Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: FORECASTING PROBABILISTIC DENSITY DISTRIBUTION OF WIND POWER GENERATION USING NON-PARAMETRIC TECHNIQUES
Autor: SORAIDA AGUILAR VARGAS
Colaborador(es): REINALDO CASTRO SOUZA - Orientador
Catalogação: 11/JUL/2016 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26821&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26821&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26821
Resumo:
As a result of the new contracting process wind power auctions and the entrance into operation of new wind farms to the Brazilian electrical system, it is requires that the planning of the operation of short-term activities such as regulation, balancing and programming dispatch of units commitment among other activities, is made such that the technical and financial risks are minimized. But this is not a simple task, since providing accurate forecasts for this process presents several challenges, as the incorporation of uncertainty in the calculation of the forecasts. Hence the technical literature reports several techniques that provide estimates of the probability of wind power generation density, because such estimates allow to obtain forecasts of the wind power probability density function. In this context, wind speed forecasting in wind farms becomes essential information for decision support models which helps the economic and safe operation of electrical systems, due to the fact that most of the models need to the wind speed predictions for forecasting wind energy. This thesis proposes a non-parametric specification strategy for forecasting of wind power generation, using the commonly known conditional kernel density estimation, which allows the estimation of the probability density function of wind power generation for any time horizon, conditioned on wind speed forecast obtained by applying the Singular Spectrum Analysis methodology (SSA). The methodology has been successfully validated using the time series of wind speed and hourly averages of wind production of a Brazilian wind farm. The results were compared against other methodologies for wind speed prediction, and the proposed non-parametric approach produced very prominent results.
Descrição: Arquivo:   
COVER, THANKS, RESUMO, ABSTRACT, SUMMARY, LISTS, EPIGRAPH PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
REFERENCES AND APPENDICES PDF