Título: | CROP TYPE IDENTIFICATION BASED ON HIDDEN MARKOV MODELS USING MULTITEMPORAL IMAGE SEQUENCES | ||||||||||||||||||||||||||||||||||||||||
Autor: |
PAULA BEATRIZ CERQUEIRA LEITE |
||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
RAUL QUEIROZ FEITOSA - Orientador ANTONIO ROBERTO FORMAGGIO - Coorientador |
||||||||||||||||||||||||||||||||||||||||
Catalogação: | 13/JAN/2009 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12960&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12960&idi=2 |
||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.12960 | ||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||
This work proposes a Hidden Markov Model (HMM)-based
methodology to classify agricultural crops, exploring
information of temporal image sequences from TM
and ETM+/Landsat sensors. HMMs are used to relate the
varying spectral response along the crop cycle with plant
phenology for different crop classes. The method recognizes
different agricultural crops by analyzing their spectral
profiles over a temporal sequence of medium resolution
satellite images ( approximation 30m). In our approach the
temporal behaviour
of each crop class is modelled by a specific HMM. A segment-
based classification is
performed using the average spectral values of the pixels
in each image segment across
an image sequence, which is subsequently submitted to the
HMMs of each crop class.
The image segment is assigned to the crop class, whose
corresponding HMM delivers the
highest probability of emitting the observed sequence of
spectral values. Experiments
were conducted upon a set of 12 co-registered and
radiometrically corrected LANDSAT
images. The images cover an area of the State of São Paulo,
Brazil with about 124.100ha,
between the years 2002 and 2004. The following classes were
considered: sugarcane,
soybean, corn, pasture and riparian forest. Performance
assessment was carried out upon
a data set classified visually by two analysts and
validated by extensive field work. The
performance of the proposed multitemporal classification
method was compared to that of
a monotemporal maximum likelihood classifier, and the
results indicated a remarkable
superiority of the HMM-based method, which achieved an
average of no less than 91%
accuracy in the identification of the correct crop, for
sequences of data containing a single
crop class.
|
|||||||||||||||||||||||||||||||||||||||||
|