Título: | ON THE INTERACTION BETWEEN SOFTWARE ENGINEERS AND DATA SCIENTISTS WHEN BUILDING MACHINE LEARNING-ENABLED SYSTEMS | ||||||||||||
Autor: |
GABRIEL DE ANDRADE BUSQUIM |
||||||||||||
Colaborador(es): |
MARCOS KALINOWSKI - Orientador MARIA JULIA DIAS DE LIMA - Coorientador |
||||||||||||
Catalogação: | 18/JUN/2024 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67085&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67085&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.67085 | ||||||||||||
Resumo: | |||||||||||||
In recent years, Machine Learning (ML) components have been increasingly integrated into the core systems of organizations. Engineering such systems
presents various challenges from both a theoretical and practical perspective.
One of the key challenges is the effective interaction between actors with different backgrounds who need to work closely together, such as software engineers
and data scientists. This work presents three studies investigating the current
interaction and collaboration dynamics between these two roles in ML projects. Our first study depicts an exploratory case study with four practitioners
with experience in software engineering and data science of a large ML-enabled
system project. In our second study, we performed complementary interviews
with members of two teams working on ML-enabled systems to acquire more
insights into how data scientists and software engineers share responsibilities
and communicate. Finally, our third study consists of a focus group where we
validated the relevance of this collaboration during multiple tasks related to
ML-enabled systems and assessed recommendations that can foster the interaction between the actors. Our studies revealed several challenges that can
hinder collaboration between software engineers and data scientists, including
differences in technical expertise, unclear definitions of each role s duties, and
the lack of documents that support the specification of the ML-enabled system. Potential solutions to address these challenges include encouraging team
communication, clearly defining responsibilities, and producing concise system
documentation. Our research contributes to understanding the complex dynamics between software engineers and data scientists in ML projects and provides insights for improving collaboration and communication in this context.
We encourage future studies investigating this interaction in other projects.
|
|||||||||||||
|