Título: | A STUDY ON RECOMMENDER SYSTEMS BASED ON CONTENT AND SOCIAL NETWORKS | ||||||||||||||||||||||||||||||||||||
Autor: |
RICARDO NIEDERBERGER CABRAL |
||||||||||||||||||||||||||||||||||||
Colaborador(es): |
DANIEL SCHWABE - Orientador |
||||||||||||||||||||||||||||||||||||
Catalogação: | 12/MAI/2009 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13454&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13454&idi=2 |
||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.13454 | ||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||
This dissertation offers two major contributions: (1) to evaluate the
suitability of recommender algorithms for social networks. Such recommender
algorithms may receive as input not only the social graph of these
networks but also content-based data from recommended items. For such,
the relevant characteristics of social networks and the most important recommender
techniques for these tasks will be surveyed. Special attention is
given to the web-based system for social photo-sharing called Flickr and to
the employment of visual metrics for image similarity. The second contribution
(2) is the construction of a framework for the modeling and analysis of
social networks, as well as aiding the empirical study of recommender algorithms
on these contexts. Also part of this framework are the best practices
adopted throughout the work done on this dissertation, such as: techniques
for the gathering, analysis and visualization of data; social networks classification;
identification and modeling of recommending tasks within these
contexts; implementation of algorithms and their architecture. The relevance
of such contributions lies on the enormous amount of information
available online and on the ever-growing complexity of the relationships between
this data. In this context, recommender systems may provide a great
aid for end-users.
|
|||||||||||||||||||||||||||||||||||||
|