, thus there is no need for

high level of grid refinement in order to resolve the interfaces of the smallest

bubbles or drops. On the other hand, One-Fluid Model solves only one set

of conservation equations for the whole domain. It is usually done by keeping

track of the interfaces between the fluid components, as depicted in Fig. 1.4. In

general, there is no need for empirical correlations to determine the interface

position. For each phase region, the appropriate values of fluid properties

are used. Coupling between phases is established by the proper consideration

of surface tension forces. This approach is better suited for separate flows,

since prediction of dispersed flows may require extremely fine grids, what may

become computationally unfeasible.

Fluid 1

Fluid 2

 In
terface

Figure 1.4: Illustration of two immiscible fluids.

This work focuses on the One-Fluid Model approach, and it is aimed to

enhance the accuracy in curvature predictions. In the One-Fluid class, many

methods are found in literature to track interfaces. They can represent the

interface explicitly or implicitly. A few examples are shown next.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 20

1.1.1

Front-Tracking Method

The Front-Tracking Method (Unverdi & Tryggvason, 1992) employs a volumet-

ric fixed grid to solve the flow field and a moving front mesh to keep track of

the interface. The interface is explicitly represented by this additional moving

mesh. The moving front is depicted in Fig.1.5, where points are connected by

straight lines, also referred as surface elements. In 3D, the elements are poly-

gons, usually triangles connecting the front points. The points are advected in

a Lagrangian mode following the local velocity field, giving rise to new shapes

for the interface at each time step. The surface tension is computed on the front

mesh and, then projected onto the fixed grid. To couple both meshes –fixed

grid and moving front – information from one is transferred to the other by

interpolation procedures that guarantee conservation of the transferred quan-

tities.

The description of the front, especially in three-dimensional flows, needs

very careful consideration. From a computational point of view, the front takes

into account the marker points, their connectivity and the physics related to

the presence of an interface, i.e. the interfacial jump conditions (Tryggvason

et al., 2011). One advantage of this approach is that the interface always

remains sharp. However, the grid may stretch or shrink, resulting in the

need for dynamic addition and deletion of points (with proper connectivity

updates) of the interface mesh. To keep track of the front objects when the

interface propagates and deforms is a challenge, and depends strongly on the

data structure used to describe them. Great difficulties arise when multiple

interfaces interact with each other causing merge or breakup. In these cases,

special treatment of the front mesh must be performed. Main difficulties in

this case consist of remeshing the fronts and of knowing the exact instant of

time to break or merge the fronts.

Figure 1.5: Representation of the interface in the Front-Tracking method.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 21

1.1.2

Marker and Cell Method

The first methodology devoted to handle the interface implicitly was intro-

duced by Harlow & Welch (1965), and it is known as Marker and Cell method

(MAC). Marker particles are initially distributed through all cells containing

fluid. Then, by employing a Lagrangian approach, the particles are displaced

along the flow domain based on the underlying velocity field computed at the

Eulerian grid. The interface is reconstructed in cells that fill two requirements:

contain particles and are adjacent to empty cells. This method requires to dy-

namically remove and add fresh particles when stretching happens, a similar

issue presented in Front-Tracking. In principle, coalescence and breakup are

not a constrain to use this method, as the interface is not explicitly advected.

Figure 1.6 displays the particles spread throughout the fluid domain. The in-

terface is implicitly lying at the boundary between regions with and without

particles and is represented as a dotted line. The MAC method was originally

devised for free-surface flows, where the massless particles did not participate

in the calculations explicitly, being used mainly for identifying the different

regions in the flow, with boundary conditions applied at the free surface. Only

one fluid was considered, with the rest of the domain (above the free-surface)

considered fully passive. Daly (1967) extended the original method to handle

both fluids, whereas the particles “carry” different properties depending on the

fluid properties they initially represent. Hence, the marker particles in this case

are also used to compute densities and viscosities in each cell. Some extensions

of the method were proposed later (Hirt & Shannon, 1968; Harlow et al., 1976).

The main problem of the MAC method (and its extensions) is that, in

addition to solving the equations governing the fluid flow, a large number of

particles needs to be tracked, which is computationally expensive.

Figure 1.6: Representation of the fluid domain in Marker and Cell method.

1.1.3

Advection of Marker Functions: Volume of Fluid and Level Set Methods

The high cost associated with tracing the particles of the MAC method led

to the development of methods that advect a marker (or color) function in an

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 22

Eulerian grid in substitution of tracking the marker particles. Two families of

this type of method are Volume of Fluid (VOF) and Level Set (LS) methods.

The Volume of Fluid (VOF) method handles the interface implicitly, by

tracking the interface indirectly using a scalar marker α that indicates the

volume fraction of the reference phase in each cell. This marker α is equal

to unity in regions fully occupied by the reference phase and zero in regions

empty of this phase. Cells where α value lies between 0 and 1, correspond to

cells crossed by the interface, as depicted in Fig. 1.7.

Across the interface, a pressure jump due to surface tension must be

imposed. This effect is accounted in the flow formulation by adding a force

due to the surface tension as a source term in the momentum equation at the

interface cells, as will be discussed in Chapter 3. In VOF, surface tension is

most commonly taken into account by using the CSF – Continuous Surface

Force – method proposed by Brackbill et al. (1992). In CSF method, the

interface curvature is computed by taking the divergence of a normal field

in the vicinities of the interface. This normal field is based on the gradient of

the marker function α and represents the interface normal. For flows in which

surface tension plays an important role, the accuracy on its prediction strongly

influences the flow evolution, and for this reason several works found in the

literature have focused on this issue, as discussed in Chapter 2.

At each time step, the α field is advected with the flow in an Eulerian way.

After the advection of α is performed, the interface position inside the cell can

be determined, what is referred to as interface reconstruction. Many methods

of surface reconstruction have been developed over the years and Prosperetti

& Tryggvason (2007) present a deep discussion on it. There are also several

schemes to advect the α field.

Figure 1.7: Representation of the volume fraction α field in Volume of Fluid
method.

Figure 1.8 illustrates the first early types of surface reconstruction

methods that were created. The actual interface is shown in Fig. 1.8(a). One

of the first methods developed for a 2D situation, named SLIC – Simple Line

Interface Calculation – method, illustrated in Fig. 1.8(b), was introduced by

Noh & Woodward (1976). It consists in splitting the interface in two straight

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 23

lines. One is parallel to the x-axis for the y-axis advection and the other parallel

to y-axis for x-axis advection.

Hirt & Nichols (1981) tried to improve the original SLIC method using

only one of the lines (either aligned with x or y axis depending on the case) to

approximate the interface for advection in both x and y directions. Fig. 1.8(c)

depicts their approach. The choice for the line orientation was defined by a

rough estimate of the interface normal vector, taking into account not only the

value of α in the concerned cell, but also in the neighboring cells.

The natural extension of Hirt & Nichols scheme is the PLIC – Piecewise

Linear Interface Calculation – method, by Rider & Kothe (1998), in which the

interface approximation was not limited only to axis aligned lines (or planes

in 3D). The lines are perpendicular to the estimated interface normals so that

they are a better approximation to the interface than Hirt & Nichols scheme,

as depicted in Fig. 1.8(d). Although it is a better approximation, the line

segments are not connected across cell boundaries, as the reader may observe

in the picture. These discontinuities are well observed in regions with high

normal variation, i.e. high curvature.

1.8(a): The interface shape 1.8(b): SLIC

1.8(c): Hirt-Nichols 1.8(d): PLIC

Figure 1.8: Illustration of different method of surface reconstruction in VOF
method.

The transport equation of the volume fraction function is a pure convec-

tive equation, further it is a step function, therefore the false diffusion problem

becomes critical, since it is very difficult to predict sharp interfaces. Numerical

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 24

diffusion occurs specially in lower order schemes, such as Upwind schemes. So

higher order schemes would seem reasonable to be employed, however they

often are unstable. Therefore, in order to achieve a stable method that can

be able to produce sharp interfaces with monotonic decay of the volume frac-

tion, many techniques have been proposed. In Gopala & van Wachem (2008),

a comparison between several volume fraction advection methods is presented:

Flux-corrected transport (FCT) (Boris & Book, 1973), Lagrangian-PLIC (van

Wachem & Schouten, 2002), CICSAM – Compressive Interface Capturing

Scheme for Arbitrary Meshes – (Ubbink, 1997) and Inter-gamma compressive

schemes (Jasak & Weller, 1995). Gopala & van Wachem (2008) conclude that

the FCT method, besides being restricted to structured meshes, is non-mass

conservative for practical flows cases. The Lagrangian-PLIC scheme is fairly

accurate, for the tests performed, can be employed for relatively large time

steps (as long as Co < 1), however it is also restricted to structured meshes.

CICSAM and inter-gamma schemes, which are compressive VOF schemes, have

shown to be accurate (in mass conservation and in keeping the interface sharp)

for all performed tests. Both schemes are not limited to structured meshes,

however they require low Courant numbers, i.e. Co < 0.01 in order to main-

tain interface sharpness. Much work has also been devoted to compress the

interface and improve its prediction through high order or blended schemes

(Ghobadian (1991), Pericleous & Chan (1994), Darwish (1993) and Ubbink

(1997)).

A very good characteristic of the VOF method is that is mass conserva-

tive, while its drawback is the abrupt changes of the α field across interfaces.

Although slightly abrupt changes are desirable for the sake of interface sharp-

ness maintenance, it deteriorates the accuracy of normal estimates and, conse-

quently, curvature estimates. Inaccurate curvature computations are known to

generate spurious or parasitic currents and often generate unphysical pressure

fields, with the presence of ripples in the interface region (Francois et al., 2006;

Klostermann et al., 2013).

The Level Set (LS) method, introduced by Osher & Sethian (1988), also

tracks the interface implicitly. However, unlike previous methods, the interface

is identified by a smooth distance function γ from the interface, as illustrated

in Fig. 1.9. The interface lies in the zeroth level and its evolution is performed

by advecting the γ field at each time step.

Instead of working with the distance values itself – always greater or

equal to zero – one might use negative values on one side of the interface and

positive on the other. So, in order to identify the fluid component, one just

needs to check the sign of the γ field.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 25

Figure 1.9: Representation of the interface as a distance field.

Figure 1.10 shows the distance function and the signed distance function

for a 2D circular interface delimiting a bubble/drop from the continuous phase.

The circle is centered at (0, 0) with radius equal to 0.8. The horizontal plane

in Fig.1.10(b) lies in level γ = 0. The portion of the domain with values above

the zeroth plane belongs to the bubble/drop, while the portion bellow belongs

to the continuous phase. Portions on the zeroth plane contain the interface.

1.10(a): Distance Function

bubble

1.10(b): Signed Distance Function

Figure 1.10: Illustration of Level Set field for a circular interface. (a) the
distance function.(b) the signed distance function.

The advection equation for the γ function is very similar to the advection

equation of the volume fraction function α of the VOF model. The main

advantage of the method in relation to VOF method is that γ is a smooth

variable and not a step variable like α, therefore, it does not suffer from

accuracy in curvature estimates as much as VOF. The advection of γ accurately

preserves the zero level-set, which identifies the interface position. However,

off the interface, the level-set field does not remain a distance function once it

passes through the advection procedure. Besides, the magnitude of ∇γ can

become too large or too small around the interface, leading to inaccurate

computation of variables that depend on γ, i.e. normals and curvatures. It

also may suffer from loss of mass in flows with significant vorticity or with

high deformation of the interface. In order to mitigate these problems, the

distance function must be reinitialized in every time step after the advection

process. A number of extensions to the original method have been proposed.

For example, Sussman et al. (1994) have proposed an iterative approach to

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 26

reinitialize the distance function γ by employing an artificial time integration.

Sussman & Fatemi (1999) introduced ways to enhance mass conservation, while

Sussman & Puckett (2000) developed a hybrid VOF-LS method in order to take

advantage of the benefits of both methods.

Despite the presented issues with VOF, one of its greatest advantages

is that it presents good mass conservation properties, which is intrinsic to its

formulation. Furthermore, many of the VOF methods are simpler than LS and

hybrid VOF-LS in their numerical implementation. For both reasons, the VOF

method is one of the most widely used interface tracking methods. However,

as pointed out by several authors (Williams, 2000; Sussman, 2003; Cummins

et al., 2005; Francois et al., 2006) a key issue in VOF methods is the accurate

computation of curvature, which will be the main focus of the present work.

1.2

Objectives

This work proposes a novel approach in the VOF framework to deal with

curvature computation, that increases accuracy in simulations, reduces the

so-called spurious currents and alleviates ripples in the pressure field across

interfaces. The proposed method was inspired by techniques used in Computer

Graphics (CG). The idea of the new methodology is to sample the interface by

clouds of points interpolated from the VOF field and to geometrically compute

the curvatures based on these points. The curvatures (more precisely, the

surface tension forces) are computed at each point and are projected onto

the fixed grid in a Front-Tracking manner. Further details are presented in

Chapter 5.

The new approach was implemented in the standard OpenFOAMr VOF

solver, interFoam (Weller, 2008). In order to correctly initialize the fields for

the simulations in OpenFOAMr framework, a new tool for field initialization

was also developed. In order to demonstrate the accuracy of the proposed

methodology, several benchmark problems are solved and compared against

reference data.

1.3

Thesis Organization

A literature review is presented in Chapter 2, where many efforts in accuracy

improvements in VOF are presented. Mathematical formulation of multiphase

flows with VOF are presented in Chapter 3. Numerical aspects are discussed

in Chapter 4, where a method for accurate initialization of the fields is

presented in Section 4.3. The proposed methodology for curvature computation

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 1. Introduction 27

is described in Chapter 5. Chapters 6 and 7 present and discuss results with

the proposed methodology, as well as compare them to benchmark data and

to interFoam results. Finally, the main conclusions and recommendations for

future work are present in Chapter 8.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

2

Literature Review

Multiphase flows present, in general, a level of complexity in its numerical

description greater than single phase flows, specially because, besides velocity

and pressure fields, the interface dynamics is also part of the solution. The

main issue is to keep track of the phases. The choice of a numerical method

to be employed depends strongly on the flow pattern that is to be simulated.

For separated flows, or disperse flows with the disperse phase well described by

the mesh resolution, a One Fluid approach (Prosperetti & Tryggvason, 2007)

is a reasonable choice as it does not require empirical correlations and the

interfaces can be tracked explicitly.

Topologically complex interfaces are usually found in problems of break-

ing waves, coalescence and breakup of drops and bubbles. These complex inter-

faces can be determined by explicit and implicit methods. Complex interface

determination is a major challenge for methods which explicitly represent the

(highly deformed) interfaces, since the surface is described by a moving mesh

that is advected along with the flow changing not only its shape, but also its

topology. This is the case of Front-Tracking type methods (Tryggvason et al.,

2001), which require re-meshing in cases of breakup and coalescence of bubbles

or drops. Further, these methods must be able to identify the correct time step

to perform fronts merging or splitting. Besides these complications, insertion

and deletion of surface elements must be foreseen, in order to keep interfaces

well represented.

In methods that represent interfaces implicitly, such as MAC, VOF and

Level-Set, the topological problem is handled naturally, once the surface mesh

does not evolve, but instead, (if needed) it is reconstructed at every time step.

Thus, in problems where topological changes are significant, methods with

implicit interface representation are often preferable for their simplicity.

Determination of a two phase flow field coupled with the interface defini-

tion depends directly on the surface tension acting at the interface. Accurate

computation of surface tension requires correct estimation of surface normals

and curvatures (Francois et al., 2006). Typically, normals and curvatures are

better represented in explicit methods than in implicit ones. Besides, there

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 29

are possible simplifications that can be used, as is the case of Front-Tracking

method. By using the Stokes theorem (Aris, 1990), the surface tension force

may be simplified so that its computation can be performed without the need of

explicitly computing the interface curvature. Instead, a cyclic integral along the

surface elements edges is performed, as described in Tryggvason et al. (2001). In

methods that deal with the interface implicitly, however, this last approach is

unfeasible once the interface is not represented by surface elements. Therefore,

the curvature must be computed from the available information that identifies

the interfaces. For instance, in Level Set method the curvature is computed

from its signed distance field and in VOF method, it is computed based in the

volume fraction field, that, as pointed before in Section 1.1.3, presents accuracy

issues regarding curvature computation.

At the present work, the VOF method was selected to solve the flow

phase flow field. Thus, the literature review presented in the next sections are

focuses on the interface treatment. As stated above the interface determination

is essential and critical for an accurate determination of complex interfaces.

2.1

Surface Tension Improvements for VOF method

The surface tension force
−→
fσ is a force that acts at the interface and depends

on the interface curvature κ, the surface tension coefficient σ and the surface

normal vector n̂. It acts on the direction of n̂. In One-Fluid methods,
−→
fσ is

modeled by means of Dirac delta (δ) in order to concentrate it at the interface.

It is given by (Prosperetti & Tryggvason, 2007)

−→
fσ = σ κ δ(n) n̂ (2.1)

where n is a normal variable to the interface, with n = 0 at the interface.

The most common approach to compute
−→
fσ is the so-called CSF –

Continuum Surface Force – model, proposed by Brackbill et al. (1992). Its

original idea is to consider the interface to have finite thickness (on the length

scale of the mesh spacing) and to transform the superficial force (related to

the pressure jump across the interface) into a continuum volumetric force

concentrated at the interface region. It results in replacing the δ function by

the gradient of the marker function and by taking the gradient direction as the

normal field of the surface. In the case of VOF method, the marker function is

the volume fraction α, so
−−−→
fCSF
σ is given by (Tryggvason et al., 2011)

−−−→
fCSF
σ = σ κ

−→∇α (2.2)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 30

while the interface curvature is given by the divergence of the normal to the

interface (Prosperetti & Tryggvason, 2007) and it results in

κ =
−→∇ · n̂ = −→∇ ·

(−→∇α

|−→∇α|

)

. (2.3)

Another common method is referred to as GFM –Ghost Fluid Model–

(Liu et al., 2000), where the surface force is considered sharp, instead of

smeared around the interface, as in CSF. This method is mostly used in Level

Set implementations, because it requires the knowledge of the distance field to

the interface. Kang et al. (2000) presents results with simulations performed

with CSF and GFM methods and shows CSF approach is more stable than

GFM. As CSF approach smears the interface, it has the effect to (artificially)

damp out spurious currents with more intensity than GFM.

2.1.1

Smoothing VOF field

As already mentioned in Section 1.1.3, the α field presents abrupt changes

across the interface, so that normals and curvatures computed via finite

differences of the α field suffer from loss of accuracy in the transition region

(Williams et al., 1998). With this in mind, Williams et al. (1998) and Williams

(2000) proposed to convolve the volume fraction field with smoothing kernels

in order to obtain a smooth α field in the interface region, and then compute

the interface normal field based on this smoothed volume fraction. From this

normal field, the curvature field is evaluated by a discrete divergence operator.

Another approach in the same path of volume fraction smoothing is

presented by Lafaurie et al. (1994), where a Laplacian filter transforms the

VOF field α into a smoother field. The cell-centered volume fraction α field

is first projected onto the face centers (by linear interpolation of the two

neighboring cells to each face) giving rise to the face-centered αf field, and

then, a smooth cell-centered α̃ is computed by

α̃ =

∑

f αfSf
∑

f Sf

(2.4)

where Sf is the area of face f and the summations are over all faces of each

cell. This procedure can be performed many times, until the desired level of

smoothing is achieved, i.e. until spurious currents are consistently reduced.

The problem with this approach is exactly the choice of the number of times

the VOF field should be filtered, because each time the filter is applied, the

high curvature regions tend to lose its intensity. Hoang et al. (2013) tested

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 31

this filter in OpenFOAMr –interFoam solver (Weller, 2008)– for microchannel

flows, and found that reduction of one order of magnitude on spurious currents

are obtained by applying the Laplacian filter twice, and that further filtering

do not decrease these currents significantly. Samkhaniani & Ansari (2016)

recently employed this filter –twice as recommended by Hoang et al. (2013)– in

interFoam, where subcooled boiling flows were studied. In their problem, the

spurious currents create artificial extra heat convection in the vicinity of the

interface, producing unphysical mass transfer. The application of the Laplacian

filter was able to reduce spurious currents by one order of magnitude, however

it was not able to completely fade it out.

2.1.2

Parabolic Reconstruction

Renardy & Renardy (2002) addressed the problem of accurate curvature

computation with VOF by representing the interface as piecewise quadratic

equations fitted on the VOF field. The algorithm is named PROST – Parabolic

Reconstruction of Surface Tension. It consists on fitting quadratic equations

for every cell crossed by the interface, taking the neighboring cells into

consideration. It is relevant to notice that the referred work requires orthogonal

structured meshes. In 3D domains, the interface is described by piecewise

paraboloids for each interface cell and the curvature κ is analytically computed

from the paraboloid equations.

2.1.3

Coupling VOF with Level Set

Some researchers took advantage of the fact that the Level-Set field γ is

smooth throughout the whole domain and, thus, more adequate for normal

and curvature computation than the VOF field. Thus, Sussman & Puckett

(2000) coupled the Level-Set method with VOF in what they called CLSVOF

–Coupled Level Set/Volume-of-Fluid – method where the γ values at each

time step are derived from both γ and α values from the previous time step.

The curvatures and normals are obtained directly via finite differences on

the (smooth) γ field. The normals are computed by n̂ =
−→∇γ/|−→∇γ| and the

curvatures by taking the divergence of this normal field, i.e. κ =
−→∇ · n̂. In this

way, CLSVOF benefits from VOF’s ability to conserve mass and Level-Set’s

accuracy on normal and curvature computation.

Albadawi et al. (2013) implement a simple coupled VOF with LS method

(S-CLSVOF) in OpenFOAMr in order to improve accuracy in surface tension

computations. Their work concludes that the standard VOF implementation in

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 32

OpenFOAMr –interFoam– is not suitable for problems in which surface ten-

sion effects play a significant role. Therefore it is extended with LS method.

Bubble growth and detachment problems were simulated and while qualita-

tively both interFoam and S-CLSVOF are able to predict the complete pro-

cess of bubble growth and detachment, interFoam fails to predict the correct

detachment time. The coupled method, however, predicts the bubble volume

and time of detachment with errors less than 3%.

2.1.4

Reconstructed Distance Function

Cummins et al. (2005) presented a new method to compute curvature in a

VOF framework based on what they called RDF – Reconstructed Distance

Function. Inspired in the Level Set method, they proposed to define a distance

function from the reconstructed interface (reconstructed with PLIC) to be used

for curvature computation. This RDF function Φ is computed for all interface

cells and for cells around it, up to a normal distance of 3∆x from the interface,

where ∆x is the mesh spacing. The value Φij of the RDF for each considered

cell (i, j) is a weighted average of the Euclidean distances from the center of the

cell (i, j) to the neighboring PLIC segments that represent the interface. The

referred work compares the accuracy and robustness of curvature estimates

based on the proposed RDF against those obtained with two other methods:

the already mentioned convolved VOF (CV) function (Williams, 2000) and a

technique named Height Function (HF) (Sussman, 2003; Helmsen & Colella,

1997). HF is described in section 2.1.5. Results obtained using height function

were superior compared to both convolved VOF and RDF. However, when

interfacial length scale is not well resolved by the grid, CV and RDF methods

exhibit greater robustness over the HF approach.

2.1.5

Height-Function

In order to obtain second-order accurate curvatures, Sussman (2003) computed

a curvature based on the volume fraction field, instead of using γ, that

would not give formally second-order accuracy. This method is based on

reconstructing a Height Function (HF) directly from the volume fractions,

using a stencil of neighboring cells as described in Helmsen & Colella (1997).

In Sussman (2003), the orientation of the interface is determined by a normal

computed based on the the level set function as n̂ =
−→∇γ/|−→∇γ|.

To better explain the method, it is considered that the interface surface is

horizontal rather than vertical (for a vertical interface, an analogous procedure

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 33

is employed. For each cell (i, j) containing the interface, a 3 × 7 block of

neighboring cells is used to compute the “height” as a result of the summation

over the α field along the three vertical columns of 7 cells, for i − 1, i and

i + 1. This gives the “height” value at (i − 1, j), (i, j) and (i + 1, j). With

these values, the first and second derivatives of the HF (which is second order

accurate) are determined at cell (i, j), giving rise to the curvature. The authors

have considered one of the phases a gas with constant pressure, without being

explicitly solved for.

Sussman et al. (2007) extended Sussman (2003) treating the gas as a

second incompressible fluid. In Sussman et al. (2007), the level set function is

used only to compute interface normals and to compute density and viscosity

to be used in the Navier Stokes equations. The curvature is computed in the

very same way as in Sussman (2003).

Sussman & Ohta (2009) continued the research on curvature estimation

based on a height function (HF). They derived the height function from

the LS field instead of the VOF field, as in previous works (Sussman, 2003;

Sussman et al., 2007). They found it easier to implement and more accurate.

The authors make an important consideration that when one discretizes the

curvature for surface tension purposes, that curvature should represent an

approximation to the curvature on the interface, in the same way the height

function approximation does (height function reconstructed from either γ or

α). The curvature computed directly from the level set field, i.e., from the

formula κ =
−→∇ · (−→∇γ/|−→∇γ|) gives an estimate at the cell center instead of on

the surface itself, what is not desired.

Originally, the HF technique was devised based on orthogonal meshes and

no method existed for non structured meshes. This limitation was present, until

recently, when Ito et al. (2014) extended the HF method for two-dimensional

unstructured meshes. Later, Ivey & Moin (2015) extended the HF technique

for 3D unstructured meshes. Their approach enables the computation of

interface normals and curvatures in three-dimensional unstructured non-convex

polyhedral grids. The accuracy obtained with this enhancement is compared

to the accuracy in the traditional HF technique in orthogonal meshes.

Francois et al. (2006) devised a new balanced-force algorithm for model-

ing interfacial flows with surface tension. In their work, the momentum equa-

tion time discretization is split into a “predictor” and a “corrector” steps. The

predictor step solves for the velocities in an intermediate time step, while the

corrector step corrects the pressure jump and then corrects the velocity field for

the next time step. This procedure recovers an exact balance between pressure

jump and surface tension. Since the authors estimate curvature with HF, diffi-

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 34

culties arise when the curvature radius becomes too small compared to the grid

size. In this limit, the results are inconsistent. However, Popinet (2009), using

the Gerris solver (Popinet, 2003), generalized the HF method enabling second-

order accuracy even with low mesh resolutions. In the same work, Popinet pro-

poses to enhance mesh resolution by octree subdivision (Samet, 1984), what

enables to capture small and large scales efficiently. It is worth to notice that

octree subdivision requires Cartesian grids. A common test case of code val-

idation is the problem of a bubble or drop at rest in a stationary fluid. The

exact solution is given by Laplace’s law, which states that the pressure jump

across the surface is balanced by the surface tension and it results in a spher-

ical shape. Until recently, all methods with implicit interface representation

resulted in non-equilibrium solutions due to spurious currents. In the worst sce-

nario, these parasitic currents can be strong enough and cannot be neglected.

The work of Popinet (2009) claims to be the first to achieve static equilibrium

for this problem. Fuster et al. (2009) presented many simulations of primary

atomization performed with Gerris showing that this kind of problem, where

the characteristic length scales are spread over several orders of magnitude, is

possible to be solved due to Gerris’ capability of adaptive mesh refinement.

Deshpande et al. (2012) have made an analysis of the performance of

interFoam in a number of different test cases. In particular, it has been shown

that, for surface tension driven flows, curvatures converged to different values

than the analytical solutions suggest. Furthermore, non-negligible spurious

currents have also been observed. A time-step constraint has been proposed to

work around this problem in the test cases used by the authors.

Klostermann et al. (2013) have investigated the problem of a single rising

bubble with interFoam. The test cases of Hysing et al. (2009) were simulated

and results were compared to a number of different interface capturing codes.

The authors conclude that the parasitic currents, and specially curvature

estimation (together with CSF), in interFoam are probably interconnected

topics that should be further investigated, as well as the surface compression

scheme.

Cano-Lozano et al. (2015) performed tests comparing both interFoam

and Gerris for rising bubble flows dominated by surface tension. They con-

cluded that interFoam is not suitable for this type of flows as it presents

non-negligible spurious currents, while Gerris showed absence of spurious cur-

rents. These parasitic currents may be reduced by increasing spatial resolution

in interFoam, however at the cost of a considerable increment in CPU time.

They conclude that Gerris is well suitable for surface tension dominated flows

due to its Adaptive Mesh Refinement technique and surface tension treatment

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 35

by both HF and balanced-force algorithm (Francois et al., 2006).

Octree subdivision is one of the strategies of mesh refinement in AMR

– Adaptive Mesh Refinement – methods, that subdivide the grids in regions

where the solution lacks accuracy. These methods define a threshold for the

error in the flow solution, and where this limit is reached, the mesh is refined.

Another approach for grid refinement is the SAMR – Structured Adaptive Mesh

Refinement – (Berger & Oliger, 1984; Berger & Colella, 1989). Pivello et al.

(2014) employs the SAMR algorithm proposed by Berger & Rigoutsos (1991)

to refine the Eulerian grid in their Front-Tracking Method where the criteria

for refinement is based on the interface position and on the vorticity gradient.

In general, mesh refinement technique enables to capture flow phenomena in

a wide range of length scales efficiently, since the mesh is refined only where

needed.

2.2

Interface Surface Reconstruction and VOF Advection

Concerning surface reconstruction, most of the recent works found in the

literature use PLIC – Piecewise Linear Interface Calculation (Rider & Kothe,

1998). Cummins et al. (2005), Francois et al. (2006), Sussman & Ohta (2009)

and Popinet (2009) use PLIC as a technique to reconstruct and advect the

interface in structured orthogonal meshes. The PLIC algorithm consists of two

steps: (i) an interface reconstruction by planes in each interfacial cell and (ii)

a geometrical computation of volume fluxes across the grid faces (Rider &

Kothe, 1998; Garrioch & Baliga, 2006). A recent article by Ito et al. (2013)

proposes a new PLIC algorithm applied to unstructured meshes. It is accurate

even for unstructured meshes with highly-irregular cell arrangements. In their

work, the authors use meshes of quadrilaterals and triangles.

An alternative approach to VOF without the need for interface recon-

struction, as in PLIC, is to solve the transport of volume fraction by FCT –

Flux Corrected Transport. FCT was introduced by Boris & Book (1973) defin-

ing the computation of fluxes in a way that guarantees boundedness in the

solution of hyperbolic equations. Zalesak (1979) improved the technique and

extended it to more than one dimension without the need for time splitting.

It is known that high order schemes for numerical integration of transport

equations suffer from oscillations. On the other hand, low order schemes suffer

from numerical diffusion. The main idea of FCT is to compute fluxes with both

low and high order schemes and weight them in a way that minimizes both

oscillations and numerical diffusion (Zalesak, 1979).

In 2004, OpenFOAMr –Open Field Operation and Manipulation– was

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 2. Literature Review 36

released as an open source C++ suite of libraries and solvers for the solution

of continuum mechanics problems (OpenFOAM, 2014), which includes CFD

– Computational Fluid Dynamics– problems. In 2007, OpenFOAMr version

1.4 was released introducing a new algorithm for two-phase interface track-

ing based on FCT theory (Zalesak, 1979; Rudman, 1997). This algorithm,

called MULES –Multidimensional Universal Limited Explicit Solver– was im-

plemented by Henry Weller (Weller, 2008) and is well described in Damián

(2013). In the current version of OpenFOAMr (v2.3.0) used in this work,

just released on February 2014, MULES was improved. As it is an explicit

method, it would come at the cost of a limit in the maximum Courant number

(Co = δt|−→V |/δx). However, in the current version, a new semi-implicit vari-

ant of MULES is introduced. It first executes an implicit predictor step before

constructing an explicit correction. This approach maintains boundedness and

stability at an arbitrarily large Courant number. The main goal is to transport

the phase fraction with VOF method keeping the interface sharp and guaran-

teeing boundedness of the volume fraction field without the need for the costly,

yet more accurate, PLIC surface reconstruction.

So far, PLIC surface reconstruction is not yet available in standard

OpenFOAMr releases, but it has already been developed and presented as

voFoam in Maric et al. (2013). The current update of voFoam project is that it

is still to be released as an open source code.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

3

Mathematical Formulation

Isothermal fluid flows are modeled by the balance equations of mass and linear

momentum (Panton, 2005). In the present work, the VOF method, which is

a type of One-Fluid Model (Prosperetti & Tryggvason, 2007) was selected to

determine the flow field.

The conservation of mass, in the absence of mass transfer, is given by

∂ρ

∂t
+
−→∇ · (ρ−→V) = 0 (3.1)

where ρ is the fluid density, t the time variable,
−→
V the velocity vector and

−→∇·
the divergent operator. For incompressible flows, the above reduces to enforce

the velocity field to be a divergence-free vector field

−→∇ · −→V = 0 (3.2)

The linear momentum balance can be written as

∂(ρ
−→
V)

∂t
+
−→∇ · (ρ−→V −→V) = −−→∇p+

−→∇ · τ + ρ
−→
f (3.3)

where ρ
−→
f is a body force acting on the fluid (such as the gravitational force,

where
−→
f would be the gravitational acceleration). The term

−→∇p is the pressure

gradient, the pressure force per unit volume, and τ is the viscous stress tensor.

For Newtonian fluids, the viscous stress tensor is given by

τ = µ

[

∇−→V +
(

∇−→V
)T

− 2

3

(

∇ · −→V
)

I

]

(3.4)

where µ is the fluid viscosity and I is the identity tensor.

3.1

Two-Phase Formulation

The concept of the One Fluid Model is to solve only one set of equations for

both phases, considering the fluid with variable properties. The key component

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 3. Mathematical Formulation 38

of this type of model is to identify the regions occupied by each fluid.

Consider a two-phase system, where hypothetical phases 1 and 2 are

separated by an interface, as shown in Fig.3.1 Let the interface S be represented

by every point that satisfy a function F (−→x , t) equal to a constant. For instance,

let it be at the zero level of F (Tryggvason et al., 2011).

F (−→x , t) = 0 (3.5)

where −→x is the position vector.

interface

phase 1

phase 2 n
^

Figure 3.1: Two phases separated by an interface.

Given the interface is at F = 0 and that it separates both phases, one of

the phases is at F < 0 and the other at F > 0. It is usual convention to let

phase 1 be at F > 0 and phase 2 be at F < 0. Besides let the normal at the

interface be pointing from phase 1 to phase 2. Thus, the unit normal at the

interface is given by

n̂ = −
−→∇F

|−→∇F |
(3.6)

The interface can move basically through two processes: (1) mass transfer

between the phases and (2) fluid motion. Notice that only its normal direction

VS =
−→
VS · n̂ is necessary to be specified, i.e. any tangential movement does not

change its shape. Considering no mass transfer, the interface moves with the

fluid velocity. That is to say its material derivative is zero (Tryggvason et al.,

2011)

DF

Dt
=

∂F

∂t
+
−→
V · −→∇F = 0 (3.7)

Using the interface normal defined in Eq.(3.6), it becomes

∂F

∂t
−−→V · n̂|−→∇F | = 0 (3.8)

∂F

∂t
− VS|

−→∇F | = 0 (3.9)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 3. Mathematical Formulation 39

Consider a control volume containing a portion of the interface, as

depicted in Fig.3.2. Taking its thickness as zero, no mass can accumulate inside

the control volume. Therefore, the inflow mass is equal the outflow. That is to

say

ρ1(
−→
V 1 · n̂− VS) = ρ2(

−→
V 2 · n̂− VS) = ṁ (3.10)

where ṁ is the net mass flow per unit area across the interface. If there is no

mass transfer, ṁ = 0, so

VS =
−→
V 1 · n̂ =

−→
V 2 · n̂ (3.11)

phase 1

phase 2

S

δS

n
^

δV_

S
V

2
V

1
V

Figure 3.2: Thin control volume containing the interface.

As noted in Tryggvason et al. (2011), mass conservation places a restric-

tion on the normal velocity, Eq.(3.11), but none on the tangential velocity. For

viscous flows, it is observed experimentally that there is no slip between the

phases, so that the tangential components are the same. So, at the interface

−→
V S =

−→
V 1 =

−→
V 2 at F = 0 (3.12)

In order to determine the motion of the interface , a further condition

is necessary (Tryggvason et al., 2011). A momentum balance on the control

volume of Fig.3.2 that is moving with velocity
−→
V S results in

−
∮

δS

ρ
−→
V (
−→
V · n̂− VS)ds+

∮

δS

n̂ · T ds+

∫

S

−→
fσds = 0 (3.13)

where the tensor T has a normal contribution of pressure p and the viscous

contribution τ , T = (−p I + τ).

The first two integrals are over the edges of the control volume δ∀ and
the last integral is over the interface. For flows with no mass transfer, Eq.(3.11)

is valid, therefore the first term drops resulting in

∮

δS

n̂ · T ds+

∫

S

−→
fσds = 0 (3.14)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 3. Mathematical Formulation 40

Considering, once again, the thickness of the control volume converging to zero,

the boundary δS lies on the surface S. Thus, the cyclic integral of the stress

results in the jump of the surface traction T across S. That is, the jump in

(−pI + τ) · n̂ should be balanced by the surface tension force (Prosperetti &

Tryggvason, 2007). It results in

[(p1− p2)I+(τ2−τ1)] · n̂ = −
−→∇ · [(I− n̂n̂)σ] = −(I− n̂n̂) ·−→∇σ+σκn̂ (3.15)

where the term (I− n̂n̂) is the projector on the plane tangent to the interface,

σ is the surface tension coefficient and κ is twice the local mean curvature of

the surface given by

κ =
−→∇ · n̂ (3.16)

For constant surface tension coefficient, the following arises

[(p1 − p2)I + (τ2 − τ1)] · n̂ = σκn̂ (3.17)

To account for the jump in the surface traction, the surface tension is

added to the linear momentum equation Eq.(3.3) as an additional source term.

This is the way the boundary condition of pressure jump across the interface

is treated in One-Fluid method. This effect is concentrated at the interface by

means of the delta δ(n) function. Taking the surface tension effect into account,

Eq.(3.3) is written for two-phase flows as

∂(ρ
−→
V)

∂t
+
−→∇ · (ρ−→V −→V) = −−→∇p+ ρ

−→
f +

−→∇ · τ +−→fσ (3.18)

where
−→
fσ is the interface tension force per unit volume, acting at the interface

region. (Brackbill et al., 1992)

∫

∀

−→
fσdv =

∫

S

σκ(−→xs) n̂(
−→xs) ds (3.19)

where the integral on the right hand side is over the interface S and the

integral on the left hand side is over the volume in the vicinity of the interface

(transition region) with a thickness that goes to zero. The parameter σ is

the interface tension coefficient (considered constant here), κ is the interface

curvature, n̂ is the interface normal vector and −→xs is a position vector on the

interface S. According to Brackbill et al. (1992), the integral over the interface

can be converted into an integral over the volume by using a delta function

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 3. Mathematical Formulation 41

that takes zero value off the interface. So, the above can be stated as

∫

S

σκ(−→xs) n̂(
−→xs) ds =

∫

∀

σκ(−→x) n̂(−→x) δ [n̂(−→xs) · (−→x −−→xs)] dv (3.20)

where the delta function is evaluated at a normal coordinate from the interface.

Here −→xs is the closest point from
−→x at the interface. The surface tension force

−→
fσ can be stated simply by

−→
fσ = σκ n̂ δ(n) (3.21)

where n is the normal coordinate from the interface to −→x .
Chapter 4 presents the discretization employed for the momentum equa-

tion, Eq.(3.18), in interFoam and Chap.5 brings more details concerning cur-

vature.

3.2

VOF Two-Phase Formulation

A marker function to keep track of the fluid phases is defined such that it is

equal to one in every point inside the reference phase and zero in the other

phase. Without loss of generality, phase 1 will be considered the reference

phase in this description. Considering Ω to be the whole domain, Ω1 the region

occupied by phase 1 and Ω2 the region occupied by phase 2, the marker function

can be stated as

α̃(−→x , t) =







1 , −→x ∈ Ω1 at time t

0 , −→x ∈ Ω2 at time t
(3.22)

It is clearly a non continuous function, with abrupt change across the interface

between the phases. One may notice, however that there is a more convenient

way to express this indicator. By integrating α̃ in a volume region δ∀i around
point −→xi , the volume fraction α of the reference phase arises as follows

α(−→xi , t) =

∫

δ∀i

α̃(−→x , t)d∀ (3.23)

If the region is fully filled with phase 1 at time t, α(−→xi , t) = 1. If, on the other

hand, is is completely filled of phase 2, α(−→xi , t) = 0. If both phases are present,

0 < α(−→xi , t) < 1.

The fluid properties such as ρ and µ can represented as the mixture

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 3. Mathematical Formulation 42

property such as

ρ(−→x , t) = α̃(−→x , t) ρ1 + (1− α̃(−→x , t)) ρ2 (3.24)

µ(−→x , t) = α̃(−→x , t) µ1 + (1− α̃(−→x , t)) µ2 (3.25)

where subscript 1 refers to phase 1 and 2 to phase 2. Therefore, away from

the interface, where the marker function takes up values of 0 or 1, the physical

properties associated to each individual phase are recovered. Analogously, in

an infinitesimal region around point −→x , the mixture propeties are given as a
function of the volume fraction

ρ(−→x , t) = α(−→x , t) ρ1 + (1− α(−→x , t)) ρ2 (3.26)

µ(−→x , t) = α(−→x , t) µ1 + (1− α(−→x , t)) µ2 (3.27)

The governing equation for the volume fraction advection will be derived

from the conservation of mass equation. In its conservative form, the conser-

vation of mass is given by

∂ρ

∂t
+
−→∇ · (−→V ρ) = 0 (3.28)

Substituting the ρ definition for the mixture into this equation, the following

arises

∂[ρ1α̃ + ρ2(1− α̃)]

∂t
+
−→∇ ·

{−→
V [ρ1α̃ + ρ2(1− α̃)]

}

= 0

(ρ1 − ρ2)
∂α̃

∂t
+ (ρ1 − ρ2)

−→∇ ·
(−→
V α̃
)

+ ρ2
−→∇ · −→V = 0

For incompressible flows,
−→∇ ·−→V = 0. Integrating the above in the infinitesimal

region around point −→x , and considering ρ1 and ρ2 as constants, it results in

(ρ1 − ρ2)
∂
∫

δ∀
α̃d∀

∂t
+ (ρ1 − ρ2)

∫

δ∀

−→∇ ·
(−→
V α̃
)

d∀ = 0 (3.29)

Applying Eq.(3.23) into the above (and formally, ρ1 − ρ2 6= 0), the VOF

advection equation is obtained

∂α

∂t
+
−→∇ ·

(−→
V α
)

= 0. (3.30)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

4

Numerical Formulation

By examining the conservation equations of mass and linear momentum, Eqs.

3.1 and 3.18, one may observe that they can be represented by a general

conservation equation, as discussed in Patankar (1980). Equation 4.1 presents

the general form

∂(ρφ)

∂t
+ ~∇ · −→J = S (4.1)

where the variable φ is the dependent variable, ~J is the total flux of φ, and S

a source term.

The total flux has a convective and diffusive contributions and is given

by

~J = ρ
−→
V φ− Γ ~∇φ (4.2)

where Γ is the appropriate diffusion coefficient.

The source term S may be linearized as follows:

S = SC + SP φ (4.3)

where SC is the source term constant and SP is the linear coefficient with

respect to φ. One issue to consider is that SP must always be negative to

guarantee stability of the numerical model (Patankar, 1980).

The development of the present work was performed within the frame-

work of an open source CFD tool, OpenFOAMr (Weller et al., 1998), which

employs the Finite Volume Method to discretize conservation equations with

the general form of Eq.(4.1). The Finite Volume Method consists in subdivid-

ing the computational domain in a number of control volumes and integrating

the conservation equations in space and time in each one of them.

Figure 4.1 depicts two adjacent finite volumes separated by the face f

between them. One of the volumes is referred as the owner of the face and its

center is referred to by Cj. The control volume adjacent to j through face f

is the volume j′, whose center is referred to by Cj′ . Volume j′ is called the

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 44

neighbor cell. The vector
−→
Sf is the area vector of the face. It is normal to the

face and its magnitude is equal to the face area. The face unit normal Ŝf is

given by Ŝf =
−→
Sf/|

−→
Sf |.

Sf

f

jC

j’C

Figure 4.1: Two adjacent finite volumes through face f .

The integral of Eq.(4.1) is obtained by exchanging the integration order

depending on the term in consideration, as shown bellow

∫

∆∀

∫

∆t

∂ρφ

∂t
dt d∀+

∫

∆t

∫

∆∀

−→∇ · −→J d∀ dt =

∫

∆t

∫

∆∀

S d∀ dt (4.4)

where ∆∀ refers to the owner volume, and ∆t the time step.

The first term can be easily integrated by considering (ρ φ) constant

inside the control volume. It can be written after diving by ∆ t as

ρn+1φn+1 − ρnφn

∆t
∆∀ (4.5)

where n indicates a time instant t and n + 1 corresponds to the time instant

t+∆t.

Applying the Gauss theorem (Aris, 1990) on the second term on the

LHS of Eq. (4.4), it can be transformed from a volume integral into a surface

integral, i.e.

∫

∆∀

−→∇ · −→J d∀ =
∮

∆S

−→
J · Ŝ dS =

∑

f∈∆S

−→
Jf ·

−→
Sf (4.6)

where ∆S is the element of area and Ŝ the surface unit normal vector.
−→
Jf is the

flux at the control volume face, with a convective and diffusive contribution,

−→
Jf ·

−→
Sf = (ρ

−→
V)f ·

−→
Sf φf − (Γ

−→∇ φ)f ·
−→
Sf (4.7)

and it can be evaluated by several different schemes, like Upwind, Central

Difference (Verteege & Malalasekera, 2007), QUICK (Leonard, 1979), among

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 45

many others.

The time integration of flux and source term of Eq. (4.4) can be performed

by different schemes, such as Euler schemes or Crank-Nicholson (Patankar,

1980), as

∫

∆t

φ dt = φn+1f + φn(1− f))∆t (4.8)

where f = 0 or f = 1 correspond, respectively, to Euler explicit or implicit

schemes and f = 1/2 refers to Crank-Nicholson scheme. An example of

OpenFOAMr code illustrating the transient treatment is presented at the

Appendix (A.3).

In the next sections, a brief description of the OpenFOAMr solver is

presented, so that the new interface treatment, which is being proposed in this

work (presented in Chapter 5), can be better understood.

4.1

OpenFOAM

OpenFOAMr framework was selected to be employed at the present work,

because it is an open source software package designed to solve generic

continuum mechanics problems. OpenFOAMr is being widely used by the

scientific community and it counts with a growing community of users and code

contributors. The main distribution comes with many application tutorials for

different problems such as:

– Basic CFD: potential flows, pure diffusion, convection etc;

– Combustion;

– Compressible Flows;

– Incompressible Flows;

– Multiphase flows;

– DNS - Direct Numerical Simulation – and LES – Large Eddy Simulation;

– Heat Transfer;

– Electromagnetics;

– Chemical Reactions;

– Stress Analysis;

– and even Financial applications.

With this wide collection of types of standard solvers, the programmer

may create new solvers based on an existing one. It is very common to find

users who just need to add a new term to the transport equation of an existing

solver. It can usually be done by modifying a single line of the original code

with ease.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 46

OpenFOAMr was originally named as FOAM – Field Operation And

Manipulation – and the first formally published article is the work of Weller

et al. (1998). It consists of a set of libraries and solvers for partial differential

equations written in C++ language (Stroustrup, 2013), that enables program-

mers to easily develop solvers on top of it. It explores many features of C++

language in order to accomplish this goal. Object-orientation allows declara-

tion of classes that mimic mathematical objects such as scalars, vectors, ten-

sors etc. Operator overloading enables readability of the codes, that can look

very similar to its mathematical representations. Differential equations can be

coded in a way that greatly resembles the way it would be written in paper,

as illustrated in Appendix A.3.

4.1.1

Mesh Generation

Standard OpenFOAMr distribution offers several mesh generation tools. One

of them is the blockMesh utility, to generate parametric meshes with grad-

ing and with possible curved edges. The domain is assembled by contiguous

blocks that are subdivided according to prescribed numbers of subdivisions. All

structured meshes in this work were generated with blockMesh. Besides pro-

viding its own mesh generators, OpenFOAMr also provides mesh converters

to enable meshes modeled in other software to be imported. For unstructured

meshes, one option used in this work was to generate meshes in GMSH appli-

cation (Geuzaine & Remacle, 2009) and, then convert them to OpenFOAMr

by calling gmshToFoam utility.

The mesh is defined by sets of points, faces, cells and boundaries. Point

is a unique 3D position in space that identify corners of the faces. A face is

an ordered circular list of points, i.e. the last point is connected to the first

to close a loop. The connection between two adjacent points in the list is

identified as an edge. It is important to enforce the points of a face to be

coplanar. There are two types of faces: internal and boundary faces. Internal

faces are connections between two (exactly two) adjacent cells. One of the cells

is called the face owner (face normal points outside from it) and the other is

called the neighbor cell (face normal points into the neighbor cell). Boundary

faces are faces attached only to the owner cell and its normals point outside

of the domain. These faces belong to their respective boundary patches, which

identify the boundary condition for the fields.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 47

4.1.2

General Solver Information

The OpenFOAMr platform employs co-located meshes, i.e. all variables are

stored at the cell centers. Although it can bring stability problems (Patankar,

1980), a substantial reduction on memory requirements is gained and the

discretization coefficients of the three momentum equation components become

the same. Besides, OpenFOAMr does not rely on structured meshes. It

employs the Finite Volume Method on unstructured grids. All information

of cell connectivity is stored in each cell and other topological elements, such

as faces, edges and vertices.

The system of algebraic equations can be solved by many different

methods in OpenFOAMr. Preconditioned Conjugate Gradient (for symmet-

ric matrices), Preconditioned Bi-conjugate Gradient, Gauss-Seidel, Diago-

nal Incomplete-Cholesky (for symmetric matrices) (Saad, 2003), Generalized

Geometric-Algebraic Multi-Grid (Briggs et al., 2000) among others. The multi-

grid solver uses the principle of generating a fast solution (using one of the

available linear solvers) on a coarse mesh, mapping the solution on the fine

mesh as an initial guess in order to obtain a fine solution.

Besides all presented features of OpenFOAMr, it also benefits from being

fully parallel. OpenFOAMr applications can run in parallel on distributed

processors in a MPI – Message Passing Interface – environment (Quinn, 2003;

Squyres, 2012). The method used is called domain decomposition, in which

the geometry and associated fields are broken into pieces and assigned to

separate processors. After each processor solves part of the problem, the master

processor (or master node) maps the solutions in the whole domain.

4.2

Standard OpenFOAM VOF solver: interFoam

In the VOF method (Hirt & Nichols, 1981), the α field (volume fraction of the

reference phase) is a phase indicator that keeps track of the fluid phases and

is advected with the velocity field, Eq.(3.30). Figure 4.2 shows three possible

situations for cells positioning with respect to the interface. When a cell is fully

occupied by phase 1, its value is 1. Where α = 0, it means there is no amount

of phase 1 present; it is the same as to say it is fully occupied by the other

fluid component, phase 2. Cells that present α values ∈ (0, 1) have a mixture

of both phases, what indicates the interface region (the dark gray region in the

figure).

In spite of the fact that the interface region has a finite thickness due to

its representation through the volume fractions, the interface can be identified

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 48

as the isosurface of a constant α value. If one takes the midpoint in the α range

[0, 1], i.e. α = 0.5, to be the interface position, the interface may be treated as

sharp even though it is smeared in the α field representation.

α=0

α=1

Figure 4.2: The three cases of cell positioning with respect to the interface.

In theory, the volume fraction should vary from 0 to 1 (and vice versa)

within one cell thickness. However, due to numerical diffusion during its

advection, the interface thickness may consist of several cells as illustrated

in Fig.4.3. As discussed in Chapter 2, there are several approaches which are

employed in order to keep the interface as sharp as possible. Such approaches

involve the application of high order or blended discretization schemes for the

convective transport of α. The degree of smearing of the interface will highly

depend on the scheme used, and many examples are given by Davis (1994),

Ghobadian (1991), among others. Ubbink & Issa (1999) presented a bounded,

compressive discretization scheme for the volume fraction equation called

CICSAM. Weller (2008) developed an alternative compressive scheme that

adds to the equation of α advection an artificial “counter gradient” transport

of α towards the interface in order to keep the interface sharp.

α = 0.99

α = 0.50

α = 0.01

Figure 4.3: Interface smearing.

Since surface tension is a force that acts on the interface surface, it is

desirable to have interfaces as sharp as possible, aiming to reduce inaccuracies

due to application of surface tension in off-interface regions. Thus, the proper

choice of cells where to apply this force is crucial. However, extremely abrupt

changes in α in the transition region brings difficulties in normal and curvature

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 49

estimations as described in Chapter 2. The main focus of the present work

is to improve the interface curvature estimation and therefore lead to a

better definition of the surface tension force. A detailed description of the

methodology in presented at Chapter 5. In the next sections, the transport of

the volume fraction field as performed by the standard interFoam solver in

OpenFOAMr will be highlighted.

4.2.1

Transport of VOF field

In interFoam, the advection of α field is performed algebraically, without the

need of surface reconstruction. The algorithm to solve α transport is called

MULES – Multi-Dimensionsal Limiter for Explicit Solution – and is based on

the FCT theory (Zalesak, 1979; Rudman, 1997) to evaluate the face fluxes

with limiters. In order to maintain interface sharpness, Weller (2008) adds an

“artificial” compression term to the α field transport equation Eq.(3.30). With

this compression term, it results in

∂ α

∂t
+
−→∇ ·

(−→
V α
)

+
−→∇ ·

[−→
Vc α (1− α)

]

= 0 (4.9)

where the compressibility term is concentrated within the interface region.

The term α (1 − α) ensures it is only active in this region. The “compression

velocity”
−→
Vc is given by

−→
Vc = min

[

Cα|
−→
V |,max

(

|−→V |
)]

−→∇α

|−→∇α|
(4.10)

where Cα is the compression coefficient, usually of order 1. The max operator

is performed in the whole domain and the min operator is performed locally

(at the faces surrounding the concerned cell). Basically, if one desires to turn

compressibility off, it is sufficient to set Cα to zero. Larger values of Cα can

also be useful, depending on the situation (Weller, 2008). In this work, Cα was

kept equal to unity.

According to Wardle & Weller (2013), MULES algebraic advection

scheme for the volume fraction is not as accurate as geometric advection

schemes, such as PLIC (Rider & Kothe, 1998). However, since it does not

require surface reconstruction, it’s implementation is much simpler, it is more

efficient computationally and it is mass conservative, unlike PLIC, for example

(Gopala & van Wachem, 2008). A negative consequence of this last advection

scheme, is the possibility of increase in spurious currents, which can be

minimized by keeping a low Courant Co number. Co is computed at the

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 50

faces centers by

Co =
|−→V f ·

−→
Sf |

−→
d PN · Sf

∆t (4.11)

where ∆t is the time-step and
−→
d PN is the distance between the centers of

the cells neighboring the face. In this way, the time step at each step is

adjusted based on a maximum user provided Courant numberComax as follows

(Damián, 2013)

∆t = min

{

Comax

Co
∆tn−1,

(

1 + λ1

Comax

Co

)

∆tn−1, λ2∆tn−1,∆tmax

}

(4.12)

where λ1 = 0.1 and λ2 = 1.2 are two hard-coded constants. In interFoam, the

desired Courant number is achieved by sub dividing the simulation time-step

in sub-cycles to maintain the maximum Courant number at the interface low.

As pointed by Weller (2008), Courant should be kept Comax ≤ 0.25 at the

interface, otherwise unboundedness tends to occur rather fast. Gopala & van

Wachem (2008) recommend Comax < 0.3, Berberovic et al. (2009) recommend

the use of Comax around 0.2. Damián (2013) goes even further and points out

that for some situations it was required Comax = 0.1.

In the Finite Volume Method, Eq.(4.9) is integrated over cell j resulting

in

∫

∀j

∂α

∂t
d∀+

∫

∀j

−→∇ · (−→V α)d∀+
∫

∀j

−→∇ ·
[−→
Vcα(1− α)

]

d∀ = 0 (4.13)

Using the Gauss theorem on the second and third terms and Explicit Euler

time discretization, just to simplify the description, its discretized version for

cell j follows

αn+1
j − αn

j

∆t
∀j +

∑

f∈∆Sj

(Fα + λFαc)
n (4.14)

where αn+1
j is the value of α at the center of cell j at the next time step, αn

j is

its value at the current time step, the summation is performed over all faces

that belong to the boundary ∆Sj of cell j, ∀j is the jth cell volume, Fα is

the face flux due to the velocity field and Fαc is the compressive flux. The λ

coefficient is a delimiter to concentrate the compressive advection term only

at the interface region. It is equal to one at the interface and zero away from

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 51

it. The fluxes Fα and Fαc at the faces f are given by

Fα = φfαfUP (4.15)

Fαc = φfαf + φcfαcf (1− αcf)− Fα (4.16)

where φf is the volumetric flux given by

φf =
−→
Vf ·

−→
Sf , (4.17)

−→
Sf is the face area vector and

−→
Vf is the velocity vector evaluated at face f . It is

interpolated between the values of the velocity field at the centers of the cells

j and j′, which are the indexes of the pair of neighboring cells adjacent to face

f . If, for instance, the grid spacing is uniform and
−→
Vf is computed by linear

interpolation (others can be employed),
−→
Vf = (

−→
Vj +

−→
Vj′)1/2. The term αfUP

is the α value evaluated at face f by Upwind scheme

αfUP =







αj , if φf ≥ 0

αj′ , if φf < 0.
(4.18)

The face centered term αf is evaluated by a combination of Upwind and Central

Differencing schemes as follows

αf = αfUP + λα(αfCD − αfUP) (4.19)

where λα is a blending coefficient that depends on the method used. In this

work it was used the van Leer (1974) scheme. The variable αfCD is the α value

at face f center evaluated by Central Differencing scheme as follows

αfCD =
1

2
(αj + αj′) (4.20)

The compressive flux φcf at face f center is given by

φcf = min

[

Cα
|φf |
|−→Sf |

,max

(

|φf |
|−→Sf |

)]

(n̂f ·
−→
Sf) (4.21)

where the max operator is performed in all faces of the grid and the min

operator is performed locally. The parameter Cα is the interface compression

coefficient, a value that can be adjusted by the user. In this work, Cα = 1 for

all presented results. The interface unit normal vector is given by

n̂f =
−→nf

|−→nf |
, −→nf =

(
−→∇α)j + (

−→∇α)j′

2
(4.22)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 52

where (
−→∇α)j is the gradient of α at the center of cell j. It is worth to mention

here that, in the method proposed in this work, instead of using the gradient of

α, the normal n̂f is obtained by linear interpolation of the interface normals at

the cell centers computed by the method explained in Chap.5. Moving back to

interFoam approach, the cell centered α gradient computed at cell j is given

by

−→∇αj =
1

∀j
∑

f∈∆Sj

−→
Sfαf (4.23)

where f is the index at the faces around cell j and αf is the value of α

interpolated to face f center by linear interpolation of the α values at the

centers of cells j and j′, where j′ in this context is the id of the cell neighboring

cell j through face f . See Fig. 4.1, where two neighboring cells are depicted.

The face centered α value in the compressive term αcf is also a combination

of Upwind and Central Differencing schemes

αcf = αfUP + λαc(αfCD − αfUP) (4.24)

where λαc is a blending factor given by the interfaceCompression scheme

λαc = min

{

max

[

1−max

(

√

1− 4αj(1− αj),
√

1− 4αj′(1− α′j)

)

, 0

]

, 1

}

(4.25)

4.2.2

Momentum and Mass Transport

The velocity and pressure fields are determined by the solution of the momen-

tum equation, Eq. (3.18) coupled with the mass conservation Eq.(3.2) through

PISO algorithm (Issa, 1986). For convenience, the pressure in interFoam is

treated as a modified pressure pρgh (Berberovic et al., 2009) defined by

pρgh = p− ρ−→g · −→x (4.26)

where −→g is the gravity acceleration and −→x the position vector. The pressure

gradient combined with the body force due to gravity is then written in terms

of the modified pressure as

−−→∇p+ ρ−→g = −−→∇pρgh −−→g · −→x
−→∇ρ, (4.27)

Thus, the VOF momentum equation, for two incompressible Newtonian fluids,

as implemented in interFoam, for laminar flows, is written as

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 53

∂(ρ
−→
V)

∂t
+
−→∇ · (ρ−→V −→V) =

−→∇ · (µ−→∇−→V) +
−→∇µ · −→∇−→V −−→∇pρgh −−→g · −→x

−→∇ρ+
−→
fσ

(4.28)

Note that the last three terms in Eq.(4.28) correspond to the source term of

the general equation Eq. (4.4).

The surface tension volumetric force in Eq.(4.28) is computed by the CSF

– Continuum Surface Force– method (Brackbill et al., 1992)

−→
fσ = σκ

−→∇α

[α1 − α2]
(4.29)

where [α1 − α2] is the jump in the “color function”, i.e. [α1 − α2] = 1. Thus,

the surface tension force term results in

−→
fσ = σκ

−→∇α (4.30)

where the curvature κ is computed by taking the divergence of the surface

normal vector

κ =
−→∇ ·

(−→∇α

|−→∇α|

)

(4.31)

resulting in a surface force as

−→
fσ = σ

−→∇ ·
(−→∇α

|−→∇α|

)

−→∇α (4.32)

The pressure is determined in an indirect way so that the continuity

equation is satisfied. OpenFOAMr also has more than one algorithm to

solve the pressure-velocity coupling. In particular, the PIMPLE algorithm,

which is an adaptation of the SIMPLE – Semi-Implicit Method for Pressure-

Linked Equations – algorithm (Patankar, 1980), is recommended for steady

state flows. For transient problems, the PISO – (Pressure Implicit with

Splitting Operators) – algorithm (Issa, 1986) is recommended. Both algorithms

determine the pressure by combining momentum and continuity equations in

order to obtain a velocity field that also satisfies the conservation of mass.

The velocity is first predicted (based on the pressure field at the previous time

step) by solving the momentum equation Eq.(4.28). First, for every cell of the

grid, Eq.(4.28) is integrated and then discretized. Its volume integral over cell

j, with volume ∀j and boundary ∆Sj is given by

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 54

∫

∀j

∂ρ
−→
V

∂t
d∀+

∮

∆Sj

(

ρ
−→
V
−→
V
)

· Ŝ dS =

+

∮

∆Sj

(

µ
−→∇−→V

)

· Ŝ dS +

∫

∀j

−→∇−→V · −→∇µ d∀

−
∫

∀j

−→∇pρgh d∀ −
∫

∀j

−→g · −→x−→∇ρ d∀+
∫

∀j

σκ
−→∇α d∀

(4.33)

and its discretized version, based on the code analysis and the works of

Deshpande et al. (2012), Klostermann et al. (2013) and Damián (2013) follows

ρn+1
j

−−−→
V n+1
j − ρnj

−→
V n
j

∆t
∀j +

∑

f∈∆Sj

(ρfφf)
n−→V ∗f =

+
∑

f∈∆Sj

µn+1

f

(−→∇−→V ∗
)

f
· −→Sf +

(−→∇−→V n
j ·
−→∇µn+1

j

)

∀j

+R
{[

(

σκn+1
)

f
(
−→∇αn+1)f − (−→g · −→x)f (

−→∇ρn+1)f − (
−→∇pnρgh)f

]

|−→Sf |
}

(4.34)

where n and n + 1 refer respectively to the current and next time step.

The operator R is the reconstruct operator implemented in OpenFOAMr.

It receives a field given as faces fluxes and reconstructs it to a cell-centered

field. This equation is solved to predict the velocity field
−→
V ∗ that is used as an

initialization of the PISO correction loops. Besides, in a given time step, it is

solved after the advection of α, i.e. after the solution of Eq.(4.14), so that the

α field at the next time step is already known. The fluid density and dynamic

viscosity are given by

ρñi = αñ
i ρ1 + (1− αñ

i)ρ2 (4.35)

µñ
i = αñ

i µ1 + (1− αñ
i)µ2 (4.36)

where ñ can be either n or (n+1), i can refer either to cell j or face f and αf is

computed by linear interpolation between the values of α at the centers of the

cells adjacent to face f , i.e. cells j and j′ (Fig.4.1), such as αfCD in Eq.(4.20).

After solving Eq.(4.34), the pressure and velocity fields are corrected by

nCorrectors iterations of PISO, where nCorrectors is a variable controlled

by the user. The PISO iterations are performed by first correcting the pressure

field by solving the following equation (Deshpande et al., 2012)

∑

f∈∆Sj

(

1

Aj

)

f

(−→∇pm+1

ρgh

)

f
|−→Sf | =

∑

f∈∆Sj

φ∗f (4.37)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 55

where φ∗f is the flux computed by the velocity field
−→
V ∗ from the previous

iteration, starting with the one predicted by Eq.(4.34), and Aj is given by

(Deshpande et al., 2012)

Aj =





ρn+1
j ∀j
∆t

+
∑

f∈∆Sj

1

2
(ρφ)nf (1 + Θj(f)w) +

∑

f∈∆Sj

µn+1

f Θj(f)
|−→Sf |

|−→Cj −
−→
Cj′ |





1

∀j
(4.38)

where |−→Cj −
−→
Cj′ | is the distance between the centers of the adjacent cells j

and j′. The multiplier Θj(f) indicates whether the normal at face f points

towards or outwards cell j. It solely depends on the mesh construction itself.

In OpenFOAMr, a cell can either be the owner or neighbor to an adjacent

face. If cell j owns face f , the face normal points outwards from the cell. If, on

the contrary, the cell is a neighbor of the face, the face normal points towards

the cell. The multiplier Θj(f) is given by

Θj(f) =







1 , if cell j owns face f

−1 , if cell j is neighbor to face f
(4.39)

and the term w is given by

w =







(1− λV) , if φf ≥ 0

−(1− λV) , if φ < 0
(4.40)

where λV can be chosen among many options, such as λα in Eq.(4.19). After

the new corrected pressure is obtained by solving Eq.4.37, the velocity field is

updated by means of updating the flux φ at iteration m+ 1

φm+1

f = φ∗f −
(

1

Aj

)

(−→∇pm+1

ρgh

)

f
|−→Sf | (4.41)

More detailed descriptions of the algorithm implemented in interFoam

can be found in Deshpande et al. (2012), Klostermann et al. (2013) and Damián

(2013).

The only modification in the standard interFoam performed in this work

is in the way the curvature κ and the interface normal n̂ are computed. Other

aspects of the solver are kept exactly the same as in standard interFoam solver.

The discussion on curvature and normal computations is presented in Chapter

5.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 56

4.3

Field Initialization

OpenFOAMr provides setFields functionality, which enables the user to

initialize fields for a given shape, such as spheres, boxes, cylinders etc. This

functionality is the default way to initialize fields in OpenFOAMr, however it

does not guarantee the correct initial volume/area of the prescribed geometry.

To explain the algorithm, a practical problem be used. Consider a volume

fraction field – the α field of VOF for instance – representing an ellipse is to be

initialized, such as in Fig.4.4. The application setFields solves this problem

as follows. It traverses each cell of the computational grid and tests whether

the center of the cell lies inside the shape or not. If it does, it assigns the

cell with α = 1, otherwise it assigns α = 0. Figure 4.4 depicts the result of

setFields algorithm for the 2D ellipse. Notice the staircase pattern on the

border of the ellipse.

Figure 4.4: VOF field initialized by setFields algorithm.

This initialization can be undesired if one wishes an accurate representa-

tion of the given geometry or simply does not desire the staircase pattern. In

order to avoid this pattern, artificial smoothing has been employed by some

users by projecting the initialized field from cell centers to face centers and

then projecting it back to cell centers. Besides the laborious efforts, this pro-

cedure does not guarantee preservation of the volume (or area) of the shape

anyway.

In order to avoid these drawbacks in field initialization, it was convenient,

to come up with a simpler solution capable of generating the desired accurate

initial field. The main problem is the following: given a cell (of any type:

hexahedral, tetrahedral, prismatic etc) and a shape (sphere, cone, cylinder,

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 57

etc), what is the volume of the intersection between them? This problem seems

straightforward, but not!

The explanation will be carried out in 2D, although the method was

implemented in OpenFOAMr for both 2D and 3D simulations. The first

attempt was to discretize the cell with quadtree (octree in 3D), but it only

seemed reasonable for rectangular (cube in 3D) cells. Therefore, a tool that

could abstract the type of either the cell and the shape was necessary.

The approach implemented was the so called Monte Carlo Integration,

which is a particular type of Monte Carlo method (Ross, 2013). The idea

is to generate uniformly distributed random points inside the cell and count

the number of points that lie inside and outside the given shape. In order

to answer whether or not a point lies inside a shape, each type of geometry

has to implement its own query. It is usually very simple for simple primitive

types, and some were implemented in this work, such as: cylinder, sphere, box,

oriented box and ellipse. More complex objects can be created as a combination

of these simple primitive types, or new primitive types can be easily added.

This methodology was named setFracFields and the integration algorithm

is presented next:

1 box := c e l l bounding box (xmin , xmax , ymin , ymax , zmin , zmax) ;

2 np := i n i t i a l i z e po int counter with zero ;

3 npin := i n i t i a l i z e i n s i d e po int counter with zero ;

4 while not converged

5 p := generate random point in box ;

6 while (p i s not i n s i d e c e l l)

7 p := generate random point in box ;

8 end while

9 np := np + 1 ;

10 i f p i s i n s i d e shape

11 npin := npin + 1 ;

12 end i f

13 end while

14 i f converged and np > 0

15 vo l := c e l l volume ;

16 alpha := vo l ∗ (npin / np) ;

17 else

18 alpha := 0 ;

19 end i f

The pseudo code to generate the random point inside the cell box follows

bellow:

1 p := (xmin + (xmax−xmin) ∗ r un i f () ,

2 ymin + (ymax−ymin) ∗ r un i f () ,

3 zmin + (zmax−zmin) ∗ r un i f ()) ;

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 58

where runif generates a uniformly distributed random variable ∈ [0, 1]. The

main loop stops when convergence in volume fraction is achieved within a

tolerance or a maximum number of points is reached. Practical situations

showed that convergence should be checked after a minimum number of points

is generated. In this work, convergence is checked only after the generation

of at least 100 points. Besides, this algorithm is only applied to cells crossed

by the interface of the shape. It can be efficiently checked by testing if the

cell vertices lie inside or outside the shape. If all lie inside, volume fraction is

set to α = 1, if all lie outside α = 0, otherwise the Monte Carlo integration

algorithm is performed. For rough meshes this naive test is not enough, so

additional points on the cell edges should be checked.

Regarding the shape of the cells, Fig.4.5 displays the two situations that

may occur. In Fig.4.5(a), the cell bounding box coincides with the cell itself.

And in Fig.4.5(b) the bounding box does not coincide. In this case, random

points generated outside the cell (identified with an ×) are discarded and not
accounted in the total number of points. Only points depicted with hollow

circles and solid circles are taken into account. The α value for the cell with

volume v is given by

α = v
n•

n◦ + n•
(4.42)

where n• is the number of points in the interception between the shape and

the cell; and (n◦ + n•) is the total number of points generated inside the cell.

4.5(a): Square cell 4.5(b): Triangular cell

Figure 4.5: A circle interceting two types of cell.

Figure 4.6 displays the field initialized by Monte Carlo Integration. Notice

the field fraction values in cells crossed by the interface.

This functionality was described for the volume fraction field but can be

applied for a generic field φ, where φ is either a: scalar, vector or tensor field.

The user just needs to prescribe two default values: φIN and φOUT , respectively

the values inside and outside the shape. For every cell, the volume fraction α

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 4. Numerical Formulation 59

Figure 4.6: VOF field initialized by Monte Carlo Integration in setFracFields.

is precomputed and the value φ is computed by the linear interpolation given

by Eq.(4.43).

φ = αφIN + (1− α)φOUT (4.43)

Practical situations have shown that the initialized volume ∀ converges
with an increase in the number of random points, what can be controlled by

the user. ∀ is computed as a summation over all cells of the domain by

∀ =
∑

N

αivi (4.44)

where αi is the volume fraction assigned to cell i and vi is the volume of

cell i. The user can control the accuracy of the initialization by adjusting the

minimum and maximum number of generated points per cell, and the tolerance

used for volume fraction convergence checking.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

5

Interface Treatment

This chapter is devoted to present in detail the formulation proposed at the

present work to enhance the curvature estimation, employing a point-cloud

method, based on a Computer Graphics technique. First, the interface is

sampled by a cloud of points, then its normals and curvatures are obtained

based on the cloud. The following sections describe each step of the procedure

in detail.

5.1

Point-Cloud Construction

The point-cloud is obtained straight from the cell-centered VOF field α, that

represents the volume fraction of the reference fluid phase in each cell (Kassar

& Nieckele, 2015). It is a cell-centered field, i.e. the α values are stored at

cell centers. Initially, this field is projected onto the vertices of the grid by an

inverse distance interpolation in order to obtain the vertex centered αP field,

where subscript P stands for vertex-point. The value of αP at any vertex Pi is

given by Eq. (5.1), where the values of α at all cells neighboring Pi are taken

into account, as depicted in Fig. 5.1.

αPi
=

Ni
∑

j=1

wij αj

Ni
∑

j=1

wij

, where wij =
1

|Pi − Cj|
(5.1)

where the index i refers to the ith grid vertex Pi, j refers to the j
th cell, wij is

the weighting factor of the jth adjacent cell to vertex Pi and Cj is the j
th cell

center.

Besides the α field, the cell-centered
−→∇α is also projected onto the grid

vertices, following the same procedure:

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 61

P
i

C
3

C
1

C
2

Figure 5.1: Vertex Pi and its three neighboring cells with centers C1, C2 and
C3.

−→∇αPi
=

Ni
∑

j=1

wij

−→∇αj

Ni
∑

j=1

wij

(5.2)

where
−→∇αj is the α gradient computed at the cell centers. It computed by

−→∇αj =
1

∀j
∑

f

−→
Sfαf (5.3)

where f is the index at the faces around cell j and αf is the value of α

interpolated to face f center by linear interpolation of the α values at Cj

and at the center of the cell neighboring cell j through face f . See Fig. 4.1,

where two neighboring cells are depicted.

It is well documented in the literature that the gradient of α lacks

accuracy for curvature computations. This drawback is attributed to abrupt

changes in the values of α across the interface. Thus,
−→∇α here is actually used

just to obtain the interface normal vectors senses. Once α and
−→∇α fields are

projected onto the grid vertices, the point-cloud computation may proceed. In

fact, we are looking for a set of points equipped with normal vectors to sample

the interface.

5.2

Interface Points Sampling

Taking into account that the values of α represent the volume fraction of the

reference fluid component at a given region, one may observe that the possible

values of α range from 0% to 100%, or from 0 to 1. For now, fluid 1 is considered

as the reference fluid component. Regions assigned with α = 1 are fully filled

with fluid component 1 and regions fully filled with fluid component 2 are

assigned with α = 0. If one travels through a path in the domain from a point

where α = 1 to a point where α = 0, it is reasonable to say that along the

way, the traveler will cross the interface between fluid phases 1 and 2. See Fig.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 62

5.2. At the critical point where the path crosses the interface, the volumetric

fractions must be the same. Thus, it can considered that the value of α should

be 0.5 at the interface. More formally, we may state: The interface between two

fluid components lies at the isosurface of α = 0.5. Referring once again to the

path traversal, it is reasonable to say that, for a traveler to cross the interface

along a path, it is sufficient that it travels from a point with α ≤ 0.5 to a point

with α ≥ 0.5.

α=0.5

α=1

α>0.5 α<0.5 α=0

Figure 5.2: Interface between two fluid phases at α = 0.5.

After the α field is projected by Eq. (5.1), the values of α are available at

the grid vertices. One may travel from each vertex towards every neighboring

vertex through the connecting edges looking for the interface. Whenever the

value α = 0.5 is reached, a new sampling point is stored in the point-cloud.

In order to find all sampling points lying on the edges, one just needs to

look for edges whose endpoints lie at different sides of the interface. This

condition occurs whenever one of the endpoints has α ≤ 0.5 while the other

has α ≥ 0.5. Edges that attend this condition are marked as interfacial edges.

The sampling point position is obtained by interpolating the values of α at

these edges endpoints.

In this work, two α functions were tested: a linear and a cubic one.

The linear function just requires the α values at the endpoints and the cubic

is enriched by α derivatives at the endpoints. At this stage, the derivatives

we have at hand are
−→∇α at the endpoints. The derivative on the edge line

is taken as the projection of
−→∇α at the edge direction vector. Figure 5.3

shows a triangular cell crossed by an interface and its bottom edge shows

two possibilities to represent α: by linear or cubic functions. α0 and α1 are

the values of α, respectively, at the vertices P0 and P1. PL is the point on the

edge where the linear α function is 0.5. PC is the point for which the cubic α

function is equal to 0.5.

For an edge starting at P0 and ending at P1, its points can be obtained

by a line parametrization with t ∈ [0, 1]

P (t) = P0 + t(P1 − P0) (5.4)

then, on the edge, one may write α as a function of t.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 63

P
0

P
L

P
C

P
1

α

0.0

0.5

1.0

α
1

α
0

Figure 5.3: Linear and cubic variation of α along and edge from P0 to P1.

5.2.1

Linear interpolation of volume fraction

The α function varies linearly along the edge and is defined by

αL(t) = α0 + t(α1 − α0) (5.5)

When the edge is an interfacial edge, the parameter tL for which αL(tL) = 0.5

is given by

tL =







(0.5− α0)/(α1 − α0) , α0 6= α1

0.5 , otherwise.
(5.6)

5.2.2

Cubic interpolation of volume fraction

The αC function is an adjust of a Cubic Hermite Spline (Isaacson & Keller,

1994) to α values and derivatives at P0 and P1 and is given by

αC(t) = (2 t3−3 t2+1)α0+(t
3−2 t2+t)α′0+(−2 t3+3 t2)α1+(t

3−t2)α′1 (5.7)

where α′0 and α′1 are the derivatives of α with respect to t respectively at t = 0

and t = 1. These are taken as the projection of
−→∇α at the corresponding

points onto the edge and normalized by the edge length. The value tC that

satisfies αC(tC) = 0.5 is one of the real roots of the cubic polynomial that lies

in the interval [0, 1] and can be solved by the algorithm proposed in Numerical

Recipes in C, pp.183 (Press et al., 1992). For completeness, this algorithm is

explained in Appendix A.1

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 64

5.3

Normal Vectors Sampling

Normal vector estimation is performed in two steps. A first rough estimate

based on
−→∇α interpolations and a local geometric computation based on the

sampling points with their neighboring points.

5.3.1

First step: rough estimate

This step is performed during the sampling points computation by a linear

interpolation of the values of
−→∇α at each interfacial edge endpoints. The

parameter on the edge is the same obtained for the point interpolation and

it can be either tL or tC . So, the normal value at an interfacial edge, whose

interface point lies at a point on the edge represented by parameter t is given

by

−→n = (
−→∇α)P0

+ t
[

(
−→∇α)P1

− (
−→∇α)P0

]

∴ n̂ =
−→n
|−→n | (5.8)

5.3.2

Second step: geometric refinement

There are many methods available in the literature for normal estimation of

point clouds. In this work, three methods were tested and the one with superior

results was selected. Two of them are similar and rely on local triangulation,

the third one relies on a minimization problem. For now, the discussion must

proceed in three dimensions. The reader should notice that two dimensional

simulations in OpenFOAMr are, indeed, a particular case of the 3D simulation.

Fan Triangulation

The first two methods are based on the same principle: approximate the normal

at point P0 as the average of the normals of the triangles surrounding P0. Figure

5.4 displays the interfacial edge E0 with the interpolated point P0 identifying

the position where the interface crosses it; and also its neighboring points. This

set of points constitute the local vicinity of P0. Further, to be more precise, it

is the first layer of neighboring points.

The set of surrounding triangles is built by a triangulation of the first

layer of neighboring points just like a triangle fan around P0.

First, the neighboring points must be sorted. We choose to sort them

in counter-clockwise direction for a viewer pointed by the normal at P0, as

depicted in Fig.5.5. At this stage, the normal at P0 at hand is the first rough

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 65

E0

0P

Figure 5.4: An interface point on an edge and its direct neighboring points.

estimate described in section 5.3.1. It is, indeed, the gradient of α interpolated

to point P0.

u

v

0P

0P
α

Δ

Figure 5.5: Sorting the first layer of neighboring points.

A local frame (u, v) is defined such that u and v are orthonormal vectors

and normal to (
−→∇α)P0

. More formally, u and v satisfy

u× v =
(
−→∇α)P0

|(−→∇α)P0
|

(5.9)

Once the surrounding triangles are obtained, as shown in Figure 5.6, their

normals are computed. Let’s take, for instance, one of the triangles P0P1P2,

where the indexes are already sorted. Its normal n̂1 is given by

−→n1 = (P1 − P0)× (P2 − P0) ∴ n̂1 =
−→n1

|−→n1|
(5.10)

Generally, the normal of each of the N surrounding triangles is given by

−→ni = (Pi − P0)× (Pi+ − P0) ∴ n̂i =
−→ni

|−→ni |
(5.11)

where i+ is the index of the point next to i. It is given by

i+ =







i+ 1 if i < N

1 if i = N
(5.12)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 66

In Figure 5.6, for example, the point next to P8 is P1.

0P

1P

2P

3P

4P
5P

6P

7P
8P

Figure 5.6: Triangle fan around interfacial point P0.

The normal at P0 can be obtained by averaging the normals of its sur-

rounding triangles. Many options are available, such as weighting by triangles

areas, angles, edges lengths and so on. In this work, two options were tested:

an unweighted average and an average weighted by triangles areas. The first

method will be called TriFAN and the later TriWEI.

By examining the normal definition, Eq. (5.10), it can be seen that the

non-normalized vector is proportional to the triangle area. The unweighted

average normal at P0 in the TriFAN method is given by the average of

the surrounding triangles unit normals. On the other hand, the normal by

TriWEI is given by the average of the surrounding triangles normals without

normalization; i.e. the average norm is obtained weighted by triangle areas.

The respective normals of P0 (n̂TFAN
and n̂

TWEI
) are given by

−→n
TFAN

=
N
∑

i=1

n̂i ∴ n̂
TFAN

=
−→n

TFAN

|−→n
TFAN

| (5.13)

and

−→n
TWEI

=
N
∑

i=1

−→ni ∴ n̂
TWEI

=
−→n

TWEI

|−→n
TWEI

| (5.14)

Least-Squares Plane Fitting

Another approach in computing P0 normal vector is to find the normal vector

of the plane that minimizes the Euclidean distance to the point cloud in a least-

squares sense. We found that increasing the number of neighboring points there

is a reduction on the average error in normal estimates. Thus, the point cloud

comprises not only the direct neighboring points to P0, but also a second layer

of neighboring points, as depicted in Figure 5.7. This second layer is obtained

by traversing a new layer of neighboring grid cells that contain interfacial edges.

First, a plane is defined by a center-point C and a unit normal vector ŵ,

as shown in Fig.5.8. The Euclidean distance, depicted in Fig.5.8, from a point

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 67

E0

0P

Figure 5.7: An interface point on an edge and its first and second degrees
neighboring points.

w

C

P

d

Figure 5.8: A plane defined by the center-point C and normal vector ŵ and a
point P with distance d from the plane.

P to the plane (C, ŵ) is given by

d = |(P − C) · ŵ| (5.15)

So, the squared distance is

d2 = [(P − C) · ŵ]2 (5.16)

The plane that best fits a set of N points in a least-squares way is such

that minimizes the sum of the squared distances to each point. Therefore, the

plane that minimizes the following objective function

Q(C,−→w) =
N
∑

i=0

[−→w · (Pi − C)]
2

(5.17)

subject to |−→w | = 1

is sought for the least-squares solution,
−→∇Q =

−→
0 . By taking the gradient of

Q and equaling to zero, the following holds

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 68

N
∑

i=0

[−→w · (Pi − C)] = 0. (5.18)

Dividing it by N + 1 gives

−→w ·
[

1

N+1

N
∑

i=0

(Pi − C)

]

= 0. (5.19)

As the centroid P̄ of the point set is given by

P̄ =
1

N + 1

N
∑

i=0

Pi (5.20)

Eq. (5.19) reduces to

−→w · (P̄ − C) = 0. (5.21)

It is to say that the centroid of the point set lies on the plane. So the plane

center may taken as this point, C = P̄ . Thus, the only unknown that remains

is the plane unit normal vector.

Consider pi as the coordinate of point Pi with respect to the centroid P̄ ,

i.e.

pi = Pi − P̄ . (5.22)

The objective function may be rewritten as follows

Q(−→w) =
N
∑

i=0

(ŵ · pi)2 . (5.23)

To account for the constraint |−→w | = 1, one may define the function

G(−→w) = (−→w)2 − 1, and force it to be zero. In the least square solution by

the Method of Lagrange Multipliers, we have ∇Q = λ∇G, for a real number

λ, which is an eigenvector problem. It can be further reduced to a singular

value problem, as discussed in Shakarji (1998). The normal vector −→w is taken

as the singular vector that corresponds to the smallest singular value of the

3 × 3 matrix MTM , where M is the (N + 1) × 3 matrix of pi components

(xi, yi, zi) given by

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 69

M =













x0 y0 z0

x1 y1 z1
...

...
...

xN yN zN













(5.24)

The normal vector of P0 is, then taken as

n̂LSQR = −→w . (5.25)

where−→w is a unit vector. As noted in Shakarji (1998), the eigenvectors ofMTM

are also singular vectors ofM . So, instead of computing the matrixMTM , this

work finds −→w by taking the SVD – Singular Value Decomposition (Golub &

Van Loan, 1996)– of M and choosing the singular vector that corresponds to

the smallest singular value of M .

5.4

Curvature Computation

Curvature measures the rate of bending of curves or surfaces. In curves, the

curvature is defined by the rate of variation of the tangent vector
−→
t with

respect to the arc length s.

κcurve(s) =

∣

∣

∣

∣

∣

d
−→
t (s)

ds

∣

∣

∣

∣

∣

. (5.26)

Equation (5.26) shows that the curvature is uniquely defined at any point on

a curve. On surfaces, however, at a given position, there are infinite directions

where the tangent vector can point to. Any vector perpendicular to the normal

vector at a given position is tangent to the surface. Therefore, any point on a

surface can present infinite curvatures associated to it. Two of these directions,

however, indicate the maximum and minimum bending of the surface. These

are called the principal directions and the curvatures associated to them are

the principal curvatures, usually represented by κ1 and κ2 (Kreyszig, 1991).

The average between the principal curvatures is called the mean cur-

vature. It is often found in the literature represented by H and is given by

H =
κ1 + κ2

2
. (5.27)

Twice the value of H gives the value of the curvature κ, that is part of

the surface tension force term present in the conservation of momentum Eq.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 70

(3.18). Here it will be referred just by curvature and will be denoted by the

symbol κ. In terms of the principal curvatures, it is given by

κ = κ1 + κ2 (5.28)

5.5

Curvature Computation on a Point-Cloud

Many works can be found in the literature for curvature computations on a

point-cloud with or without prescribed normals.

Yang & Qian (2007) adjust a moving least-squares surface (Levin, 2003)

to the point cloud equipped with normals and, then, compute the curvatures

with closed formulas. This procedure is computationally expensive and depends

on a good estimate of a scale parameter, that gives rise to further complexity

and may depend on empirical experience.

There are authors who triangulate the points, with methods such as

Delaunay Triangulation (de Berg et al., 2008), and extract the curvatures from

the triangle meshes with methods such as the one proposed by Batagelo & Wu

(2007).

Seibert et al. (2010) define a finite number of planes containing the normal

vector of a point in the cloud. These planes sweep a 360◦ rotation around

this normal. For each plane, an osculating circle is fitted to the neighboring

points on the vicinity of this plane, giving rise to a value of curvature for

each direction. With these values of curvatures, κ1 and κ2 are computed. This

approach is considered computationally expensive once many fitting problems

must be solved for every point in the point cloud. Besides, it requires a high

density of points on the point cloud.

These works are mainly focused in Computer Graphics applications such

as image and scanned data processing. Besides curvatures, they aim at finding

accurate representations of the surfaces. The focus of this work, however, is

not on a good representation of the surface itself, but on a good representation

of its curvatures. Therefore, the method proposed by Cheng & Zhang (2009)

was the one chosen and gave feasible results. It basically fits linear functions

to represent the normal vector in the vicinity of a given point. From these

functions, the curvatures may be computed by analytic differentiation. The

authors argue that the minimization of the algebraic distance between the

points of the cloud and a surface – in a least squares sense – does not necessarily

result in the minimization of the error in the curvature estimates. According

to them, for the sake of curvature estimation, fitting functions to normal

vectors in local regions is more accurate and robust than fitting high order

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 71

surfaces to point positions. It makes sense, indeed, if one notices that curvatures

are second-order derivatives of the surface positions and measure directly the

variation of normals itself. The next section will discuss the method proposed

by Cheng & Zhang (2009) in more details.

5.6

Curvature Estimation by Normal Fitting

For every point E0 in the cloud, the curvature should be estimated based on its

neighboring points. A local system (û, v̂, ŵ) is defined, where ŵ is equal to the

normal vector at
−→
E 0, i.e. ŵ = n̂0. The vectors û and v̂ are such that û× v̂ = ŵ.

These vectors give the basis for a plane with the origin at point
−→
E0. It will be

called the local frame at point E0.

One could write functions to represent the normal vector of the surface

around point E0 in this local frame as functions of the parameters u and v.

The normal vectors n̂i of every point on the vicinity of E0 are projected onto

the local frame to give rise to its components nui and nvi, where nui = n̂i · û
and nvi = n̂i · v̂. Notice that the projection of n̂0 onto the local frame gives rise

to nu0 = 0 and nv0 = 0. Figure 5.9 illustrates the local frame around point E0

and the neighboring point Ei with normal vector n̂i projected onto the plane,

giving rise to the 2D vector (nui, nvi).

E0

n0

Ei

^

u
^

v
^

ni

^

(n ,n)ui vi

Figure 5.9: Local frame around interface point E0.

The surface normal vector components in the local frame of E0 may be

described by the following functions (Cheng & Zhang, 2009)

nu(u, v) = ν1 + w11 u+ w12 v + ϑ(u2 + v2) (5.29)

nv(u, v) = ν2 + w21 u+ w22 v + ϑ(u2 + v2) (5.30)

where w11, w12, w21 and w22 are the derivatives of the normal vector, (ν1, ν2) =

(nu0(0, 0), nv0(0, 0)) and ϑ denotes a higher order term. The high order terms

may be neglected resulting in linear functions.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 72

In order to obtain the parameters w11, w12, w21 and w22, one may

solve two independent unconstrained minimization problems (Cheng & Zhang,

2009). One minimization for the u component and another for the v, such as

min
∑N

i=0
(ν1 + w11 ui + w12 vi − nui)

2 and (5.31)

min
∑N

i=0
(ν2 + w21 ui + w22 vi − nvi)

2 (5.32)

where N is the total number of points in the vicinity of E0 and nui and nvi are

the coordinates of the projected normal vector n̂i onto the local frame. These

minimization problems give rise to the same 3×3 symmetric matrix, that needs
to be inverted. It was observed that the solution of these two minimization

problems gives good approximations to the curvature. Once the values of w11,

w12, w21 and w22 are obtained, the curvature may be computed by taking the

eigenvalues of the Weingarten curvature matrix W .

W = −
[

w11 w12

w21 w22

]

(5.33)

The curvatures k1 and k2, where k1 ≥ k2, are the eigenvalues ofW itself. Then,

the curvature κE0
at point E0 is computed by Eq.(5.28). AsW is a 2×2 matrix,

the eigenvalue problem can be solved by closed formula. The method employed

in this work to solve for the eigenvalues of this specific matrix is described in

details in Appendix A.2.

Once all interface sampling points are filled with curvatures and normals,

this information is projected onto the grid of cells, where the momentum

conservation Eq.(3.18) is solved.

5.7

Projection of Surface Traction onto the Finite Volumes Grid

As the curvatures are computed on each sampling point, they must be projected

onto the Finite Volumes cell centers in order to be accounted in the momentum

equation. The procedure employed in this work is similar to the one employed

in Front Tracking Method and described in Tryggvason et al. (2001). Consider

a general quantity φ to be projected from the point cloud to the fixed grid of

cells. The projection method is based on the fact that the quantity attributed

to the interface points must be conserved when projected onto the cells. So it

is to say that the integral of the quantity over the interface is the same as its

integral over the cell volumes. In a mathematical form, it can be written as

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 73

∫

∆s

φsds =

∫

∆∀

φvd∀ (5.34)

and applying for the present situation,

∫

∆s

σ κ n̂ ds =

∫

∆∀

σ κ δ(n)n̂ d∀ (5.35)

where ∆s is the interface surface domain; ∆∀ is the grid volumetric domain;
φs is the value of the quantity on the surface; φc is the value of the quantity

in the cell volumes.

The reader may notice that, so far, there was no concern about the

interface area. Indeed, in order to fulfill Eq.(5.34), the area of interface that

belongs to each point must be computed. The computational cost of area

computation for each point may be reduced if one takes advantage on the

volumetric grid topology. Notice that any sampling point lays on a grid edge.

Therefore, one may compute the area of interface enclosed by each cell. Figure

5.10 shows the interface enclosed by a cell and subdivided into four sub-areas.

Each sub-area is assigned to its adjacent sampling point, as highlighted.

Figure 5.10: The area of interface enclosed by a cell. Each of the four portions
are assigned to their respective points.

This area is computed as follows: Consider a cell with N sampling points

– already equipped with normal vectors. First, the centroid and the average

normal of the N points are computed. Then, the points are sorted around

the centroid in counter-clockwise sense for a viewer pointed by the normal,

similarly as already discussed in Fig.5.5. After sorting, a polygon arises and its

area is computed by simple triangulation around any corner. Notice that this

method for area computation requires the polygon to be convex. As the grid

cells are convex – it is our requirement – the polygons are also convex. This

area is, then subdivided equally in as many points as there are and each sub-

area is added to each point. Figure 5.11 depicts one sampling point surrounded

by four cells and the areas attributed to it.

At this stage, every sampling point i carries more information than just

its position. It is a local representation of the interface surface itself, so it can

be called a surface element. This concept is often used in Computer Graphics,

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 74

Pi

Figure 5.11: An interface point Pi and the area assigned to it as a contribution
from its four neighboring cells.

and is referred by surfel, as in Pfister et al. (2000). Figure 5.12 depicts the idea

of surfel in this work. It is a representation of the surface with the following

information:

1. position Pi,

2. normal vector n̂i,

3. curvature κi,

4. area Ai.

P

A

^

n
i

i

i

ki

Figure 5.12: A surface element, or surfel.

With these information, we are now capable of projecting the curvatures

onto the grid cells. This procedure is described in Tryggvason et al. (2001) and

is detailed here for both completeness and to expose slight differences.

First of all, the objective of this procedure is to obtain the interface

traction force per unit volume in each grid cell. We start by looking at this

force at the sampling points, that can be interpreted as the centers of elements

of surface with area Ai, normal vector n̂i and curvature κi. Therefore, for each

element of surface i (sampling point Pi), the interfacial traction force
−→
F s
σi
is

given by

−→
F s
σi
= σ κi Ai n̂i (5.36)

This force shall be spread through the adjacent cells in a way that satisfies

Eq.5.34.

For each interfacial point Pi, a characteristic length hi is determined as

hi = 2|ei| (5.37)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 75

where |ei| is the length of the edge where Pi lies in. Then, all neighboring cells

whose centroids Cj lie inside a regular 2hi × 2hi × 2hi cube centered at Pi are

selected. For 2D simulations, instead of a cube, a 2hi×2hi square is employed.

For each selected j cell, the distance vector −→rij from its centroid Cj to Pi is

computed as

−→rij = Cj − Pi. (5.38)

Then, based on −→rij, a weight wij is attributed to cell j.

wij = dijxdijydijz (5.39)

where dijk is a function of rijk and hi

dijk =







(hi − |rijk |)/hi , |rijk | < hi

0 , |rijk | ≥ hi

(5.40)

For 2D simulations, dijz = 1. Therefore, the contribution of volumetric force

provided by surfel Pi to cell j is given by

−→
f v
ij =

wij
∑

wij

σ κi
Ai

∀j
n̂i (5.41)

The total volumetric interfacial force
−→
fσj at cell j results from the sum

of all neighboring surfel contributions
−→
f v
ij. This term is explicitly used in the

momentum equation as a source term.

−→
fσj =

1

∀j

N
∑

i

wij
∑

wij

σ κi Ai n̂i (5.42)

where N is the total number of neighboring points. Of course, in the code

implementation, it is only needed to traverse the points in the vicinity of cell

j, i.e. points for which wij > 0.

interFoam requires the surface tension term to be provided at face

centers, so the cell-centered interfacial force field
−→
fσj is projected onto the

face centers by central-differencing interpolation and projected onto the face

normal Ŝf .

5.8

Curvature Computation Algorithm Overview

In summary, the proposed algorithm for curvature computation follows:

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 5. Interface Treatment 76

1. Compute the
−→∇α field at cell centers, based on the raw cell-centered α

field

2. Project α and
−→∇α fields from cell centers to mesh vertices

3. For each edge crossed by an interface, compute the parameter t on the

edge line where the interfacial point lies

(a) By linear interpolation Eq.(5.5), or

(b) By spline interpolation Eq.(5.7).

4. Compute the interfacial points, Eq.(5.4), and the first normal estimates,

Eq.(5.8), on the edges crossed by interface

5. Improve normal estimates by one of the methods:

(a) Fan triangulation (TFAN or TWEI) or

(b) Least-squares fitting of the neighboring points (LSQR)

6. Compute curvatures at the interfacial points by normal fitting (Section

5.6)

7. Compute surface area corresponding to each interfacial point

8. Project surface tension force from interfacial points to cells on the fixed

grid.

9. Interpolate surface tension force from cell centers to face centers and

project onto face normals.

Unless otherwise noticed, the default methods for normal computation

and point cloud sampling in PC-VOF are, respectively, least-squares planes

(Sec.5.3.2) and linear interpolation of α field (Sec.5.2.1).

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

6

Verification and Validation Tests

To demonstrate the performance of the methodology proposed at the present

work, a few simple and basic preliminary results are examined here. Initially,

the performance of the different point interpolation and normal computational

methods is evaluated in a test case comprising a circular interface immersed

in a fluid with constant prescribed velocity field. In particular, the curvature

computed by the different methods are analyzed. Then, the effect of solving the

velocity field coupled with the circular interface evaluation is discussed. The

classical problem of an oscillating bubble is examined and the predictions are

compared with the exact solution. Finally, the problem of an initially square

interface, that evolves to circular due to surface tension force, is studied.

6.1

Curvature Accuracy

The purpose of this section is to investigate the performance of the different

methods for point interpolation (Linear and Cubic Spline) and normal com-

putation (LSQR, TriFAN and TriWEI) presented in Chapter (5), with regard

to the accuracy on the curvature estimation of circular interfaces.

Figure 6.1 illustrates the domain considered and the initial interface

position. The domain size in the x − y directions is 1.5 × 1. The circle is

centered at (0.5, 0.5) and its radius measures r0 = 0.2. So the exact curvature

along the whole interface is kexact = 1/0.2 = 5.

1

1.5

0.5

x

y
V

0.4

0.5

Figure 6.1: Setup for the static and moving circular interface.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 78

Initially, the flow field was set equal to zero and the circle (α field)

initialization was performed in two steps: first, the method explained in Sec.4.3

was employed and a short relaxation simulation during 0.5 unit of time

(dimensionless) was performed with gravity turned off. All properties were

set to unity (ρ1 = ρ2 = µ1 = µ2 = σ = 1). Then, the circle was set to motion

in a uniform velocity field
−→
V = [U, 0, 0]T for a period of 0.5 of time, where

U = 1.

Different mesh resolutions were employed in order to observe its role on

curvature values. The mesh spacing h was set to 1/32, 1/64, 1/128 and 1/256.

The time-step was limited by (Popinet, 2009)

∆t ≤
√

ρ h3

π σ
(6.1)

The following quantities were obtained at t = 0, and at t = 0.5:

– average radius error

– average normal error

– average curvature

– curvature standard deviation

The average radius error is a measurement of the error in the point

sampling interpolation, that can either be linear or cubic. It was obtained

by

Errri =
|ri − r0|

r0
× 100 (6.2)

where i is the sampling point index, ri is the distance of the ith sampling point

to the circle center and r0 is the exact value of the radius, i.e. 0.2. And the

error in normal estimates is computed by

Errni = |n̂i − n̂i0| (6.3)

where n̂i is the unit normal computed at point i and n̂i0 is the expected unit

normal vector for the point. It is the normalized vector from the circle center

to the sampling point position. The circle center at each time step is given by

(0.5 + U t, 0.5).

The following results compare the six possible combinations of the

methods: two options for the point interpolation – Linear and Cubic Spline

– and three options for normal computation – LSQR, TriFAN and TriWEI.

Here, the last ones are referred as TRIF and TRIW, respectively.

Figure 6.2 shows the average error in the positions of the point cloud at

t = 0 (U = 0) and at t = 0.5 (U = 1). This error is measured by the error in

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 79

the distance to the circle center, i.e. the error of the radius. All methods were

able to determine the average radius with a very small error. Results for Linear

LSQR and Spline LSQR combinations show the best results for both instants

of time. Also, as expected, convergence with mesh refinement is observed for all

six combinations. Further, the average error obtained with zero and non-zero

prescribed velocity is practically the same for all cases.

32 64 128 256
0

0.002

0.004

0.006

0.008

0.010

1/h

a
v

g
. r

a
d

iu
s

E
rr

. [
%

]

Linear TRIW

Spline TRIW

Linear TRIF

Spline TRIF

Linear LSQR

Spline LSQR

6.2(a): t = 0 (U = 0)

32 64 128 256
0

0.002

0.004

0.006

0.008

0.010

1/h

a
v

g
. r

a
d

iu
s

E
rr

. [
%

]

6.2(b): t = 0.5 (U = 1)

Figure 6.2: Average radius deviation.

Average normal deviation by Linear LSQR and Spline LSQR also provide

best results, as depicted in Fig. 6.3. Here, a slight deterioration on the

normal estimation is noticed with the non-zero velocity field after the interface

advection. It is due to small perturbations in the point cloud positions after

the advection, that is performed by the original interFoam code (MULES

algorithm). It is also perceivable that, after the interface advection, the

difference in normal errors between LSQR and the the triangulation methods

increases. It indicates that LSQR method is less sensible to perturbations on

the positions of the point cloud.

32 64 128 256
0

0.01

0.02

0.03

0.04

0.05

1/h

a
v

g
. n

o
rm

a
l d

e
v

ia
ti

o
n

Linear TRIW

Spline TRIW

Linear TRIF

Spline TRIF

Linear LSQR

Spline LSQR

6.3(a): t = 0 (U = 0)

32 64 128 256
0

0.01

0.02

0.03

0.04

0.05

1/h

a
v

g
. n

o
rm

a
l d

e
v

ia
ti

o
n

6.3(b): t = 0.5 (U = 1)

Figure 6.3: Average unit normal deviation.

Average curvature is presented in Fig.6.4, where the triangulation meth-

ods shows slightly better results than LSQR, however, as it will be shown next,

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 80

the standard deviation of curvature for LSQR is significantly smaller than the

other methods.

32 64 128 256
4.6

4.7

4.8

4.9

5

1/h

a
v

g
. c

u
rv

a
tu

re

exact

Linear TRIW

Spline TRIW

Linear TRIF

Spline TRIF

Linear LSQR

Spline LSQR

6.4(a): t = 0 (U = 0)

32 64 128 256
4.6

4.7

4.8

4.9

5.0

1/h

a
v

g
. c

u
rv

a
tu

re

6.4(b): t = 0.5 (U = 1)

Figure 6.4: Average curvature.

Figure 6.5 displays the standard deviation in curvature estimates for

the six methods. As it can be seen, LSQR combinations results in the lowest

standard deviations. In practice, what occurs is that this method is more stable

than the others. Since the triangulation methods rely only on a small number of

neighboring points, they are more sensible to errors in the points estimations.

On the other hand, LSQR takes the normal in a least squares sense, what

32 64 128 256
0.2

0.4

0.6

0.8

1.0

1/h

st
d

. c
u

rv
a

tu
re

Linear TRIW

Spline TRIW

Linear TRIF

Spline TRIF

Linear LSQR

Spline LSQR

6.5(a): t = 0 (U = 0)

32 64 128 256
0

1

2

3

4

5

1/h

s
td

.
c

u
rv

a
tu

re

6.5(b): t = 0.5 (U = 1)

Figure 6.5: Curvature standard deviation.

dampens out the errors in position estimates. By looking at these results and

by practical experience, LSQR method was chosen as the default method for

normal estimates in this work. Depending on the situation, the triangulation

methods can provide a locally much higher or much lower values of curvatures,

what can cause local perturbations on the interface. In an extreme level, it

may cause unphysical interface breakup events.

Between linear and cubic spline interpolation, one may notice that

for LSQR normal computation, there is no improvement in using spline

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 81

interpolation. Besides, for TriFAN and TriWEI, spline interpolation results

in higher standard deviations (for both cases, zero or non-zero velocity field).

Also, it results in worse curvature estimates in coarse meshes. Since the spline

interpolation needs the gradient of α, these results allow us to say that the

gradient of volume fraction
−→∇α does not enrich the α interpolation. So, it

can be also stated that
−→∇α will not precisely determine the normal. This

conclusion is also supported by the literature, that shows that
−→∇α provides

inaccurate normal estimates, as discussed in Chapter 2. Therefore, the default

method chosen for point interpolation is the linear method. Anywhere in this

work, where PC-VOF is mentioned, the method adopted for point and normal

estimations are respectively, linear interpolation and least squares fitting,

unless otherwise specified.

6.2

Circle Moving in an Initially Prescribed Velocity Field

Popinet (2009) describes a validation test case for a circular interface immersed

in a initially prescribed velocity field in order to evaluate the coupling between

advection, solution of the momentum equation and curvature computation.

Therefore, the Navier-Stokes equations are solved and the α field is advected.

With this test it is possible to observe the influence of advection in the

perturbation of the interface and also in the accuracy of curvature computation.

Here, the problem configuration was defined exactly as employed by

Popinet (2009) to allow for comparison between the methodologies. The same

domain as illustrated in Fig. (6.1) is employed. The circle also has the same

diameter, i.e. D = 0.4. As in the previous example, both phases consist of the

same fluid properties: ρ = ρ1 = ρ2 and µ = µ1 = µ2. An initial velocity field is

set to
−→
V = [U, 0, 0]T , with U = 1. Boundary conditions on the left and right

patches are set to cyclic and on top and bottom patches set to zero gradients

for pressure, velocity and α.

This problem is governed by three parameters, Reynolds (Re), Weber

(We) and Laplace (La) numbers, defined as

Re =
ρ UD

µ2
; We =

ρ U2D

σ
; La =

σ ρ D

µ2
. (6.4)

Popinet (2009) presents results for simulations performed for

various Laplace La numbers, where the values were set to La =

120, 1200, 12000 and ∞. The We number was kept constant and equal to

We = 0.4. Further, the density of both phases were set equal to ρ = 1, and

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 82

the surface tension was σ = 1. Thus, the fluids viscosity µ were determined

from the Laplace number.

To evaluate the performance of the point cloud method, the spurious ve-

locities obtained with the present methodology (denominated here as PC-VOF

(LSQR) and PC-VOF (TriFAN)) are compared with the results obtained with

interFoam, as well as those presented by Popinet (2009). PC-VOF (LSQR)

refers to PC-VOF method with normals computed by least-squares-planes and

PC-VOF (TriFAN) refers to normals computed by fan triangulation. Popinet

(2009) presented a method combining an adaptive quad/octree spatial discreti-

sation, geometrical Volume-Of-Fluid interface representation, balanced-force

CSF with height-function curvature estimation.

The spurious velocities are estimated through the RMS velocity VRMS,

given by

VRMS =

√

1
∫

Ω
dV

∫

Ω

−→
V ′ ·

−→
V ′dV (6.5)

where
−→
V ′ is the fluctuation

−→
V ′ =

−→
V − 〈−→V 〉 ; 〈−→V 〉 = 1

∫

Ω
dV

∫

Ω

−→
V dV (6.6)

and 〈−→V 〉 is the mean velocity.
Also, the error in the average curvature avg(〈κ〉) are presented for the

various Laplace numbers and four different mesh refinements. The domain is

refined in regular 1.5n× n meshes, where n = 32, 64, 128 and 256. The time

step is limited according to Eq.(6.1)

Figures 6.6 shows values of VRMS for simulations performed by inter-

Foam, PC-VOF (TFAN) and PC-VOF (LSQR) for the various Laplace num-

bers. Results from Popinet (2009) are also added for the respective Laplace

number. The abscissae show a dimensionless time t/TU , where TU = D/U .

The ordinate scale was kept the same to facilitate comparison. It can be

clearly seen that the spurious currents resulting from PC-VOF (TFAN) and

PC-VOF (LSQR) are equivalent and smaller than the ones obtained with in-

terFoam. Further, it can also be observed that for all cases obtained here with

OpenFOAMr, smaller spurious currents are obtained as the mesh is refined.

The results from Popinet (2009) show the smallest spurious currents. The au-

thor mentions that the initial mesh resolution of 64x64 was used. However, it

is unclear which level of adaptive mesh refinement has been used, such that

comparisons with present results should be made with care.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 83

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

1/h=32

1/h=64

1/h=128

1/h=256

PopinetV
R

M
S

U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

1/h=32

1/h=64

1/h=128

1/h=256

Popinet

V
R
M

S
U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

1/h=32

1/h=64

1/h=128

1/h=256

Popinet

V
R

M
S

U

t/TU

6.6(a): La = 120: interFoam, PC-VOF (TFAN) and PC-VOF (LSQR)

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

6.6(b): La = 1200: interFoam, PC-VOF (TFAN) and PC-VOF (LSQR)

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

6.6(c): La = 12000: interFoam, PC-VOF (TFAN) and PC-VOF (LSQR)

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

V
R

M
S

U

t/TU

6.6(d): La =∞: interFoam, PC-VOF (TFAN) and PC-VOF (LSQR)

Figure 6.6: VRMS values for simulations performed with interFoam.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 84

The decays of VRMS with mesh refinement at the last time step are plotted

at Figure 6.7 for the different Laplace numbers (La = 120, 1200, 12000 and

∞). It can be observed that interFoam consistently increases the RMS velocity

with mesh refinement, resulting in an undesired behavior. Between PC-VOF

TFAN and LSQR, LSQR presents better results for all Laplace numbers. For

La = 1200, it slightly increases its RMS velocity for the finest mesh, however

it is still better than TFAN, which presents slight divergence.

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

interFoam

PC−VOF (LSQR)

PC−VOF (TFAN)

V
R

M
S
/
U

1/h

La=120

6.7(a): La = 120

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

V
R

M
S
/
U

1/h

La=1200

6.7(b): La = 1200

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

V
R

M
S
/
U

1/h

La=12000

6.7(c): La = 12000

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

V
R

M
S
/
U

1/h

La=∞

6.7(d): La =∞

Figure 6.7: VRMS mesh convergence for interFoam and PC-VOF with normals
computed by TFAN and LSQR.

Figure 6.8 shows the average curvature avg(〈κ〉) and its standard devi-
ation stdev(〈κ〉) obtained with interFoam, PC-VOF (TFAN) and PC-VOF

(LSQR), for La = 120, 1200, 12000 and ∞. At each graph of avg(〈κ〉), the
exact curvature is also plotted.

The three methods present similar behavior for the average curvature

as the Laplace number increases. Average curvature in interFoam presents

divergence with mesh resolution compared to both PC-VOF results. PC-VOF

(TFAN) shows a best estimation of avg(〈κ〉). Besides not converging on

the average curvature, interFoam also presents a more preeminent standard

deviation compared to PC-VOF results. Between both PC-VOF alternatives,

LSQR is the one that results in less spreading of the average curvature, what

is desirable in a sense that makes it more stable than TFAN.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 85

0 50 100 150 200 250 300
4

4.5

5

5.5

6

k
a

v
g

 (

)

<

>

1/h

La=120

interFoam

exact

PC−VOF (LSQR)

PC−VOF (TFAN)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

interFoam

PC−VOF (LSQR)

PC−VOF (TFAN)

k
st

d
e

v
 (

)

<

 >

1/h

La=120

6.8(a): La = 120

0 50 100 150 200 250 300
4

4.5

5

5.5

6

k
a

v
g

 (

)

<

>

1/h

La=1200

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

k
st

d
e

v
 (

)

<

 >

1/h

La=1200

6.8(b): La = 1200

0 50 100 150 200 250 300
4

4.5

5

5.5

6

k
a

v
g

 (

)

<

>

1/h

La=12000

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

k
st

d
e

v
 (

)

<

 >

1/h

La=12000

6.8(c): La = 12000

0 50 100 150 200 250 300
4

4.5

5

5.5

6

k
a

v
g

 (

)

<

>

1/h

La=∞

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

k
st

d
e

v
 (

)

<

 >

1/h

La=∞

6.8(d): La =∞

Figure 6.8: Mesh convergence regarding average curvature avg(〈κ〉) and its
standard deviation stdev(〈κ〉) with interFoam and PC-VOF with normals
computed by TFAN and LSQR.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 86

6.3

Oscillating Drop

Rayleigh (1879) derived a linear theory for cylindrical jets oscillating in the

plane perpendicular to its axis. When the amplitude is small enough compared

to its radius, the linear theory is valid and the frequency of oscillation ωn, in

rad/s is given by

ωn =

√

σ(n3
ω − nω)

ρ r30
(6.7)

where σ is the surface tension, ρ is the jet fluid density, r0 is the jet undisturbed

radius and nω corresponds to the mode of oscillation.

The shape of the cross-section of the jet in polar coordinates is given by

r(θ) = r0 + rǫ cos (nωθ) (6.8)

where rǫ is the perturbation amplitude, that should be a small quantity in

comparison with r0. Rayleigh (1879) observed that for large values of rǫ,

the results expected from the linear theory diverged from experimental data,

due to non-linear effects. Considering the jet axis direction z coordinate is

much greater than r0, one can approach this problem to 2D, on the plane

perpendicular to the jet axis. This reduces the 3D jet oscillation to a 2D drop

oscillation problem.

Fyfe et al. (1988) presents the linear theory taking into account the effects

of an external fluid. The frequency, then, becomes

ωn =

√

σ(n3
ω − nω)

(ρd + ρe)r30
(6.9)

where ρd is the density of the drop fluid and ρe is the density of the external

fluid. This problem was also studied by Fuster et al. (2009) and by de Melo

(1995) in his MSc. thesis. Here the setup described in de Melo (1995) will be

followed. It consists of a 2D kerosene drop immersed in air oscillating in nω = 2

oscillation mode. The problem properties follow:

– drop density ρd = 820 kg/m3,

– air density ρe = 1.3 kg/m3,

– interface tension σ = 0.03 N/m,

– non viscous flow, i.e. µd = µe = 0 Pa.s

– undisturbed drop radius r0 = 0.0125 cm.

The oscillation period τ is given by

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 87

τ =
2π

ωn

(6.10)

Considering the problem parameters above, the oscillation period value is

τ = 0.593ms. As the oscillation mode is nω = 2, the drop oscillates in ellipsoidal

shapes.

The drop is initialized as in de Melo (1995) as an ellipse such that the

ratio between its major and minor axes is equal to 1.4 and its area A is equal

to its undeformed area, i.e. the area of the circle with radius r0. It gives

a

b
=
(r0 + rǫ)

(r0 − rǫ)
= 1.4 and A = π(r0 + rǫ)(r0 − rǫ) = πr20

where a and b are respectively the horizontal and vertical drop diameters. The

domain consists of a square of side equal to 0.2cm. Figure 6.9 displays the

initial drop shape.

r0r0 rε-

r0 rε+
b

a

Figure 6.9: Initial drop shape.

Velocity and pressure boundary conditions at the four boundary patches

were set to zero gradient.

The simulation time step ∆t was limited by a stability condition taking

into account the capillary spurious velocities, as discussed in Deshpande et al.

(2012). The time step is, thus, limited by

∆t ≤ τσ =
1

2

[

C2τµ +
√

(C2τµ)2 + 4C1τ 2ρ

]

(6.11)

where C1 and C2, as discussed in Deshpande et al. (2012), are adjusted in

order to control spurious currents growth in interFoam. They are adjusted to

C1 = 0.01 and C2 = 10. The time scales τρ and τµ are given by

τρ =

√

ρ h3

σ
; τµ =

µ h

σ
(6.12)

where h is the mesh spacing and ρ was taken as the drop density. As this flow

is inviscid, τµ = 0 and τσ reduces to τσ =
√
C1τρ = τρ/10.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 88

Time evolution of drop diameters aspect ratio a/b obtained by the

different solvers is compared with the exact solution in Fig. 6.10 for the

finest grid refinement (1/h = 256). Predictions obtained by interFoam are

compared with the solution obtained by three PC-VOF methods. Although it

has been shown in section (6.1) that the Least Square approach is better than

the triangulation ones, one more test was performed to confirm it. Here the

normals were computed by LSQR, TriFAN and TriWEI and the points were

computed by linear interpolation.

Figure 6.11 illustrates the effect of mesh resolution on the time evo-

lution of the ratio a/b. One may observe, once again, superior results for

PC-VOF with normal computations by least-squares planes. Both the am-

plitude and period of oscillation converge with mesh refinement. Simulations

with PC-VOF (TFAN) show convergence for oscillation period, however the

amplitude increases resulting in unfeasible results. Simulations with PC-VOF

(TWEI) shows increasing amplitudes, also resulting in unfeasible results. Sim-

ulations with standard interFoam seem to improve amplitude with mesh re-

finement, but the oscillation period converges to a wrong value, greater than

the exact solution.

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

1.2

1.4

1.6

time [ms]

a/b

exact interFoam TriFAN TriWEI LSQR

Figure 6.10: Drop diameter aspect ratio for simulations performed by inter-

Foam and PC-VOF with normals computed by TFAN, TWEI and LSQR for
the finest grid resolution.

Results for both triangulation methods become unfeasible once their

amplitudes keep increasing at each oscillation period. This is due to oscillation

in local curvatures computed by these methods, that arise due to noise in the

sampling points positions. Once the advection of α field is performed, noise

in the sampling points can also increase, resulting in unfeasible curvatures

in both TRIFAN and TRIWEI triangulation methods. LSQR method is less

sensible to the point cloud noise once it makes a sort of averaging among many

neighboring points. Besides the smoothing resulted from the LSQR method,

the surface tension forces computed at the sampling points are also smoothed

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 89

during the procedure of projection from the point cloud to the Eulerian grid,

described in Section 5.7. In this way, the method combination chosen to be the

default in PC-VOF is linear computation of sampling points and least-squares

computation of normals. That is, unless otherwise noticed, PC-VOF stands for

PC-VOF (Linear LSQR).

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

1.2

1.4

1.6

time [ms]

a/b

interFoam

exact n=32 n=64 n=128 n=256

6.11(a): interFoam

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

1.2

1.4

1.6

time [ms]

a/b

PC−VOF(TriFAN)

exact n=32 n=64 n=128 n=256

6.11(b): PC-VOF (TFAN)

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

1.2

1.4

1.6

time [ms]

a/b

PC−VOF(TriWEI)

 exact n=32 n=64 n=128 n=256

6.11(c): PC-VOF (TWEI)

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

1.2

1.4

1.6

time [ms]

a/b

PC−VOF(LSQR)

exact n=32 n=64 n=128 n=256

6.11(d): PC-VOF (LSQR)

Figure 6.11: Drop diameter aspect ratio for simulations performed by inter-

Foam and PC-VOF with normals computed by TFAN, TWEI and LSQR.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 90

6.4

Execution Time

In order to compare PC-VOF execution time against interFoam, the oscillating

drop case presented in Section 6.3 was employed. This section provides a

comparison between execution time with interFoam and with PC-VOF with

point sampling by linear interpolation and normal computation by least-

squares plane fitting (LSQR). Simulations were performed in serial processing

in Ubuntu 14.04.4 LTS with CPU IntelrCoreTM i7-5960X @ 3.00GHz. Four

mesh refinements were employed, the same presented in Sec. 6.3, i.e. 1/h =

32, 64, 128 and 256. The time step was fixed in ∆t = 10−7s for all mesh

refinements and the simulations were carried out until the final time tf = 10−3s.

Figure 6.12(a) displays the total time taken by interFoam and PC-VOF

to perform the simulations for each mesh refinement in hours and Fig.6.12(b)

displays the time taken by PC-VOF divided by the time taken by interFoam.

32 64 128 256
0

0.5

1

1.5

2

2.5

mesh

e
la

p
se

d
 t

im
e

 [
h

r]

interFoam

PC−VOF

6.12(a): Elapsed time.

32 64 128 256
0

0.5

1

1.5

2

mesh

timePCVOF time interFoam

6.12(b): Time fraction.

Figure 6.12: Execution time.

Time ratio results in Fig.6.12(b) show that PC-VOF takes an average of

65% more time than standard interFoam for this problem.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 91

6.5

Square Interface

This section studies a square interface that, due to the interfacial surface force,

has its shape evolved to a circle. The environmental fluid is fluid 1 and the

fluid inside the square is fluid 2. Densities and viscosities were set to unity

(ρ1 = ρ2 = µ1 = µ2 = 1) and gravity set to zero (−→g = [0, 0, 0]T). The surface

tension coefficient was tested for four values, σ = 100, 10, 1 and 0.1. The

domain size is 10× 10 and the interface is initialized as a square of size equal

to 4, as depicted in Fig.6.13.

5

5

10

10 4

x

y

Ω1

Ω2

4

Figure 6.13: Square initial configuration.

The simulation was run until steady state was achieved. Figure 6.14

displays the initial and final interface shapes for PC-VOF (Linear LSQR) and

interFoam with regular and irregular (triangular) meshes, for σ = 10. The

employed regular mesh was 80 × 80 and the irregular/unstructured one was

equivalent in the number of cells (triangular cells), i.e. with approximately 1600

triangles. Time step was limited by a maximum Courant number Comax = 0.1.

Boundary conditions for the volume fraction, velocity and pressure were set to

zero gradient on all boundary patches.

2 4 6 8

x

t=20

2 4 6 8
2

3

4

5

6

7

8

x

y t=0

PC−VOF reg. 1/h=80

interFoam reg.1/h=80

PC−VOF unstr.1/h=80

interFoam unstr.1/h=80

Figure 6.14: Square initial and final shapes for σ = 10.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 92

It can be observed that in unstructured mesh interFoam produces an

interface that deviates from a circle. It can be perceived visually. In constrast,

PC-VOF tends to a circular interface for both structured and unstructured

meshes.

Figure 6.15 shows the evolution of circularity for various values of the

surface tension coefficient. It is defined as the ratio between the perimeter of

the area-equivalent circle and the perimeter of the interface. For a perfectly

circular interface, the circularity is equal to unity.

0 20 40 60 80
0.9

0.92

0.94

0.96

0.98

1

1.02

t

ci
rc

u
la

ri
ty

PC−VOF

interFoam

PC−VOF unstr

interFoam unstr

6.15(a): σ = 0.1

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

1.02

t

ci
rc

u
la

ri
ty

6.15(b): σ = 1

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

1.02

t

ci
rc

u
la

ri
ty

6.15(c): σ = 10

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

1

1.02

t

ci
rc

u
la

ri
ty

6.15(d): σ = 100

Figure 6.15: Circularity evolution for different values of surface tension coeffi-
cient σ.

For σ = 0.1, it is necessary a longer simulation time to achieve steady

state. Besides, for the unstructured mesh, the interface derived away from the

domain during the simulation. Therefore, the circularities are displayed only up

to this point for unstructured meshes. It can be observed that both PC-VOF

and interFoam recover the unit circularity for regular mesh. In unstructured

mesh, PC-VOF remains closer to unity than interFoam.

For σ = 100, Fig.6.16 presents the evolution of the interface shape

for each situation for t = 0, 1, 5, 10 and 15. It can be observed that for

regular mesh, both PC-VOF and interFoam were able to obtain a circle as

a converged solution. The final shape for interFoam in unstructured mesh

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 6. Verification and Validation Tests 93

3 5 7

3

5

7

x

y

t=0

interFoam1/h=80

3 5 7

x

t=1

3 5 7

x

t=5

3 5 7

x

t=10

3 5 7

x

t=15

6.16(a): interFoam reg.

3 5 7

3

5

7

x

y

t=0

PC−VOF1/h=80

3 5 7

x

t=1

3 5 7

x

t=5

3 5 7

x

t=10

3 5 7

x

t=15

6.16(b): PC-VOF reg.

3 5 7

3

5

7

x

y

t=0

interFoam unstr1/h=80

3 5 7

x

t=1

3 5 7

x

t=5

3 5 7

x

t=10

3 5 7

x

t=15

6.16(c): interFoam unstr.

3 5 7

3

5

7

x

y

t=0

PC−VOF unstr1/h=80

3 5 7

x

t=1

3 5 7

x

t=5

3 5 7

x

t=10

3 5 7

x

t=15

6.16(d): PC-VOF unstr.

Figure 6.16: Shape evolution of square for σ = 100.

deviates from a circle, while a nice circle was obtained with PC-VOF. These

results demonstrate that the new interface treatment improves the curvature

accuracy, and handles unstructured meshes without problems.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

7

Bubble in a liquid column

Hysing et al. (2009) proposed two configuration cases of a single rising two

dimensional bubble for quantitative validation of incompressible multiphase

flow solvers. Reference results generated by three different codes were provided

for comparison. Adelsberger et al. (2014) later extended the benchmark to

three dimensional cases and provided results also for three different solvers,

including a previous version of interFoam. Section 7.1 presents a comparison

of interFoam and PC-VOF against the two dimensional benchmark data and

Section 7.3 deals with the three dimensional configuration.

7.1

Two-Dimensional Bubble in a Liquid Column

Hysing et al. (2009) proposed a benchmark configuration for a two-dimensional

bubble rising in a liquid column. Codes by three independent research groups

were tested in two different test cases. The first one involved slight bubble

deformations, and all codes presented good agreement with each other. In the

second test case, a higher density ratio was chosen and the different codes

agreed well up to the point of breakup, so that reference values could be

established up to this point.

Klostermann et al. (2013) employed this benchmark configuration to

evaluate the standard interFoam solver implemented in OpenFOAMr version

1.5.1 through version 2.1.0. This section is devoted to employ the very same

benchmark cases to evaluate interFoam in its version 2.3.0 and PC-VOF,

developed on top of it. The methods for normal computation and point cloud

sampling in PC-VOF are, respectively, least-squares planes (Sec.5.3.2) and

linear interpolation of α field (Sec.5.2.1). These are taken as the default

methods in PC-VOF in this work. Some of the results presented in this section

were also presented in Kassar et al. (2016).

The initial configuration is depicted in Fig. 7.1. The liquid column is

considered as fluid 1 and fluid 2 is the bubble. The dimensions may be taken

as in meters and all other quantities are also in the SI – International System

of Units. Regarding the boundary conditions, the left and right patches are

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 95

assigned with slip conditions and the bottom and top walls are assigned with

zero velocity.

0.5

0.5

1

2

0.25

x

y

Ω1

Ω2

Figure 7.1: Bubble initial configuration.

The dimensionless numbers that govern the problem are: Reynolds num-

berRe, Eötvös number (Eo), capillary number (Ca) andWeber number (We).

The liquid, fluid 1, is the reference fluid, and it is identified by the subscript

1, while subscript 2 refers to the bubble.

The Reynolds number is the ratio of inertial to viscous forces and is

defined by

Re =
ρ1Vt d

µ1

(7.1)

where d is the bubble diameter and Vt =
√
g d is its terminal rising velocity,

ρ1 and µ1 are the density and viscosity of fluid 1.

The Eötvös number quantifies the ratio between body forces and surface

tension forces and is given by

Eo =
∆ρ g d2

σ
=
(ρ1 − ρ2) g d2

σ
(7.2)

where σ is the interface tension coefficient and g is gravity magnitude (towards

negative y). The Weber number We corresponds to the ratio of inertial forces

to surface tension effects, while the capillary numberCa gives the ratio between

viscous forces and surface tension effects, and are given by

We =
ρ1V

2
t d

σ
(7.3)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 96

Ca =
µ1Vt

σ
=

We

Re
(7.4)

Two test cases were proposed by Hysing et al. (2009), denoted by TC1

and TC2. In TC1, the surface tension plays an important role on the flow and

in TC2, the buoyancy is the dominant force. Values of fluid properties are given

in the Table 7.1. In the same table, the dimensionless numbers that govern the

problem are included.

Case ρ1 ρ2 µ1 µ2 σ g Vt Re Eo Ca We
TC1 1000 100 10 1.0 24.50 0.98 0.7 35 9 0.286 10
TC2 1000 1 10 0.1 1.96 0.98 0.7 35 124.9 3.571 125

Table 7.1: Test cases parameters.

By observing the values in Table 7.1, one may notice that TC1 is a case

in which surface tension plays a significant role, while TC2 is more influenced

by gravitational and inertial forces.

Such as proposed by Hysing et al. (2009), some quantities were monitored

in order to perform quantitative comparison with benchmark data. Namely:

circularity C, center of mass position −→xc and mean rise velocity
−→
Vc .

Circularity C, Eq.(7.5), is given by the ratio between the perimeter of

the area-equivalent circle with radius rb0 and the perimeter of the bubble Pb.

It gives somehow a measurement for the bubble shape, enabling quantitative

comparison. For a perfectly circular bubble, the circularity is equal to unity

and decreases as the bubble is deformed. It is given by

C =
2 π rb0
Pb

(7.5)

The center of mass −→xc is given by

−→xc =

∫

Ω2

−→x d ∀
∫

Ω2
d ∀ (7.6)

where Ω2 denotes the region that the bubble occupies. It is identified by cells

for which α ≥ 0.5

The mean rise velocity is given by

−→
Vc =

∫

Ω2

−→
V d∀

∫

Ω2
d∀ . (7.7)

Four grid refinements 1/h with regular quadrangular meshes are used:

1/h = 40, 80, 160 and 320, where h is the grid spacing in x and y directions,

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 97

i.e. h = ∆x = ∆y. Besides, for each quad mesh, a triangular mesh was also

tested with equivalent number of cells. The triangular meshes are actually

composed by triangular prisms, i.e. triangles extruded in the z direction (as

in OpenFOAMr 2D domains are a special case of 3D) and were generated by

GMSH (Geuzaine & Remacle, 2009). And example of the quad. and tri. grids

for 1/h = 20 is presented in Fig.7.2.

7.2(a): Quads 7.2(b): Triangles

Figure 7.2: Quadrangular mesh and equivalent triangular for 1/h = 20.

Before the simulation of the rising bubble takes place, an initialization

simulation is performed with gravity set to zero. This simulation results in

pressure, α and velocity fields under static equilibrium. Besides, it provides

results of spurious currents and pressure jump value across the interface. These

values were obtained, checked against theoretical results and are presented in

the following discussion.

7.1.1

Zero Gravity Condition

The volume fraction field α is first initialized to meet the configuration of

Fig.7.1. The method of field initialization presented in Sec.4.3 was employed.

For this situation, the value of gravity acceleration is set to [0 0 0]T .

The pressure jump across the interface is given by the Laplace-Young

equation

∆p = σκ (7.8)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 98

In the case of a 2D circular bubble, the curvature is given by 1/r0, where r0 is

the bubble radius. So the pressure jump is given by ∆p = σ/r0.

Test Case 1

In TC1, the theoretical pressure jump is given by ∆p = 24.5/0.25 = 98Pa.

The simulation time was set equal to 3 s, as in Klostermann et al. (2013). It

is enough time to reach steady condition in pressure jump and in spurious

currents. Here, the pressure jump ∆p for the circular bubble is computed

numerically as

∆p = 〈p2〉 − 〈p1〉 (7.9)

were 〈p1〉 and 〈p2〉 are respectively the average pressure in the continuous phase
(fluid 1) and the average pressure inside the bubble (fluid 2).

〈p1〉 =
∫

Ω̂1
p d∀

∫

Ω̂1
d∀ , 〈p2〉 =

∫

Ω̂2
p d∀

∫

Ω̂2
d∀ . (7.10)

where Ω̂1 is considered to be region for which α < 0.01 and Ω̂2 is identified by

cells for which α ≥ 0.99. This is done to avoid integrating over interface cells

region.

Figure 7.3 displays the evolution of ∆p with simulation time, respectively,

for interFoam and PC-VOF with regular quadrangular meshes. Mesh indepen-

dent results are obtained for both solvers. One may notice that superior results

are reached with PC-VOF. The pressure jump with PC-VOF converges to a

value much closer to the expected value according to Young-Laplace Eq.(7.8)

than interFoam.

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a
]

Theoretical P=98 Pa

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.3(a): interFoam

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a
]

7.3(b): PC-VOF

Figure 7.3: Pressure jump in TC1 for regular quads meshes.

Figure 7.4 presents the evolution of ∆p with time respectively for inter-

Foam and PC-VOF with triangular meshes. It can be seen that for triangular

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 99

meshes, the results with PC-VOF present oscillations, but these values con-

verge to a slightly more accurate pressure jump than interFoam predicted even

in regular quads meshes. Simulations performed with interFoam in triangular

meshes present oscillations that increase with mesh refinement. Note also that

with triangular meshes, the interFoam simulated bubble lost its circular shape

in these simulations.

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a
]

Theoretical P=98 Pa

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.4(a): interFoam

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a
]

7.4(b): PC-VOF

Figure 7.4: Pressure jump in TC1 for triangular meshes.

Convergence with mesh refinement for ∆p values at the final simulation

time t = 3 s is presented in Fig.7.5 for the four situations: interFoam and

PC-VOF in quadrangular and triangular meshes.

40 80 160 320
50

60

70

80

90

100

1/h

∆
p

[P
a
]

Theory = 98Pa

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.5: Pressure jump convergence in TC1.

Notice that PC-VOF converges in both quadrangular and triangular

meshes, while interFoam only converges in quadrangular meshes. Besides,

PC-VOF in triangular meshes converges to a value slightly closer to the

theoretical result than interFoam in quads meshes.

Concerning spurious currents (Vmax), Fig.7.6 displays its evolution with

simulation time for, respectively, interFoam and PC-VOF with quads meshes.

The ordinate scales were kept the same to facilitate comparison. The reader

may observe considerable reduction in the spurious currents with PC-VOF

method. It can also be noted that, as the mesh is refined, interFoam reaches

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 100

a constant value of the maximum spurious velocity, while, with PC-VOF, a

reduction of its value is still being obtained.

Figure 7.7 displays the evolution of spurious currents for triangular

meshes. Notice that ordinate scales in (a) and (b) figures do not match due to

differences in order of magnitude. However, the scale in Fig.7.7(b) is the same

as in Fig.7.6.

On the one hand, spurious currents with interFoam in triangular grids

do not show convergence with grid refinement. On the other hand, in PC-VOF

with triangular grids, oscillations are found, specially for the finest grids, but

the values lie in range comparable to the situations with quads grids and better

convergence is presented.

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.6(a): interFoam

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

7.6(b): PC-VOF

Figure 7.6: Spurious currents in TC1 for quadrangular meshes.

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.7(a): interFoam

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

7.7(b): PC-VOF

Figure 7.7: Spurious currents in TC1 for triangular meshes.

Figure 7.8 depicts the mesh convergence in spurious currents for the

four situations. The reader should notice that PC-VOF method presents a

convergence that decreases monotonically for the tested quads meshes while

interFoam diverges for triangular meshes.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 101

40 80 160 320
10

−3

10
−2

10
−1

10
0

1/h
V

m
a
x

[m
/
s]

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.8: Spurious currents convergence with mesh resolution in TC1.

The shapes of the pressure fields at the last instant of simulation (t = 3 s)

are presented for each case for the finest mesh, i.e. 1/h = 320. Figures 7.9 and

7.10 show, respectively, an isometric view and a lateral view of the pressure

fields. One may notice that interFoam presents ripples on the pressure across

the interface. For triangular mesh, the ripples grow to a higher degree. On

the other hand, PC-VOF presents reduced ripples in the triangular mesh and

neglected ripples in quads mesh.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 102

7.9(a): interFoam quad.mesh 7.9(b): PC-VOF quad.mesh

7.9(c): interFoam tri.mesh 7.9(d): PC-VOF tri.mesh

Figure 7.9: Pressure fields for TC1 test case at t = 3 s. Exact value is

∆p = 98Pa.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 103

7.10(a): interFoam quad.mesh 7.10(b): PC-VOF quad.mesh

7.10(c): interFoam tri.mesh 7.10(d): PC-VOF tri.mesh

Figure 7.10: Pressure fields for TC1 test case at t = 3 s. Exact value is

∆p = 98Pa.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 104

Test Case 2

In test case 2, interfacial tension forces play a less significant role than in test

case 1. The same results presented for TC1 are presented for TC2 without

gravity, as well. The pressure jump in this case is given by ∆p = 1.96/0.25 =

7.84 Pa

Figure 7.11 displays the evolution of the pressure jump with both

methods in quads meshes, while the pressure jump for triangular meshes is

depicted in Fig.7.12.

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]

∆
p

[P
a
]

Theoretical P=7.84 Pa

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.11(a): interFoam

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]

∆
p

[P
a
]

7.11(b): PC-VOF

Figure 7.11: Pressure jump in TC2 for structured quads meshes.

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]

∆
p

[P
a
]

Theoretical P=7.84 Pa

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.12(a): interFoam

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]

∆
p

[P
a
]

7.12(b): PC-VOF

Figure 7.12: Pressure jump in TC2 for triangular meshes.

The reader may notice that best agreements with Laplace-Young Eq.(7.8)

are obtained by PC-VOF for either quadrangular and triangular meshes. It can

also be seen that for all PC-VOF cases, as the mesh is refined, the predicted

value approaches the exact solution, reaching a mesh independent solution.

The results obtained with the triangular meshes are more unstable, however

are still quite superior than interFoam. interFoam not only presents larger

errors, but also, even in quads meshes, produces instability on the solutions.

The results deteriorate significantly when triangular mesh is employed with

interFoam.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 105

To better visualize the effect of mesh refinement in the obtained solutions,

the convergence of pressure jump for the four configurations is displayed in Fig.

7.13. The values for these plots were acquired at the corresponding plots at time

= 3 s. Analyzing the figure, it is clear that PC-VOF (with both quadrangular

and triangular meshes) shows superior results in ∆p than interFoam and

interFoam diverges with triangular meshes.

40 80 160 320
6

6.5

7

7.5

8

1/h

∆
p

[P
a
]

Theory = 7.84Pa

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.13: Pressure jump convergence in TC2.

Spurious currents evolutions during simulations with quads meshes are

presented in Fig.7.14 while with triangular meshes in Fig.7.15. In this test

case, in which surface tension play a less significant role, interFoam and

PC-VOF, both with quads meshes, provide spurious currents of the same

order. As the mesh is refined, the spurious currents are reduced with PC-VOF,

while it becomes mesh independent with interFoam. For this surface tension

dominated flow, the spurious currents of triangular PC-VOF are much lower

than for interFoam. Note that for the finest mesh, interFoam spurious currents

are increased.

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.14(a): interFoam

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

7.14(b): PC-VOF

Figure 7.14: Spurious currents in TC2 for quadrangular meshes.

Figure 7.16 shows the mesh dependence of spurious currents for the four

situations. Once again, PC-VOF shows monotonicity on spurious currents

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 106

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.15(a): interFoam

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

7.15(b): PC-VOF

Figure 7.15: Spurious currents in TC2 for triangular meshes.

decay with mesh refinement. For triangular meshes, interFoam diverges for

the finest grid.

40 80 160 320

10
−3

10
−2

10
−1

1/h

V
m

a
x

[m
/
s]

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.16: Spurious currents convergence with mesh resolution in TC2.

The shapes of the pressure fields at the last instant of simulation time

(t = 3 s) are presented for each case for the finest mesh, i.e. 1/h = 320. Figures

7.17 and 7.18 show, respectively, an isometric view and a lateral view of the

pressure fields. One may notice that the results obtained with interFoam, such

as happened in TC1, presents ripples on the pressure across the interface. For

the triangular mesh, the ripples grow to a higher degree, as well. On the other

hand, PC-VOF presents reduced ripples in the triangular mesh and no ripples

in the quadrangular mesh.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 107

7.17(a): interFoam quad.mesh 7.17(b): PC-VOF quad.mesh

7.17(c): interFoam tri.mesh 7.17(d): PC-VOF tri.mesh

Figure 7.17: Pressure fields for TC2 test case at t = 3 s. Exact value is
∆p = 7.84 Pa.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 108

7.18(a): interFoam quad.mesh 7.18(b): PC-VOF quad.mesh

7.18(c): interFoam tri.mesh 7.18(d): PC-VOF tri.mesh

Figure 7.18: Pressure fields for TC2 test case at t = 3 s. Exact value is
∆p = 7.84 Pa.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 109

7.1.2

Rising Condition

In the rising condition, the gravity is activated and set to −→g = [0 − 0.98]T

for both test cases. Besides proposing the benchmark test cases TC1 and TC2,

Hysing et al. (2009) also provide results for both cases simulated by three

different codes:

– TP2D (Turek, 1999)

– FreeLIFE (Parolini & Burman, 2005)

– MooNMD (John & Matthies, 2004; Ganesan et al., 2007)

All codes are based on the finite element method. The first two employ an

Eulerian Level Set method, while the third employs an arbitrary Lagrangian-

Eulerian moving grid approach. The three agree well in results and form a

benchmark set of data to evaluate other solvers. The rising condition was

simulated for a period of 3 s of time, such as in Klostermann et al. (2013)

and Hysing et al. (2009) and results for rising velocity, center of mass vertical

position and circularity are compared to benchmark data and presented bellow.

Test Case 1

The bubble shape evolution with time steps was obtained for each solver – in-

terFoam and PC-VOF– for quadrangular and triangular meshes. Figure (7.19)

presents the bubble shape for TC1 simulated with interFoam in quadrangu-

lar meshes for four different time steps: t = 0, 1, 2 and 3 s. At t = 3 s,

benchmark data is available and presented for comparison. Following the same

procedure, Figs.7.20, 7.21 and 7.22 present results respectively for PC-VOF

in quadrangular meshes, interFoam in triangular meshes and PC-VOF in tri.

meshes.

Analyzing the time evolution of the flow, it can be observed that, as

the bubble starts moving upward, it begins to deform. A depression is formed

in its lower part, and its width increases. Similar solution was obtained with

both solver for quadrangular meshes. For the triangular case, PC-VOF was

also able to capture the bubble behavior as time evolves. On the other hand,

by examining Fig. 7.21 for interFoam triangular, a deterioration of the bubble

shape occurs as time evolves, and as the mesh is refined.

For the final time instant t = 3 s, the present results can be compared

with the three benchmark data. One may observe superior results for PC-VOF,

compared to interFoam, with respect to the final position and shape of the

bubble. For the quadrangular mesh, a slight improvement is observed, while for

the triangular mesh, the improvement on the solution obtained with PC-VOF

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 110

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

0.2 0.4 0.6 0.8

x

t=3

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=1

Figure 7.19: TC1 bubble shapes with interFoam in quadrangular meshes.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=1/320

0.2 0.4 0.6 0.8

x

t=3

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=1

Figure 7.20: TC1 bubble shapes with PC-VOF in quadrangular meshes.

is clear. This behavior may find an explanation with the aid of the previously

observed effects for the static case. The magnitude of the parasitic currents

has been observed to be significantly higher in interFoam than in PC-VOF.

As also observed by Klostermann et al. (2013), the parasitic currents are of

the order of 5% of the maximum bubble rise velocity for interFoam in the

quadrangular meshes, and 15-60%(!) for the triangular ones.

It is not the purpose of the present thesis to improve the advection scheme

in interFoam. However, a recent approach taken by Roenby et al. (2016) may

be an interesting choice to couple with the PC-VOF method, since it improves

advection and also relies on the knowledge of the determination of the interface

position from the α field.

Circularity during simulation time is presented for each solver – inter-

Foam and PC-VOF– for quadrangular and triangular meshes in Fig. 7.23. In

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 111

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y
t=0

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

0.2 0.4 0.6 0.8

x

t=1

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=3

Figure 7.21: TC1 bubble shapes with interFoam in triangular meshes.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=1/320

0.2 0.4 0.6 0.8

x

t=1

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=3

Figure 7.22: TC1 bubble shapes with PC-VOF in triangular meshes.

those figures the three benchmark data (which are nearly coincident) are also

included. Once again, PC-VOF provides results that converge to benchmark

data for quadrangular meshes as opposed to interFoam, which converges to

a slightly lower circularity value. For triangular meshes, interFoam does not

follow the benchmark pattern of circularity, while PC-VOF follows the bench-

mark circularity with great adherence!

The center of mass y coordinate, computed by Eq.(7.6), during the

simulation is presented for each solver in Fig. 7.24. For quadrangular meshes,

both methods follow the benchmark data, with PC-VOF converging to a

closer value. For triangular meshes, the predicted centers of mass obtained

with interFoam are lower, indicating lower rising velocities. At the same time,

results of PC-VOF in tri. meshes show great adherence to benchmark data,

once again. Note that the solution of interFoam in triangular meshes diverge

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 112

0 0.5 1 1.5 2 2.5 3

0.9

0.92

0.94

0.96

0.98

1

t

ci
rc

u
la

ri
ty

interFoam reg. mesh

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

7.23(a): interFoam quad. mesh

0 0.5 1 1.5 2 2.5 3

0.9

0.92

0.94

0.96

0.98

1

t

ci
rc
u
la
ri
ty

PC−VOF reg. mesh

7.23(b): PC-VOF quad. mesh

0 0.5 1 1.5 2 2.5 3

0.9

0.92

0.94

0.96

0.98

1

time t

ci
rc

u
la

ri
ty

interFoam unstr. mesh

7.23(c): interFoam tri. mesh

0 0.5 1 1.5 2 2.5 3

0.9

0.92

0.94

0.96

0.98

1

time t

ci
rc

u
la

ri
ty

PC−VOF unstr. mesh

7.23(d): PC-VOF tri. mesh

Figure 7.23: TC1 circularity.

from the benchmark, specially when the mesh is refined.

The bubble rise velocity y component, computed by Eq.(7.7), during

the simulation is presented for each solver in Fig. (7.25) and compared to

benchmark data. As noted for the center of mass evolution in time, the velocity

evolution in time also provides the same conclusions. PC-VOF reaches a bubble

terminal rise velocity closer to benchmark data than interFoam, for both

kinds of meshes. For triangular meshes, interFoam diverges for the finest grid

resolution. Nevertheless, PC-VOF shows a greater adherence to benchmark

data.

At the last instant of simulation time (t = 3 s), the values of circularity,

rise velocity and center of mass were compiled and plotted against mesh reso-

lution to enable convergence checking in Figs. 7.28, 7.27 and 7.28. Benchmark

data at the same instant t is also plotted for comparison (and made constant

for all mesh resolutions for convenience, as convergence checking of benchmark

data is not being evaluated, but taken as a reference value). Benchmark data

are plotted in black lines with different patterns.

Figure 7.26 displays the convergence of circularity with mesh refinement.

PC-VOF results in circularity that converges “exactly” to benchmark data

for both types of meshes. In quads meshes, interFoam, even for the finest

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 113

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

ce
n

te
r

o
f

m
a

ss

interFoam reg. mesh

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

7.24(a): interFoam quad. mesh

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

ce
n

te
r

o
f

m
a

ss

PC−VOF reg. mesh

7.24(b): PC-VOF quad. mesh

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

c
e

n
te

r
o

f
m

a
s
s

interFoam unstr. mesh

7.24(c): interFoam tri. mesh

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

c
e

n
te

r
o

f
m

a
s
s

PC−VOF unstr. mesh

7.24(d): PC-VOF tri. mesh

Figure 7.24: TC1 bubble center of mass evolution.

grid, does not approach benchmark data as closely. For triangular meshes,

interFoam diverges from benchmark data with mesh refinement.

Figure 7.27 displays the rise velocity convergence with mesh refinement,

while Figure 7.28 displays the y coordinate of the bubble center of mass

convergence with mesh refinement. The same conclusions for the terminal

velocity are applicable to the final position of the center of mass. Both methods

in quadrangular meshes behave similarly, however PC-VOF shows a slight

improvement in the final position compared to interFoam. For triangular

meshes, interFoam results in perceivable divergence from benchmark data,

however PC-VOF, once again, converges to benchmark data.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 114

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty

interFoam reg. mesh

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

7.25(a): interFoam quad. mesh

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty

PC−VOF reg. mesh

7.25(b): PC-VOF quad. mesh

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty

interFoam unstr. mesh

7.25(c): interFoam tri. mesh

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty
PC−VOF unstr. mesh

7.25(d): PC-VOF tri. mesh

Figure 7.25: TC1 bubble rise velocity evolution.

40 80 160 320
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

1/h

ci
rc

u
la

ri
ty

TP2D

FreeLIFE

MoonNMD

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.26: TC1 bubble circularity at t = 3 s convergence with mesh
refinement.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 115

40 80 160 320
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1/h

ri
se

 v
e

lo
ci

ty

TP2D

FreeLIFE

MoonNMD

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.27: TC1 bubble rise velocity at t = 3 s convergence with mesh
refinement.

40 80 160 320

0.7

0.8

0.9

1

1.1

1/h

ce
n

te
r

o
f

m
a

ss

TP2D

FreeLIFE

MoonNMD

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.28: TC1 bubble center of mass y coordinate at t = 3 s convergence
with mesh refinement.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 116

Test Case 2

Following the same order presented for TC1, Figs. 7.29 and 7.30, present the

bubble shape evolution with time for interFoam and PC-VOF in quadrangular

meshes, respectively. Figures 7.31 and 7.32 correspond to interFoam and

PC-VOF in triangular meshes. For the last step (t = 3 s), the three benchmark

bubble shape data are included in the graphs.

For this case, due to the ten times greater Capillary number and Weber

number in relation to case TC1, it can be observed that as time evolves,

the bubble displays a more intense deformation. It begins to elongate in the

extremities, indicating that it will eventually break. In fact, the benchmark

solution of TP2D predicts a bubble breakup.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

0.2 0.4 0.6 0.8

x

t=3

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=1

Figure 7.29: TC2 bubble shapes with interFoam in quadrangular meshes.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=1/320

0.2 0.4 0.6 0.8

x

t=1

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=3

Figure 7.30: TC2 bubble shapes with PC-VOF in quadrangular meshes.

Once in this test case, with gravity turned on, surface tension plays a less

significant role, compared to TC1, the results of both interFoam and PC-VOF

are supposed to be closer to each other than in TC1. The results above confirm

this statement and it is also an evidence that the only part of interFoam solver

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 117

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y

t=0

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

0.2 0.4 0.6 0.8

x

t=1

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=3

Figure 7.31: TC2 bubble shapes with interFoam in triangular meshes.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

x

y

t=0

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=1/320

0.2 0.4 0.6 0.8

x

t=1

0.2 0.4 0.6 0.8

x

t=2

0.2 0.4 0.6 0.8

x

t=3

Figure 7.32: TC2 bubble shapes with PC-VOF in triangular meshes.

changed by this work was the surface tension computation. For quadrangular

and triangular meshes, both methods agree very well with benchmark data

and the results are very close to each other.

As mentioned, in the present test case, surface tension plays a less

significant role than in the previous test case. This is indicated by the lower

surface tension forces (higher Eo and Ca numbers) as well as higher viscosity

and density ratios. Therefore, it is expected that the improved surface tension

force computation does not lead to significant improvements in these results,

compared to interFoam.

The evolution of the bubble circularity with time is presented for each

solver – interFoam and PC-VOF– for quadrangular and triangular meshes in

Fig. 7.33. TP2D shows a clear deviation from the other benchmark results,

due to the bubble breakup that occurred in this solver. Both interFoam and

PC-VOF follow the same tendencies for quadrangular and triangular meshes

with good adherence to the results of FreeLIFE and MoonNMD, in which

breakup does not occur.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 118

0 0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

t

ci
rc

u
la

ri
ty

interFoam reg. mesh

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

7.33(a): interFoam quad. mesh

0 0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

t

ci
rc
u
la
ri
ty

PC−VOF reg. mesh

7.33(b): PC-VOF quad. mesh

0 0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

time t

ci
rc

u
la

ri
ty

interFoam unstr. mesh

7.33(c): interFoam tri. mesh

0 0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

time t

ci
rc

u
la

ri
ty

PC−VOF unstr. mesh

7.33(d): PC-VOF tri. mesh

Figure 7.33: TC2 circularity.

The center of mass y coordinate, computed by Eq.(7.6), during the

simulation is presented for each solver in Fig. 7.34 and the reader may notice,

once again, that both methods agree well with benchmark data. Results

obatined with PC-VOF, however, present a greater adherence to benchmark.

It can be observed more clearly for the triangular meshes.

The bubble rise velocity y component, computed by Eq.(7.7), during the

simulation is presented for each solver in Fig. 7.35 and compared to benchmark

data. Both interFoam and PC-VOF provide similar results and differences

between them are almost unnoticeable. Terminal velocity presents convergence

towards benchmark data for all four situations: interFoam with quad. and tri.

meshes and PC-VOF with quad. and tri. meshes.

As discussed for TC1, convergence with mesh resolution is presented

for TC2 at the last instant of simulation time (t = 3 s) for rise velocity,

center of mass and circularity for interFoam and PC-VOF in quadrangular

and triangular meshes.

Figure 7.36 displays the rise velocity convergence with mesh refinement.

Results of interFoam and PC-VOF are comparable and converge to benchmark

data. The spread in the terminal velocity in the benchmark data is such that

both interFoam and PC-VOF are lying in the very same region of benchmark

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 119

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

ce
n

te
r

o
f

m
a

ss

interFoam reg. mesh

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

7.34(a): interFoam quad. mesh

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

ce
n

te
r

o
f

m
a

ss

PC−VOF reg. mesh

7.34(b): PC-VOF quad. mesh

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

c
e

n
te

r
o

f
m

a
s
s

interFoam unstr. mesh

7.34(c): interFoam tri. mesh

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

time t

c
e

n
te

r
o

f
m

a
s
s

PC−VOF unstr. mesh

7.34(d): PC-VOF tri. mesh

Figure 7.34: TC2 bubble center of mass evolution.

results.

The mesh refinement effect on the y coordinate of the bubble center

of mass is shown in Figure 7.37. Results for the center of mass converge for

both interFoam and PC-VOF to a similar level slightly bellow the benchmark.

Again, there is a spread in the benchmark data for this quantity, and both

interFoam and PC-VOF provide similar results close to the benchmark.

Finally, Fig. 7.38 displays the convergence of circularity with mesh

refinement. As noticed for the other quantities (terminal velocity and final

center of mass position), both interFoam and PC-VOF follow the same

tendencies. PC-VOF in quad. and tri. meshes and interFoam in quad. meshes

result in circularities converging to a value in the strip bounded by FreeLIFE

and MoonNMD results.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 120

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty

interFoam reg. mesh

TP2D

FreeLIFE

MoonNMD

1/h=40

1/h=80

1/h=160

1/h=320

7.35(a): interFoam quad. mesh

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty

PC−VOF reg. mesh

7.35(b): PC-VOF quad. mesh

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty

interFoam unstr. mesh

7.35(c): interFoam tri. mesh

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

time t

ri
se

 v
e

lo
ci

ty
PC−VOF unstr. mesh

7.35(d): PC-VOF tri. mesh

Figure 7.35: TC2 bubble rise velocity evolution.

40 80 160 320
0.17

0.18

0.19

0.2

0.21

0.22

0.23

1/h

ri
se

 v
e

lo
ci

ty

TP2D

FreeLIFE

MoonNMD

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.36: TC2 bubble rise velocity at t = 3 s convergence with mesh
refinement.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 121

40 80 160 320
1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1/h

ce
n

te
r

o
f

m
a

ss

TP2D

FreeLIFE

MoonNMD

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.37: TC2 bubble center of mass y coordinate at t = 3 s convergence
with mesh refinement.

40 80 160 320
0.45

0.5

0.55

0.6

0.65

0.7

0.75

1/h

ci
rc

u
la

ri
ty

TP2D

FreeLIFE

MoonNMD

interFoam quad. mesh

PC−VOF quad. mesh

interFoam tri. mesh

PC−VOF tri. mesh

Figure 7.38: TC2 bubble circularity at t = 3 s convergence with mesh
refinement.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 122

7.2

Initialization Performance

This section is devoted to test the performance of the initialization algorithm

proposed in Section 4.3, the Monte Carlo integration method, denoted here

by setFracFields. The 2D bubble test cases, TC1 and TC2, in zero gravity

condition, presented in Section 7.1 will be used for this discussion. The method

employed in the α field initialization in Section 7.1 was the setFracFields,

that is the default method in this work (used in all results presented in this

work). Here, these results are compared to the ones generated by simulations

initialized by the standard OpenFOAMr initialization method: setFields.

Results of spurious currents and pressure jump are displayed in the following

discussion.

7.2.1

Test Case 1

Figure 7.39 displays the evolution in time of the pressure jump ∆p, computed

by Eq.(7.9), for interFoam and PC-VOF initialized with setFields and set-

FracFields for the TC1 test case. It can be clearly observed that initialization

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a
]

Theoretical P=98 Pa

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.39(a): interFoam setFracFields

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a]

7.39(b): interFoam setFields

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a
]

7.39(c): PC-VOF setFracFields

0 0.5 1 1.5 2 2.5 3
60

70

80

90

100

time t [s]

∆
p

[P
a]

7.39(d): PC-VOF setFields

Figure 7.39: Pressure jump in TC1 for for different initialization methods.

performed by setFracFields increases stability of the solution compared to

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 123

setFields. It is also very clear that interFoam is more sensible to field ini-

tialization, while PC-VOF is more independent and more stable for both types

of initialization.

Figure 7.40 displays the behavior of ∆p with respect to mesh refinement.

It can be be observed that PC-VOF shows similar behavior in the pressure

40 80 160 320
70

75

80

85

90

95

100

1/h

∆
p

[P
a
]

Theory = 98Pa

interFoam setFracFields

PC−VOF setFracFields

interFoam setFields

PC−VOF setFields

Figure 7.40: Pressure jump ∆p behavior with mesh refinement in TC1.

jump with mesh refinement, while interFoam clearly presents a persistent

increase in error of ∆p estimates for setFields initialization compared to

its results for Monte-Carlo initialization.

Figure 7.41 displays the evolution in time of the spurious currents,

measured by the maximum magnitude of the velocity field, for interFoam

and PC-VOF initialized with setFields and setFracFields. It is clear that

spurious currents start from a higher level for setFields initialized simulations

compared to Monte-Carlo initialization. This result was already expected once

the interface produced by setFields presents a stepwise pattern. On the

other hand, the interface produced by setFracFields, i.e. the Monte-Carlo

integration, presents a smooth behavior, with its shape already much closer

to the final circular interface. The interface initialized by setFields methods

requires to change its stepwise shape in order to recover the equilibrium circular

shape. At the final time steps, both initialization methods tend to converge to

similar levels of parasitic currents. Just for the finest grid, PC-VOF displays a

slight increase in its spurious currents in the setFields case.

Figure 7.42 displays the behavior of the parasitic currents at the final

simulation time, t = 3s, for both interFoam and PC-VOF with both types

of initialization methods. It is clear that PC-VOF produces better decays

of spurious currents compared to interFoam, regardless of the initialization

employed. Besides, interFoam converges to very similar values of spurious

currents notwithstanding the initialization method. In conclusion, setFrac-

Fields initialization produces consistently better results in both interFoam

and PC-VOF for spurious currents and pressure jump, with the pressure jump

in interFoam being more sensible to the initialization method.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 124

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.41(a): interFoam setFracFields

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

7.41(b): interFoam setFields

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

7.41(c): PC-VOF setFracFields

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

time t [s]

V
m

a
x

[m
/
s]

7.41(d): PC-VOF setFields

Figure 7.41: Parasitic currents evolution in TC1 for different initialization
methods.

40 80 160 320
10

−3

10
−2

1/h

V
m

a
x

[m
/
s]

interFoam setFracFields

PC−VOF setFracFields

interFoam setFields

PC−VOF setFields

Figure 7.42: Spurious currents convergence with mesh resolution in TC1.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 125

7.2.2

Test Case 2

Figure 7.43 displays the evolution in time of the pressure jump ∆p, computed

by Eq.(7.9), for interFoam and PC-VOF initialized with setFields and

setFracFields. Once again, setFracFields displays pressure jump with

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]

∆
p

[P
a
]

Theoretical P=7.84 Pa

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.43(a): interFoam setFracFields

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]
∆

p
[P

a]

7.43(b): interFoam setFields

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]

∆
p

[P
a
]

7.43(c): PC-VOF setFracFields

0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

8

time t [s]

∆
p

[P
a]

7.43(d): PC-VOF setFields

Figure 7.43: Pressure jump in TC2 for for different initialization methods.

reduced oscillations both both solvers.

Figure 7.44 displays the behavior of ∆p with respect to mesh refinement.

It can be observed that, when Monte-Carlo integration is employed, both

solvers converge to a value of ∆p slightly closer to the analytical solution

compared to setFields results.

Figure 7.45 displays the evolution in time of the spurious currents, for

the TC2 test case.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 126

40 80 160 320
6

6.5

7

7.5

8

1/h
∆

p
[P

a
]

Theory = 7.84Pa

interFoam setFracFields

PC−VOF setFracFields

interFoam setFields
PC−VOF setFields

Figure 7.44: Pressure jump ∆p behavior with mesh refinement in TC2.

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

 1/h=40

 1/h=80

 1/h=160

 1/h=320

7.45(a): interFoam setFracFields

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

7.45(b): interFoam setFields

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

7.45(c): PC-VOF setFracFields

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

time t [s]

V
m

a
x

[m
/
s]

7.45(d): PC-VOF setFields

Figure 7.45: Parasitic currents evolution in TC2 for different initialization

methods.

Here it is very clear that both methods, when initialized with setFields,

start at a higher level of spurious currents compared to the results for

initialization performed with Monte-Carlo integration. These results allows to

conclude that simulations initialized by setFracFields, i.e. the Monte-Carlo

integration, require shorter periods of simulation time to reach stabilization

in spurious currents. On the other hand, simulations initialized by setFields

takes longer to stabilize.

Figure 7.46 displays the parasitic currents decay with mesh refinement

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 127

for the four situations. As already mentioned, in this test case, the interface

tension plays a less significant role in comparison to TC1, so that spurious

currents converge to similar levels regardless of the solver or the initialization

method.

40 80 160 320

10
−3

10
−2

1/h

V
m

a
x

[m
/
s]

interFoam setFracFields

PC−VOF setFracFields

interFoam setFields

PC−VOF setFields

Figure 7.46: Spurious currents convergence with mesh resolution in TC2.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 128

7.3

Three-Dimensional Bubble in a Liquid Column

Adelsberger et al. (2014) extended the 2D benchmark proposed by Hysing

et al. (2009) to 3D for rising bubbles. The three-dimensional domain and initial

bubble configuration is presented in Fig.7.47.

x
y

z

0.5

1

0.5

2

1
0.5

Figure 7.47: Bubble initial configuration in the 3D domain.

Adelsberger et al. (2014) presents results for the following three different

solvers:

– DROPS (Gross & Reusken, 2011),

– NaSt3D (Croce et al., 2010),

– interFoam version 2.2.2.

DROPS and NaSt3D are based on Level Set method. The version of

interFoam used in Adelsberger et al. (2014) differs from the one used in this

work (version 2.3.0), so results of both will be displayed in this work. As

already discussed in Sec.7.1, Test Case 2 does not present significant differences

between PC-VOF and interFoam, what is is due to the fact that surface tension

does not play a significant role. Therefore, for this three-dimensional case, our

attention will be focused only on TC1.

For convenience, the fluid properties are once again shown in Table 7.2:

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 129

ρ1 ρ2 µ1 µ2 σ g
1000 100 10 1.0 24.50 0.98

Table 7.2: TC1 parameters.

The only difference between the 2D and 3D benchmarks is on the bound-

ary conditions. Adelsberger et al. (2014) assume no-slip boundary conditions on

the walls, so
−→
V =

−→
0 on all walls. For pressure and α fields, the boundary con-

dition is set to zero gradient on all walls. The droplet is initialized as a sphere

with radius r0 = 0.25 and with its center positioned at [0.5, 0.5, 0.5]T . Once

again, simulations are performed for a period of time of 3 s. Adelsberger et al.

(2014) presents results for interFoam for a mesh resolution (128× 256× 128),
i.e. for a regular mesh with spacing h = 1/128. In this work, three mesh res-

olutions were employed with 1/h = 32, 64 and 128. The time-step ∆ t was

fixed, being limited by a stability condition taking into account the capillary

spurious velocities (Deshpande et al., 2012), as already discussed in Sec.6.3.

For each mesh, the time step ∆t employed is shown in Table 7.3.

1/h 32 64 128
∆t 10−2 5× 10−3 3× 10−3

Table 7.3: Times steps, in seconds, for each mesh resolution.

Adelsberger et al. (2014) examined the evolution of the bubble through 4

parameters: (i) rising velocity, (ii) its center of mass y coordinate; (iii) its

diameters in x, y and z directions, respectively Dx, Dy and Dz; and (iv)

its sphericity Ψ. Aiming to compare the results generated in this work by

PC-VOF and interFoam (2.3.0) with the benchmark data, the same variables

were computed here.

Sphericity Ψ, as defined in Wadell (1935), is given by the ratio between

the area of the equivalent sphere with the same volume ∀b of the bubble and
the bubble area Ab. Given the area of a sphere of radius r is 4πr2 and its

volume is 4/3πr3, sphericity is given by

Ψ =
π1/3(6∀b)2/3

Ab

(7.11)

As many articles performing experimental measurements (Liu et al., 2015;

Aoyama et al., 2016) present the bubble aspect ratio E, which is the ratio

between the bubble height to its width, it will also be presented here, for

convenience. In this work, it is given by

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 130

E =
Dy

1

2
(Dx +Dz)

(7.12)

where the term 1/2(Dx +Dz) is the average bubble width.

7.3.1

Comparison to Benchmark Data

Figure 7.48 displays the rise velocity comparison with benchmark data for

both interFoam and PC-VOF for the finest mesh, i.e. 1/h = 128. All results

agree well, with PC-VOF being closer to data of DROPS and NaStD than

interFoam. Both versions of interFoam result in the lowest values for rising

terminal velocity.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

time t

ri
se

 v
e

lo
ci

ty

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=128

PC−VOF 1/h=128

Figure 7.48: 3D bubble rise velocity.

Figure 7.49 displays the time evolution of the y coordinate of the center of

mass. As expected, again, PC-VOF results are closer to DROPS and NaSt3D

than both versions of interFoam, since the center of mass position is directly

dependent on the rising velocity.

Comparison of the bubble sphericity Ψ and aspect ratio E obtained with

the different solvers during the simulation time are shown in Fig. 7.50. Great

adherence to the provided benchmark data is achieved for both PC-VOF and

interFoam. Once again, PC-VOF shows the tendency to generate closer results

to the Level Set solvers than interFoam.

Figure 7.51 displays the bubble height Dy and widths Dx and Dz during

simulation time. PC-VOF also shows closer agreement with the benchmark

for Dy and Dz. A slightly different result was obtained for Dx, with a close

agreement of PC-VOF with the benchmark data at the first time steps, but at

larger time instants, interFoam results are closer to the benchmark data.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 131

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

time t

y−
ce

n
te

r
o

f
m

a
ss

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=128

PC−VOF 1/h=128

Figure 7.49: 3D bubble center of mass y coordinate.

0 0.5 1 1.5 2 2.5 3
0.95

0.96

0.97

0.98

0.99

1

1.01

time t

sp
h

e
ri

ci
ty

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=128

PC−VOF 1/h=128

7.50(a): Sphericity Ψ

0 0.5 1 1.5 2 2.5 3

0.7

0.8

0.9

1

1.1

time t

E

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=128

PC−VOF 1/h=128

7.50(b): Aspect ratio E

Figure 7.50: 3D bubble sphericity and aspect ratio during simulation.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 132

0 0.5 1 1.5 2 2.5 3
0.35

0.4

0.45

0.5

0.55

time t

D
y
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=128

PC−VOF 1/h=128

7.51(a): height Dy

0 0.5 1 1.5 2 2.5 3
0.48

0.5

0.52

0.54

0.56

0.58

0.6

time t

D
x
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=128

PC−VOF 1/h=128

7.51(b): width Dx

0 0.5 1 1.5 2 2.5 3
0.48

0.5

0.52

0.54

0.56

0.58

0.6

time t

D
z
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=128

PC−VOF 1/h=128

7.51(c): width Dz

Figure 7.51: 3D bubble diameters during simulation time.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 133

7.3.2

Mesh Convergence

As mentioned above, three mesh refinements were employed in these simula-

tions. Results for the other two coarsest meshes are presented next, in order

to allow the evaluation of mesh convergence.

Bubble rising velocity is presented in Fig. 7.52, while the bubble center

of mass y coordinate is presented in Fig. 7.53 and bubble sphericity is shown

in Fig. 7.54. Results for all meshes are shown in all figures. Examining these

figures, it can be seen that both PC-VOF and interFoam converge to a level

close to benchmark data.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

time t

ri
se

 v
e

lo
ci

ty

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=32

interFoam(2.3.0) 1/h=64

interFoam(2.3.0) 1/h=128

7.52(a): interFoam

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

time t

ri
se

 v
e

lo
ci

ty

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

PC−VOF 1/h=32

PC−VOF 1/h=64

PC−VOF 1/h=128

7.52(b): PC-VOF

Figure 7.52: 3D bubble rise velocity

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

time t

y−
ce

n
te

r
o

f
m

a
ss

 DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=32

interFoam(2.3.0) 1/h=64

interFoam(2.3.0) 1/h=128

7.53(a): interFoam

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

time t

y−
ce

n
te

r
o

f
m

a
ss

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

PC−VOF 1/h=32

PC−VOF 1/h=64

PC−VOF 1/h=128

7.53(b): PC-VOF

Figure 7.53: 3D bubble center of mass vertical coordinate.

The aspect ratio E is presented for various mesh resolutions for inter-

Foam and PC-VOF in Fig. 7.55. Convergence is observed for both methods. Re-

sults for interFoam clearly converge to results provided for interFoam (2.2.2)

and results from PC-VOF converge to a level between the Level Set methods

and interFoam results.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 134

0 0.5 1 1.5 2 2.5 3
0.94

0.96

0.98

1

1.02

1.04

time t

sp
h

e
ri

ci
ty

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=32

interFoam(2.3.0) 1/h=64

interFoam(2.3.0) 1/h=128

7.54(a): interFoam

0 0.5 1 1.5 2 2.5 3
0.94

0.96

0.98

1

1.02

1.04

time t

sp
h

e
ri

ci
ty

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

PC−VOF 1/h=32

PC−VOF 1/h=64

PC−VOF 1/h=128

7.54(b): PC-VOF

Figure 7.54: 3D sphericity for varying mesh resolutions.

0 0.5 1 1.5 2 2.5 3

0.7

0.8

0.9

1

1.1

time t

E

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=32

interFoam(2.3.0) 1/h=64

interFoam(2.3.0) 1/h=128

7.55(a): interFoam

0 0.5 1 1.5 2 2.5 3

0.7

0.8

0.9

1

1.1

time t

E

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

PC−VOF 1/h=32

PC−VOF 1/h=64

PC−VOF 1/h=128

7.55(b): PC-VOF

Figure 7.55: 3D rising bubble aspect ration E for varying mesh resolutions.

Bubble diameters for all employed meshes are presented in Fig. 7.56.

Again, agreement to benchmark data as the mesh is refined is observed for both

PC-VOF and interFoam. It is possible to observe that, at the very beginning

of the simulation, interFoam decreases its Dx and Dz, following interFoam

results provided by Adelsberger et al. (2014). On the other hand, PC-VOF

follows the same tendency of the Level Set methods DROPS and NaSt3D.

Finally, four screen-shots of the bubble simulated with PC-VOF and

interFoam are presented in Fig. 7.57 for t = 0, 1, 2 and 3. Results for PC-VOF

and interFoam shapes are aligned side by side to facilitate comparison. Observe

that the bubble simulated by interFoam ascends slightly slower than PC-VOF.

This issue was also apparent in the two-dimensional case presented in Section

7.1.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 7. Bubble in a liquid column 135

0 0.5 1 1.5 2 2.5 3
0.35

0.4

0.45

0.5

0.55

time t

D
y
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=32

interFoam(2.3.0) 1/h=64

interFoam(2.3.0) 1/h=128

7.56(a): interFoam Dy

0 0.5 1 1.5 2 2.5 3
0.35

0.4

0.45

0.5

0.55

time t

D
y
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

PC−VOF 1/h=32

PC−VOF 1/h=64

PC−VOF 1/h=128

7.56(b): PC-VOF Dy

0 0.5 1 1.5 2 2.5 3
0.48

0.5

0.52

0.54

0.56

0.58

0.6

time t

D
x
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=32

interFoam(2.3.0) 1/h=64

interFoam(2.3.0) 1/h=128

7.56(c): interFoam Dx

0 0.5 1 1.5 2 2.5 3
0.48

0.5

0.52

0.54

0.56

0.58

0.6

time t

D
x
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

PC−VOF 1/h=32

PC−VOF 1/h=64

PC−VOF 1/h=128

7.56(d): PC-VOF Dx

0 0.5 1 1.5 2 2.5 3
0.48

0.5

0.52

0.54

0.56

0.58

0.6

time t

D
z
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

interFoam(2.3.0) 1/h=32

interFoam(2.3.0) 1/h=64

interFoam(2.3.0) 1/h=128

7.56(e): interFoam Dz

0 0.5 1 1.5 2 2.5 3
0.48

0.5

0.52

0.54

0.56

0.58

0.6

time t

D
z
[m

]

DROPS

NaSt3D

interFoam(2.2.2) 1/h=128

PC−VOF 1/h=32

PC−VOF 1/h=64

PC−VOF 1/h=128

7.56(f): PC-VOF Dz

Figure 7.56: 3D bubble diameters for varying mesh resolutions.

1.5

1.0

0.5

t=0 t=1 t=2 t=3

interFoamPC-VOF

interFoamPC-VOF

interFoamPC-VOF

interFoamPC-VOFy

Figure 7.57: Bubble pictures at different time steps. PC-VOF and interFoam

side by side.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

8

Final Remarks

This work proposes and presents PC-VOF, a new approach for the problem of

curvature computation in the VOF framework. It demonstrates the proposed

methodology is feasible and makes a link between Computer Graphics and

multiphase flows, so that further improvements in curvature computations in

the CG area may also be applied to Computational Fluid Dynamics.

PC-VOF can have many variants (different methods for points, normals

and curvatures computations) and can be applicable not only to VOF, but also

to Level Set methods and any other methods that rely on marker functions

to implicitly represent the interfaces. PC-VOF recovers sharpness of the

interfaces, once it computes the curvatures at the interface positions, not at

cells centers – which is the case of CSF approaches. The present approach does

not require a specific type of mesh (regular, structured) to be implemented. It

just relies on the Eulerian grid topology to determine the neighboring points,

needed to perform triangulations, area computations and solving the presented

minimization problems.

This work was focused primarily on the implementation and feasibility

testing of the novel idea, as it shows indeed. Therefore, the code so far is

not at its most efficient form and many optimizations may be implemented

specially regarding memory allocation (that, still was not an issue, but can be

improved). As the curvature computations are performed just at the interface

points, and in practical situations the amount of points is considerably lower

than the number of cells or edges in the fixed grid, the memory required for

allocation – proportional to the number of points – , is not a limiting factor.

Curvature computation for point clouds is a wide research field in CG, so

that many other methods can be tested in PC-VOF in future works. For this

work, several approaches for curvature and normal computation were tested

and the most efficient ones, that provided the most feasible results, were cho-

sen. Normal computation by least-squares planes has shown to be the most

stable and accurate (in most cases) method among the possibilities tested (i.e.

it presented better performance than simple triangulation and triangulation

weighted by triangles areas). Points sampling by linear interpolation also pre-

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Chapter 8. Final Remarks 137

sented better results than by spline interpolation, once in spline interpolations

the derivatives are based on interpolations of the inaccurate gradients of the

volume fraction.

Mesh adaptivity allows for solving complex problems in which different

flow length scales are present. Thus, for future works, it is convenient to im-

plement PC-VOF in mesh adaptive refinement solvers, such as interDyMFoam

(OpenFOAM, 2014), which applies mesh refinement at the interface region.

Once the point clouds at each time step are freshly created from the available

α field, PC-VOF can be promptly applied to adaptive mesh refinement solvers.

Once PC-VOF builds a point cloud and also a connection between them,

based on the fixed grid topology, curvature computation by cyclic integrals

over the edges of the surface elements, such as performed in Front-Tracking

method (Tryggvason et al., 2001), can also be employed. The author tested

this approach for curvature computation, however, due to the noise on the

point cloud, results were unfeasible. In order for this approach to work, the

author believes some sort of filtering could be employed on the point cloud

to mitigate noise. One idea is to approximate the surface elements by local

B-spline surfaces to improve smoothness.

The proposed initialization algorithm by Monte Carlo Integration

(setFracFields) has proven to produce better results than the ones produced

by setFields initialization. Besides, simulations initialized by setFracFields

take less time to reach convergence compared to the ones initialized by the

standard OpenFOAMr initialization algorithm setFields.

The implementation of the new approach was based on standard

OpenFOAMr VOF solver, interFoam (Weller, 2008) and significant im-

provements are demonstrated in Chapters 6 and 7. Compared to standard

interFoam, a significant reduction in both spurious currents and in ripples

on the pressure field is obtained. At the same time, pressure jump achieves

values much closer to the expected ones with the novel approach. The afore-

mentioned improvements justify the use of this methodology even at the cost

of an increase in computational time, as discussed in Section 6.4. Moreover,

these results show the feasibility of the method, which opens new possibilities

for the persistent issue of curvature accuracy in VOF framework.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

A

Appendix

A.1

Cubic Equation Real Roots

Consider a cubic equation of the form

t3 + at2 + bt+ c = 0 (A.1)

where a, b and c are real numbers. In order to obtain the real roots, one should

follow these steps (Press et al., 1992). Compute

Q =
a2 − 3b

9
and R =

2a3 − 9ab+ 27c

54

If R2 < Q3, then there are three real roots that can be obtained as follows.

First compute θ = arccos(R/
√

Q3), then the real roots t1, t2 and t3 are given

by

t1 = −2
√

Q cos

(

θ

3

)

− a

3

t2 = −2
√

Q cos

(

θ + 2π

3

)

− a

3

t3 = −2
√

Q cos

(

θ − 2π

3

)

− a

3

Otherwise, in case R2 ≥ Q3, there is only one real root and two complex

conjugate ones. Their calculation is as follows. Compute

A = −sgn(R)
[

|R|+
√

R2 −Q3

]1/3

and B =







Q/A , if A 6= 0

0 , if A = 0

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Appendix A. Appendix 139

where sgn is the sign function

sgn(x) =







1 , if x ≥ 0

−1 , if x < 0

The roots are, then given by

t1 = (A+B)− a

3

t2 = −
1

2
(A+B)− a

3
+ i

√
3

2
(A− B)

t3 = −
1

2
(A+B)− a

3
− i

√
3

2
(A− B)

where t1 is the real root.

A.2

Eigenvalues of an n by n Matrix

For a general n × n matrix A, a nonzero vector −→v in R
n is an eigenvector of

A if A−→v is multiple of −→v . That is (Anton & Rorres, 2001)

A
−→v = λ−→v (A.2)

where λ is the corresponding eigenvalue. It results in

(A− λI)−→v = 0 (A.3)

where I is the identity matrix. Since−→v is a nonzero vector, the matrix (A−λI)
must be singular. That is to say its determinant must be zero

det(A− λI) = 0. (A.4)

A.2.1

2 by 2 matrix

Consider the following 2× 2 matrix

A =

[

a b

c d

]

(A.5)

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Appendix A. Appendix 140

The determinant of (A− λI) is given by

det(A− λI) =(a− λ)(d− λ)− bc = 0

λ2 − λ(a+ d) + ad− bc = 0

where a + d is the trace of A and ad− bc its determinant D. Thus the above

can be rewritten as

λ2 − λT +D = 0 (A.6)

The eigenvalues of A are, thus, the roots of Eq.(A.6).

λ =
T

2
±
√

T 2

4
−D (A.7)

A.3

OpenFOAM Code Examples

Consider the following transient diffusion equation as in OpenFOAM manual

(Greenshields, 2015)

∂φ

∂t
= Γ∇2φ. (A.8)

It can be coded as

1 s o l v e

2 (

3 fvm : : ddt (phi) ==

4 Gamma ∗ fvm : : l a p l a c i a n (phi)

5) ;

where fvm namespace means the Laplacian term is implicitly discretized, so

that the above code discretizes time in an Implicit Euler scheme. If one desired

to use, for instance, an Explicit Euler scheme, Eq.(A.8) would be coded like

this

1 s o l v e

2 (

3 fvm : : ddt (phi) ==

4 Gamma ∗ f v c : : l a p l a c i a n (phi)

5) ;

where fvc namespace means the Laplacian term is explicitly discretized. The

Crank & Nicolson (1996) scheme would be implemented as

1 s o l v e

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Appendix A. Appendix 141

2 (

3 fvm : : ddt (phi) ==

4 Gamma ∗0 . 5∗ (fvm : : l a p l a c i a n (phi) + fvc : : l a p l a c i a n (phi))

5) ;

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography

Adelsberger, Jutta, Esser, Patrick, Griebel, Michael, Groß, Sven, Klitz, Margit,

& Rüttgers, Alexander. 2014. 3D incompressible two-phase flow benchmark

computations for rising droplets. In: Proceedings of the 11th World Congress

on Computational Mechanics (WCCM XI), Barcelona, Spain, 2014.

Albadawi, A., Donoghue, D.B., Robinson, A.J., Murray, D.B., & Delauré,

Y.M.C. 2013. Influence of surface tension implementation in Volume of Fluid

and coupled Volume of Fluid with Level Set methods for bubble growth and

detachment. International Journal of Multiphase Flow, 53, 11 – 28.

Anton, Howard, & Rorres, Chris. 2001. Algebra Linear com Aplicacoes.

Bookman.

Aoyama, S., Hayashi, K., Hosokawa, S., & Tomiyama, A. 2016. Shapes of

ellipsoidal bubbles in infinite stagnant liquids. International Journal of

Multiphase Flow, 79, 23 – 30.

Aris, R. 1990. Vectors, Tensors and the Basic Equations of Fluid Mechanics.

Dover Books on Mathematics. Dover Publications.

Batagelo, Costa Harlen, & Wu, Shin-Ting. 2007. Estimating curvatures and

their derivatives on meshes of arbitrary topology from sampling directions.

The Visual Computer, 23(9), 803–812.

Berberovic, Edin, van Hinsberg, Nils P., Jakirlic, Suad, Roisman, Ilia V., &

Tropea, Cameron. 2009. Drop impact onto a liquid layer of finite thickness:

Dynamics of the cavity evolution. PHYSICAL REVIEW E, 79(3, 2).

Berger, M., & Rigoutsos, I. 1991. An algorithm for point clustering and grid

generation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5),

1278–1286.

Berger, M. J., & Colella, P. 1989. Local adaptive mesh refinement for shock

hydrodynamics. Journal of Computational Physics, 82(May), 64–84.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 143

Berger, Marsha J, & Oliger, Joseph. 1984. Adaptive mesh refinement for

hyperbolic partial differential equations. Journal of Computational Physics,

53(3), 484 – 512.

Boris, J.P., & Book, D.L. 1973. Flux-corrected transport. I. SHASTA, a fluid

transport algorithm that works. Journal of Computational Physics, 11(1),

38–69. cited By (since 1996)724.

Brackbill, J.U, Kothe, D.B, & Zemach, C. 1992. A continuum method for

modeling surface tension. Journal of Computational Physics, 100(2), 335 –

354.

Brennen, Christopher E. 2005. Fundamentals of Multiphase Flow. Cambridge:

Cambridge University Press.

Briggs, William L., Henson, Van Emden, & McCormick, Steve F. 2000. A

Multigrid Tutorial (2Nd Ed.). Philadelphia, PA, USA: Society for Industrial

and Applied Mathematics.

Cano-Lozano, J.C., Bolaños-Jiménez, R., Gutiérrez-Montes, C., & Mart́ınez-

Bazán, C. 2015. The use of Volume of Fluid technique to analyze multiphase

flows: Specific case of bubble rising in still liquids. Applied Mathematical

Modelling, 39(12), 3290 – 3305.

Cheng, Zhang-Lin, & Zhang, Xiaopeng. 2009. Estimating differential quantities

from point cloud based on a linear fitting of normal vectors. Science in China

Series F: Information Sciences, 52(3), 431–444.

Crank, J., & Nicolson, P. 1996. A practical method for numerical evaluation

of solutions of partial differential equations of the heat-conduction type.

Advances in Computational Mathematics, 6(1), 207–226.

Croce, Roberto, Griebel, Michael, & Schweitzer, Marc Alexander. 2010. Nu-

merical simulation of bubble and droplet deformation by a level set approach

with surface tension in three dimensions. International Journal for Numer-

ical Methods in Fluids, 62(9), 963–993.

Cummins, Sharen J., Francois, Marianne M., & Kothe, Douglas B. 2005.

Estimating curvature from volume fractions. Computers & Structures, 83,

425 – 434. Frontier of Multi-Phase Flow Analysis and Fluid-Structure

Frontier of Multi-Phase Flow Analysis and Fluid-Structure.

Daly, Bart J. 1967. Numerical Study of Two Fluid Rayleigh-Taylor Instability.

Physics of Fluids, 10(2), 297–307.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 144

Damián, Santiago Márques. 2013. An Extended Mixture Model for the Si-

multaneous Treatment of Short and Long Scale Interfaces. PhD Thesis,

Universidad Nacional del Litoral, Santa Fe, Argentina.

Darwish, M. S. 1993. A New High-Resolution Scheme Based on the Normalized

Variable Formulation. Numerical Heat Transfer, Part B: Fundamentals,

24(3), 353–371.

Davis, Stephen F. 1994. Flux difference splittings and limiters for the resolution

of contact discontinuities. Applied Mathematics and Computation, 65(1), 3

– 18.

de Berg, Mark, Cheong, Otfried, van Kreveld, Marc, & Overmars, Mark. 2008.

Computational Geometry: Algorithms and Applications. 3rd edn. Springer-

Verlag Berlin Heidelberg.

de Melo, José Ronaldo Chaves. 1995. Simulação numérica de escoamentos

bifásicos com interfaces. MSc Thesis, Pontif́ıfica Universidade Católica do

Rio de Janeiro, Rio de Janeiro, Brazil.

Deshpande, Suraj S, Anumolu, Lakshman, & Trujillo, Mario F. 2012. Evaluat-

ing the performance of the two-phase flow solver interFoam. Computational

Science & Discovery, 5(1), 014016.

Francois, Marianne M., Cummins, Sharen J., Dendy, Edward D., Kothe,

Douglas B., Sicilian, James M., & Williams, Matthew W. 2006. A balanced-

force algorithm for continuous and sharp interfacial surface tension models

within a volume tracking framework. Journal of Computational Physics,

213(1), 141 – 173.

Fuster, Daniel, Agbaglah, Gilou, Josserand, Christophe, Popinet, Stéphane,

& Zaleski, Stéphane. 2009. Numerical simulation of droplets, bubbles and

waves: state of the art. Fluid Dynamics Research, 41(6), 065001+.

Fuster, Daniel, Bague, Anne, Boeck, Thomas, Le Moyne, Luis, Leboissetier,

Anthony, Popinet, Stephane, Ray, Pascal, Scardovelli, Ruben, & Zaleski,

Stephane. 2009. Simulation of primary atomization with an octree adaptive

mesh refinement and VOF method. International Journal of Multiphase

Flow, 35(6), 550–565.

Fyfe, D.E, Oran, E.S, & Fritts, M.J. 1988. Surface tension and viscosity with

lagrangian hydrodynamics on a triangular mesh. Journal of Computational

Physics, 76(2), 349 – 384.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 145

Ganesan, Sashikumaar, Matthies, Gunar, & Tobiska, Lutz. 2007. On spurious

velocities in incompressible flow problems with interfaces. Computer Methods

in Applied Mechanics and Engineering, 196(7), 1193 – 1202.

Garrioch, S. H., & Baliga, B. R. 2006. A PLIC volume tracking method for the

simulation of two-fluid flows. International Journal for Numerical Methods

in Fluids, 52(10), 1093–1134.

Geuzaine, C., & Remacle, J. F. 2009. Gmsh: a three-dimensional finite element

mesh generator with built-in pre- and post-processing facilities. International

Journal for Numerical Methods in Engineering.

Ghobadian, A. 1991. Development of a method for numerical simulation

of flows with moving interfaces. Tech. rept. National Power Report

TEC/L/0077/M91.

Golub, Gene H., & Van Loan, Charles F. 1996. Matrix Computations (3rd

Ed.). Baltimore, MD, USA: Johns Hopkins University Press.

Gopala, Vinay R., & van Wachem, Berend G.M. 2008. Volume of fluid methods

for immiscible-fluid and free-surface flows. Chemical Engineering Journal,

141(1–3), 204 – 221.

Greenshields, Christopher J. 2015 (Dec.). OpenFOAM - The Open Source

CFD Toolbox - Programmers’s Guide. 3.0.1 edn. CFD Direct Ltd., United

Kingdom.

Gross, Sven, & Reusken, Arnold. 2011. Numerical Methods for Two-Phase

Incompressible Flows. Springer Series in Computational Mathematics, vol.

40. Springer.

Harlow, F.H., Amsden, A.A., & Nix, J.R. 1976. Relativistic fluid dynamics

calculations with the particle-in-cell technique. Journal of Computational

Physics, 20(2), 119 – 129.

Harlow, Francis H., & Welch, J. Eddie. 1965. Numerical Calculation of Time-

Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics

of Fluids (1958-1988), 8(12), 2182–2189.

Helmsen, J., & Colella, P. 1997 (Jan). Non-convex profile evolution in two

dimensions using volume of fluids. Tech. rept. Lawrence Livermore National

Lab., CA (United States).

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 146

Hirt, C. W., & Nichols, B. D. 1981. Volume of fluid /VOF/ method for the

dynamics of free boundaries. Journal of Computational Physics, 39(Jan.),

201–225.

Hirt, C.W, & Shannon, J.P. 1968. Free-surface stress conditions for

incompressible-flow calculations. Journal of Computational Physics, 2(4),

403 – 411.

Hoang, Duong A., van Steijn, Volkert, Portela, Luis M., Kreutzer, Michiel T., &

Kleijn, Chris R. 2013. Benchmark numerical simulations of segmented two-

phase flows in microchannels using the Volume of Fluid method. Computers

& Fluids, 86, 28 – 36.

Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., &

Tobiska, L. 2009. Quantitative benchmark computations of two–dimensional

bubble dynamics. International Journal for Numerical Methods in Fluids,

60(11), 1259–1288. doi: 10.1002/fld.1934.

Isaacson, E., & Keller, H.B. 1994. Analysis of Numerical Methods. Dover

Books on Mathematics. Dover Publications.

Ishii, Mamoru, & Hibiki, Takashi. 2011. Thermo-Fluid Dynamics of Two-Phase

Flow. second edn. Springer.

Issa, R.I. 1986. Solution of the Implicity Discretized Fluid Flow Equations by

Operator-Splitting. Journal of Computational Physics, 62, 40–65.

Ito, Kei, Kunugi, Tomoaki, Ohshima, Hiroyuki, & Kawamura, Takumi. 2013. A

volume-conservative {PLIC} algorithm on three-dimensional fully unstruc-

tured meshes. Computers & Fluids, 88(0), 250 – 261.

Ito, Kei, Kunugi, Tomoaki, Ohno, Shuji, Kamide, Hideki, & Ohshima, Hi-

royuki. 2014. A high-precision calculation method for interface normal and

curvature on an unstructured grid. Journal of Computational Physics, 273,

38 – 53.

Ivey, Christopher B., & Moin, Parviz. 2015. Accurate interface normal and cur-

vature estimates on three-dimensional unstructured non-convex polyhedral

meshes. Journal of Computational Physics, 300, 365 – 386.

Jasak, H., &Weller, H.G. 1995 (February). Interface-tracking capabilities of the

InterGamma differencing scheme. Tech. rept. CFD research group, Imperial

College, London.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 147

John, Volker, & Matthies, Gunar. 2004. MooNMD –a Program Package Based

on Mapped Finite Element Methods. Comput. Vis. Sci., 6(2), 163–170.

Kang, Myungjoo, Fedkiw, Ronald P., & Liu, Xu-Dong. 2000. A Boundary

Condition Capturing Method for Multiphase Incompressible Flow. Journal

of Scientific Computing, 15(3), 323–360.

Kassar, Bruno de Barros Mendes, & Nieckele, Angela Ourivio. 2015. Curvature

estimation on fluid interfaces by point-cloud sampling. In: Proceedings of

the 23rd ABCM International Congress of Mechanical Engineering. Rio de

Janeiro, Brazil.

Kassar, Bruno de Barros Mendes, Carneiro, João Neuenschwander Escosteguy,

& Nieckele, Angela Ourivio. 2016. Numerical simulation of a single rising

bubble by a VOF method with enhanced curvature estimation based on

point-cloud sampling. In: Proceedings of the 9th International Conference

on Multiphase Flow. Firenze, Italy.

Klostermann, J., Schaake, K., & Schwarze, R. 2013. Numerical simulation of a

single rising bubble by VOF with surface compression. International Journal

for Numerical Methods in Fluids, 71(8), 960–982.

Kreyszig, Erwin. 1991. Differential Geometry. 1st edn. USA: Dover Publica-

tions.

Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., & Zanetti, G. 1994.

Modelling merging and fragmentation in multiphase flows with SURFER.

J. Comput. Phys., 113, 134–147.

Leonard, B.P. 1979. A stable and accurate convective modelling procedure

based on quadratic upstream interpolation. Computer Methods in Applied

Mechanics and Engineering, 19(1), 59 – 98.

Levin, D. 2003. Mesh-independent surface interpolation. Geometric Modeling

for Scientific Visualization, 3.

Liu, Liu, Yan, Hongjie, & Zhao, Guojian. 2015. Experimental studies on the

shape and motion of air bubbles in viscous liquids. Experimental Thermal

and Fluid Science, 62, 109 – 121.

Liu, Xu-Dong, Fedkiw, Ronald P., & Kang, Myungjoo. 2000. A Boundary

Condition Capturing Method for Poisson’s Equation on Irregular Domains.

Journal of Computational Physics, 160(1), 151 – 178.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 148

Maric, Tomislav, Marschall, Holger, & Bothe, Dieter. 2013 (May). voFoam -

A geometrical Volume of Fluid algorithm on arbitrary unstructured meshes

with local dynamic adaptive mesh refinement using OpenFOAM. Comments:

voFoam - geometrical unsplit VoF algorithm on unstructered meshes”.

Noh, W. F., & Woodward, P. 1976. SLIC (simple line interface calculation).

Proceedings, Fifth International Conference on Fluid Dynamics, Lecture

Notes in Physics, 59, 330–340.

OpenFOAM. 2014 (Feb.). OpenFOAM - The Open Source CFD Toolbox - User

Guide. 2.3.0 edn. OpenFOAM Foundation.

Osher, Stanley, & Sethian, James A. 1988. Fronts propagating with curvature-

dependent speed: Algorithms based on Hamilton-Jacobi formulations. Jour-

nal of Computational Physics, 79(1), 12 – 49.

Panton, R.L. 2005. Incompressible Flow. Wiley.

Parolini, N, & Burman, E. 2005. A finite element level set method for viscous

free-surface flows. Pages 416–427 of: Primicerio, M and Spigler, R and

Valente, V (ed), Applied and Industrial Mathematics in Italy. Series on

Advances in Mathematics for Applied Sciences, vol. 69. Italian Soc Appl &

Ind Math. 7th Conference on Applied and Industrial Mathematics in Italy,

Venice, Italy, Sep. 20-24, 2004.

Patankar, Suhas V. 1980. Numerical Heat Transfer and Fluid Flow. Hemi-

sphere Publishing Corporation.

Pericleous, Kyriacos A, & Chan, Koon. 1994. The SEA method for free-

surface problems with heat transfer and change of phase. Journal of Fluid

Engineering, 185(June), 227–236.

Pfister, Hanspeter, Zwicker, Matthias, van Baar, Jeroen, & Gross, Markus.

2000. Surfels: Surface Elements As Rendering Primitives. Pages 335–

342 of: Proceedings of the 27th Annual Conference on Computer Graphics

and Interactive Techniques. SIGGRAPH ’00. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co.

Pivello, M.R., Villar, M.M., Serfaty, R., Roma, A.M., & Silveira-Neto, A. 2014.

A fully adaptive front tracking method for the simulation of two phase flows.

International Journal of Multiphase Flow, 58, 72 – 82.

Popinet, Stéphane. 2003. Gerris: a tree-based adaptive solver for the incom-

pressible Euler equations in complex geometries. Journal of Computational

Physics, 190(2), 572 – 600.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 149

Popinet, Stéphane. 2009. An accurate adaptive solver for surface-tension-

driven interfacial flows. Journal of Computational Physics, 228(16), 5838 –

5866.

Press, William H., Teukolsky, Saul A., Vetterling, William T., & Flannery,

Brian P. 1992. Numerical Recipes in C (2Nd Ed.): The Art of Scientific

Computing. New York, NY, USA: Cambridge University Press.

Prosperetti, Andrea, & Tryggvason, Grétar. 2007. Computational Methods for

Multiphase Flow. Cambridge University Press.

Quinn, Michael J. 2003. Parallel Programming in C with MPI and OpenMP.

McGraw-Hill Education Group.

Rayleigh, Lord. 1879. On the Capillary Phenomena of Jets. Proceedings of the

Royal Society of London, 29, 71–97.

Renardy, Yuriko, & Renardy, Michael. 2002. PROST: A Parabolic Recon-

struction of Surface Tension for the Volume-of-Fluid Method. Journal of

Computational Physics, 183(2), 400 – 421.

Rider, William J., & Kothe, Douglas B. 1998. Reconstructing Volume Tracking.

Journal of Computational Physics, 141(2), 112 – 152.

Roenby, J., Bredmose, H., & Jasak, H. 2016. A Computational Method for

Sharp Interface Advection. ArXiv e-prints, Jan.

Ross, Sheldon. 2013. Chapter 12 - Markov Chain Monte Carlo Methods. Pages

271 – 302 of: Ross, Sheldon (ed), Simulation (Fifth Edition), fifth edition

edn. Academic Press.

Rudman, Murray. 1997. Volume-Tracking Methods for Interfacial Flow Cal-

culations. International Journal for Numerical Methods in Fluids, 24(7),

671–691.

Saad, Y. 2003. Iterative Methods for Sparse Linear Systems. 2nd edn. Philadel-

phia, PA, USA: Society for Industrial and Applied Mathematics.

Samet, Hanan. 1984. The Quadtree and Related Hierarchical Data Structures.

ACM Comput. Surv., 16(2), 187–260.

Samkhaniani, N., & Ansari, M. R. 2016. Numerical simulation of bubble

condensation using CF-VOF. Progress in Nuclear Energy, 89(MAY), 120–

131.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 150

Seibert, Helmut, Hildenbrand, Dietmar, Becker, Meike, & Kuijper, Arjan. 2010.

Estimation of Curvatures in Point Sets Based on Geometric Algebra. Pages

12–19 of: VISIGRAPP 2010. Proceedings.

Shakarji, Craig M. 1998. Least-Squares Fitting Algorithms of the NIST

Algorithm Testing System. Pages 633–641 of: Journal of Research of the

National Institute of Standards and Technology.

Squyres, Jeffrey M. 2012. The Archicture of Open Source Applications. Vol.

ii. Self published. Chap. 15.

Stroustrup, Bjarne. 2013. The C++ Programming Language. 4th edn. Addison-

Wesley Professional.

Sussman, M., Smereka, P., & Osher, S. 1994. A Level Set Approach for Com-

puting Solutions to Incompressible Two-phase Flows. Journal of Computa-

tional Physics, 114, 146–159.

Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., & Zhi-Wei, R. 2007.

A sharp interface method for incompressible two-phase flows. Journal of

Computational Physics, 221(2), 469 – 505.

Sussman, Mark. 2003. A second order coupled level set and volume-of-fluid

method for computing growth and collapse of vapor bubbles. Journal of

Computational Physics, 187(1), 110 – 136.

Sussman, Mark, & Fatemi, Emad. 1999. An Efficient, Interface-Preserving

Level Set Redistancing Algorithm and Its Application to Interfacial Incom-

pressible Fluid Flow. SIAM J. Sci. Comput., 20(4), 1165–1191.

Sussman, Mark, & Ohta, Mitsuhiro. 2009. A Stable and Efficient Method for

Treating Surface Tension in Incompressible Two-Phase Flow. SIAM Journal

on Scientific Computing, 31(4), 2447–2471.

Sussman, Mark, & Puckett, Elbridge Gerry. 2000. A Coupled Level Set and

Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompress-

ible Two-Phase Flows. Journal of Computational Physics, 162(2), 301 –

337.

Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber,

W., Han, J., Nas, S., & Jan, Y.-J. 2001. A front tracking method for the

computations of multiphase flow. J. Comput. Phys., 169, 708–759.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 151

Tryggvason, Grétar, Scardovelli, Ruben, & Zaleski, Stéphane. 2011. Direct

Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge, New

York: Cambridge University Press.

Turek, S. 1999. Efficient Solvers for Incompressible Flow Problems: An

Algorithmic and Computational Approache. Lecture notes in computational

science and engineering. Springer-Verlag.

Ubbink, O, & Issa, RI. 1999. A method for capturing sharp fluid interfaces on

arbitrary meshes. Journal of Computational Physics, 153(1), 26–50.

Ubbink, Onno. 1997. Numerical prediction of two fluid systems with sharp

interfaces. PhD Thesis, Imperial College, London.

Unverdi, Salih Ozen, & Tryggvason, Grétar. 1992. A front-tracking method for

viscous, incompressible, multi-fluid flows. Journal of Computational Physics,

100(1), 25 – 37.

van Leer, Bram. 1974. Towards the ultimate conservative difference schemes, II.

Monotonicity and conservation combined in a second order scheme. Journal

of Computational Physics, 14, 361–367.

van Wachem, B. G. M., & Schouten, J. C. 2002. Experimental validation of

3-D lagrangian VOF model: Bubble shape and rise velocity. AIChE Journal,

48(12), 2744–2753.

Verteege, H. K., & Malalasekera, W. 2007. An Introduction to Computational

Fluid Dynamics: The Finite Volume Method. 2nd edn. SPearson, Prentice

Hall.

Wadell, Hakon. 1935. Volume, Shape, and Roundness of Quartz Particles. The

Journal of Geology, 43(3), 250–280.

Wardle, Kent E., & Weller, Henry G. 2013. Hybrid Multiphase CFD Solver for

Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction. Interna-

tional Journal of Chemical Engineering.

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. 1998. A Tensorial Approach

to Computational Continuum Mechanics Using Object-oriented Techniques.

Computers in Physics, 12(6), 620–631.

Weller, Henry G. 2008 (May). A New Approach to VOF-based Interface

Capturing Methods for Incompressible and Compressible Flow. Tech. rept.

TR/HGW/04. OpenCFD Ltd., United Kingdom.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

Bibliography 152

Williams, M. W., Kothe, D. B., & Puckett, E. G. 1998. Accuracy and

Convergence of Continuum Surface Tension Models. Pages 294–305 of: Fluid

Dynamics at Interfaces. Univ. Press.

Williams, Matthew Wayne. 2000. Numerical methods for tracking interfaces

with surface tension in 3-D mold-filling processes. PhD Thesis, University

of California, Davis.

Yang, Pinghai, & Qian, Xiaoping. 2007. Direct Computing of Surface Curva-

tures for Point-Set Surfaces. Pages 29–36 of: SPBG’07.

Zalesak, Steven T. 1979. Fully multidimensional flux-corrected transport

algorithms for fluids. Journal of Computational Physics, 31(3), 335 – 362.

DBD
PUC-Rio - Certificação Digital Nº 1221633/CA

