Título: | ASYMPTOTIC EXPANSIONS APPLIED TO FORCED CONVECTION AT VANISHINGLY SMALL VISCOSITY FOR THE CONSTANT VORTICITY FLOW OVER AN INFINITE WEDGE | ||||||||||||
Autor: |
SIDNEY STUCKENBRUCK |
||||||||||||
Colaborador(es): |
LEONIDAS SEREJO PINTO DE ABREU - Orientador |
||||||||||||
Catalogação: | 28/OUT/2011 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18603&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18603&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.18603 | ||||||||||||
Resumo: | |||||||||||||
Abreu (1967) studied the two-dimensional ,inconpressible, constant
vorticity flow past an infinite wedge.
In the present work the problem solved by Abreu is considered for
the case where a constant temperature fluid flows past an infinite
wedge with non-isothernal surface, thus given rise to a thermal boundary
layer.
The matched asyntotic expansion netod,as present in Van Dyke(1962), was applied
to the solution of the problem. According to Van Dyke there are
four problems leads to the desired asynpotic solution for large
values of the Reynolds number. The solution defines a system forned
by the Navier Strokes, continuity and energy equations. The asym
ptotic expansions found by Abreu (1967) for the hydrodynamic problem i.e for
the continuity and Navier-Stokes equations were used in our solution.
Although a general analytical solution was found for any angle
of the wedge between 0 degree and 90 degrees numerical solutions are show for the
particular semi-angle values of 0 degree, 18 degrees and 72 degrees and Prandt 1 numbers
values of 0.7,1.0 and 10.
|
|||||||||||||
|