Título: | PARAMETRIC INSTABILITY OF COLUMNS | ||||||||||||
Autor: |
SALETE SOUZA DE OLIVEIRA BUFFONI |
||||||||||||
Colaborador(es): |
PAULO BATISTA GONCALVES - Orientador |
||||||||||||
Catalogação: | 21/NOV/2001 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2132&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=2132&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.2132 | ||||||||||||
Resumo: | |||||||||||||
The main aim of the present work is to develop a
formulation and some strategies for the instability
analysis of slender columns under an axial harmonic force
this phenomenon is known as parametric ressonance. An
excitation is said to be parametric if it appears as
timedependent - often periodic - coefficients in the
equations governing the motion of the system,and not as an
inhomogeneous term.The column is described by Navier
classical formulation. The present work consider
the column with one or three degrees of freedom with or
without nonlinearities. The equations governing the motion
are obtained by the Ritz method.The linear equation
(Mathieu equation) and the Duffing equation with small
damping are solved in an approximate way using multiple
scales techniques, revealing the possibility
of destabilizing the static equilibrium position in certain
regions of the control space. A similar conclusion is
obtained by employing numerical methods for the solution of
linear and nonlinear equation systems with or without
initial geometrical imperfections.This enables one to
obtain time response, phase space, projections Poincaré
sections and bifurcation diagrams. These numerical results
show that the column with nonlinearities and loaded by a
periodic longitudinal force can present various solutions
with the same period as the forcing and subharmonic e
superharmonic oscillations, as well as chaotic motions.
|
|||||||||||||
|