Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: STEPPER MOTOR CONTROL APPLIED TO A ROBOTIC MANIPULATOR
Autor: WILLIAM SCHROEDER CARDOZO
Colaborador(es): MARCO ANTONIO MEGGIOLARO - Orientador
Catalogação: 03/DEZ/2012 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=20783&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=20783&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.20783
Resumo:
Stepper motors are used in most applications in open loop. However, the limitations of this type of control have encouraged the development of new techniques for closed loop control. Stepper motors have a good relationship between torque and cost, making it attractive for applications in robotic manipulators. But the limitation of traditional control deteriorates the performance of the manipulator. The most common form of closed loop control of stepper motors require an encoder directly coupled to the motor shaft. However, this is not always practical. In some cases, it is necessary to control the position of some system component that can’t be precisely known from the position of the motor. This work proposes a control technique that receives feedback from an encoder, not directly coupled to the motor shaft, and generates a sequence of pulses to the stepper motor driver. This pulse train is done so as not to require excessive accelerations, and thus prevent the loss of step. The model of a system using this controller is built using Simulink/MATLAB. A robotic manipulator of six degrees of freedom, using stepper motors, is designed and built to validate the presented control techniques, implemented on a PIC18F2431 microcontroller. The obtained absolute accuracy is 1,3mm and repeatability 0,5mm , proving the efficiency of the proposed control technique.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
CHAPTER 9 PDF    
REFERENCES AND APPENDICES PDF