Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DETERMINATION OF SN IN HUMAN MILK BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY
Autor: RENATO MARÇULLO BORGES
Colaborador(es): REINALDO CALIXTO DE CAMPOS - Orientador
MARIA DE FATIMA RAMOS MOREIRA - Coorientador
Catalogação: 18/DEZ/2009 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14735&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14735&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.14735
Resumo:
Tin is a metal of natural occurrence which is mainly extracted from the mineral cassiterite, SnO2. Tin may be released to the atmosphere from both natural and anthropogenic sources. In nature, it occurs in both inorganic and organic forms, and the shorter the organic chain associated to the metal, the higher the toxicity of the compound. Organotin compounds can penetrate cell membranes and cause damage to cell, interrupt oxidative phosphorylation and damage mitochondria. They can be immunotoxic and genotoxic. Human milk is the ideal food for newborns due to its composition and availability. Human milk is the fundamental food for infants, thus breast feeding is greatly encouraged up to 2 years. However, it is also the major source of exposition to exogenous substances for newborns, including tin and its compounds, since breast milk can also be a route of maternal excretion of undesired environmental pollutants. The direct GF AAS analysis of products such as milk is very attractive, due to the inherent simplicity, and decrease in the sample preparation time and contamination chances. In the present work, a transversally heated graphite atomizer was used. Pyrolysis and atomization temperatures curves led to pyrolysis and atomization temperatures of 1300 and 2200ºC, respectively, using a sample volume of 20 µL. The use of a 1+1 dilution factor using 0.2% v/v HNO(3) as diluent showed to be the best choice, as well as a modifier mass of 10+5 µg of palladium+magnesium, respectively. The modifier solution volume was 10µL. In all cases, the background attenuation was well within the limits of the Zeeman effect based background corrector. The analytical curve was linear up to 300 µg L(-1), in both aqueous medium as well as in the presence of the matrix. Calibration had to be performed with matrix matched calibration solutions, using a blank level sample. The limit of detection (n=10, k=3) in the original sample was 0.6 µg L(-1). It was verified that Cl(-1) and Ca(2) + influence on tin absorbance signal is markedly depreciated at concentrations above 100 and 40 mgL(-1), respectively. On the other hand, the increase of tin signal is caused by the presence of P in concentrations between 5 and 150 mg.L(-1). In a calibration study, recovery was higher than 95% in human milk. The methodology was able in determine Sn, as MMT, when iSn is used for the calibration.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
CHAPTER 9 PDF    
CHAPTER 10 PDF    
REFERENCES PDF