Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: RECOMMENDATION BASED ON DATA MINING FOR RELATIONSHIP MARKETING
Autor: LIVIA FONSECA FRACALANZA
Colaborador(es): MARCO ANTONIO CASANOVA - Orientador
Catalogação: 24/AGO/2009 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14008&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14008&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.14008
Resumo:
Cross-selling is a strategy to recommend products to customers based on their past purchases or the purchases of other customers with the same profile. The best known algorithm for the analysis of a client shopping basket is known in the literature as market basket analysis. This dissertation discusses the discovery of sequential patterns in large databases and aims at implementing an efficient algorithm that transforms the shopping cart problem into a maximum clique problem. First, input data is transformed into a graph and maximum cliques are detected to discover the most frequent relationship between the items on the transaction. The dissertation also includes experiments that evaluate the efficiency of the algorithm for large data volumes.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES AND APPENDICES PDF