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Abstract

Busquim, Gabriel; Kalinowski, Marcos (Advisor); Lima, Maria
Julia (Co-Advisor). On the Interaction between Software
Engineers and Data Scientists when Building Machine
Learning-Enabled Systems. Rio de Janeiro, 2024. 119p. Dis-
sertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

In recent years, Machine Learning (ML) components have been increasin-
gly integrated into the core systems of organizations. Engineering such systems
presents various challenges from both a theoretical and practical perspective.
One of the key challenges is the effective interaction between actors with diffe-
rent backgrounds who need to work closely together, such as software engineers
and data scientists. This work presents three studies investigating the current
interaction and collaboration dynamics between these two roles in ML pro-
jects. Our first study depicts an exploratory case study with four practitioners
with experience in software engineering and data science of a large ML-enabled
system project. In our second study, we performed complementary interviews
with members of two teams working on ML-enabled systems to acquire more
insights into how data scientists and software engineers share responsibilities
and communicate. Finally, our third study consists of a focus group where we
validated the relevance of this collaboration during multiple tasks related to
ML-enabled systems and assessed recommendations that can foster the inte-
raction between the actors. Our studies revealed several challenges that can
hinder collaboration between software engineers and data scientists, including
differences in technical expertise, unclear definitions of each role’s duties, and
the lack of documents that support the specification of the ML-enabled sys-
tem. Potential solutions to address these challenges include encouraging team
communication, clearly defining responsibilities, and producing concise system
documentation. Our research contributes to understanding the complex dyna-
mics between software engineers and data scientists in ML projects and pro-
vides insights for improving collaboration and communication in this context.
We encourage future studies investigating this interaction in other projects.

Keywords
Machine Learning; ML-enabled System; Data Science; Software Engi-

neering; Collaboration.



Resumo

Busquim, Gabriel; Kalinowski, Marcos; Lima, Maria Julia. Sobre
a Interação entre Engenheiros de Software e Cientistas de
Dados Construindo Sistemas Habilitados por Aprendizado
de Máquina. Rio de Janeiro, 2024. 119p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

Nos últimos anos, componentes de aprendizado de máquina têm sido cada
vez mais integrados aos sistemas principais de organizações. A construção des-
ses sistemas apresenta diversos desafios, tanto do ponto de vista teórico quanto
prático. Um dos principais desafios é a interação eficaz entre atores com di-
ferentes formações que precisam trabalhar em conjunto, como engenheiros de
software e cientistas de dados. Este trabalho apresenta três estudos distintos
que investigam as dinâmicas de colaboração entre esses dois atores em projetos
de aprendizado de máquina. Primeiramente, realizamos um estudo de caso ex-
ploratório com quatro profissionais com experiência em engenharia de software
e ciência de dados de um grande projeto de sistema habilitado por aprendizado
de máquina. Em nosso segundo estudo, realizamos entrevistas complementa-
res com membros de duas equipes que trabalham em sistemas habilitados por
aprendizado de máquina para obter mais percepções sobre como cientistas de
dados e engenheiros de software compartilham responsabilidades e se comuni-
cam. Por fim, nosso terceiro estudo consiste em um grupo focal onde validamos
a relevância dessa colaboração durante várias tarefas relacionadas à sistemas
habilitados por aprendizado de máquina e avaliamos recomendações que po-
dem melhorar a interação entre os atores. Nossos estudos revelaram vários
desafios que podem dificultar a colaboração entre engenheiros de software e
cientistas de dados, incluindo diferenças de conhecimento técnico, definições
pouco claras das funções de cada um, e a falta de documentos que apoiem
a especificação do sistema habilitado por aprendizado de máquina. Possíveis
soluções para enfrentar esses desafios incluem incentivar a comunicação na
equipe, definir claramente responsabilidades, e produzir uma documentação
concisa do sistema. Nossa pesquisa contribui para a compreensão da complexa
dinâmica entre engenheiros de software e cientistas de dados em projetos de
aprendizado de máquina e fornece recomendações para melhorar a colaboração
e a comunicação nesse contexto. Incentivamos novos estudos que investiguem
essa interação em outros projetos.
Palavras-chave

Aprendizado de Máquina; Sistema Habilitado por Aprendizado de Má-
quina; Ciência de Dados; Engenharia de Software; Colaboração.
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1
Introduction

1.1
Context and Motivation

In the past decades, computer processing power and the amount of data
produced have grown absurdly, creating a prosperous field for technological
innovations such as Artificial intelligence (AI) and Machine Learning (ML).
ML is used today in various applications, from processing natural language
to recommending products to customers. Integrating ML components into
existing systems has increased as companies seek to leverage vast amounts
of data to enhance the business outcomes of their software products. In this
dissertation, we refer to these systems as ML-enabled systems, since their
behavior is dictated by explicitly defined rules and the data used by the ML
component to make decisions. Typically, the ML component is only a small
part of a larger system, which usually comprises other components for data
collection, model consumption, and infrastructure requirements (Sculley et al.,
2015).

This transition from developing traditional software systems to those
integrated with ML components introduces new challenges from the software
engineering viewpoint (Wan et al., 2019). The development of ML-enabled
systems often involves completely separate workflows and different actors who
must efficiently work together throughout various stages of the project (Aho
et al., 2020). A team working on an ML-enabled system usually comprises:

– Business owners, who must have a comprehensive view of the problem
at hand to set goals for the system based on business objectives;

– Designers, responsible for modeling the users’ interaction with the model
to maximize their satisfaction and engagement with the system;

– Domain experts, who use their knowledge of the domain to help other
stakeholders by providing context to the analyzed data and the model’s
results;

– Data scientists, who play a vital role in preprocessing and analyzing the
data, together with developing, tuning, and monitoring the performance
of the model;
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– Software engineers, responsible for designing how other system compo-
nents will interact with the ML component and supervising scalability
and maintainability for the ML-enabled system.

The last two actors mentioned above are responsible for developing
and integrating the model with the system, and an ineffective interaction
between them can cause misconceptions capable of harming the system (Lewis
et al., 2021). This scenario highlights the importance of proper alignment and
communication between the actors. It is vital for managers and team leaders to
understand each actor’s responsibilities inside the project and how to overcome
challenges during their collaboration.

1.2
Research Goal and Objectives

Our goal with this study is to thoroughly illustrate how software engineers
and data scientists collaborate when developing an ML-enabled system. We
define collaboration, or interaction, as having two or more actors working
together to accomplish a given task. This means that they must communicate
with each other and divide responsibilities during task execution. In the context
of this work, we do not consider isolated questions from one actor to another
as collaboration, as this does not imply both of them are sharing responsibility
over that task.

Investigating this interaction in-depth allows us to visualize where it can
be improved. With this research, we seek to obtain recommendations that
can promote better collaboration practices for software engineers and data
scientists. Not only does this facilitate team management, but it can also
enhance the team’s performance.

As we investigate collaboration procedures inside teams developing soft-
ware products with ML components, we also uncover new research possibilities.
Another objective of this work is to analyze the current literature depicting
the interaction between software engineers and data scientists in the context of
ML-enabled systems and how it can be expanded. Based on the literature and
our findings, we present several future work opportunities that can be explored
by other researchers interested in this topic.

1.3
Methodology

To accurately characterize collaboration in a real-world context, we dis-
cussed this topic with data scientists and software engineers currently devel-
oping ML-enabled systems for industry-academia projects. This dissertation
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comprises three studies we conducted, each involving different teams and par-
ticipants.

Our first study consists of a case study with a team developing an
ML-enabled system for helping parties handle legal conflicts. We interviewed
two data scientists and two software engineers from the team to map how
they shared responsibilities and communicated since the beginning of the
project. The participants revealed the challenges they faced due to ineffective
collaboration during multiple tasks, such as integrating the ML model with
other system components and updating the project’s documentation.

In our second study, we interviewed members of two other teams building
ML-enabled systems for a customer in the Oil and Gas sector. We used an
interview script similar to the one designed in our case study to see if any new
perspectives emerged. While we still noticed similarities between the challenges
faced by the teams, the participants’ statements complemented our vision of
collaboration in ML projects. For example, we saw how data scientists may
interact with software engineers who are not part of their team but work
directly for the project’s customer.

Finally, our third study comprises a focus group with experienced data
scientists and software engineers. This study examined how collaboration be-
tween these two actors can affect tasks they must execute during development.
Moreover, we asked participants to evaluate several recommendations we pro-
posed based on the literature and our findings for improving this interaction.
As a result of this study, we obtained a detailed view of the importance of col-
laboration for each task. We were also able to assess the advantages brought
by each recommendation we had defined.

1.4
Dissertation Outline

This dissertation comprises six chapters. Chapter 2 explains the back-
ground behind ML-enabled systems and the challenges encountered by the
software engineering community while building them. We also detail related
work on the topic of ML systems development and collaboration practices
adopted by teams developing them. Chapter 3 portrays our case study, present-
ing our research methodology and the results we obtained. Chapter 4 reports
the complementary interviews we conducted to enrich our case study findings.
Chapter 5 illustrates the focus group we performed with practitioners experi-
enced in data science and software engineering. Finally, Chapter 6 summarizes
our research’s contributions and limitations, which may be addressed in future
works.



2
Background and Related Work

2.1
Introduction

In this chapter, we present an overview of ML-enabled systems and
the challenges associated with them. We examine the current literature to
understand what studies have already been conducted and the main findings
concerning collaboration between software engineers and data scientists. This
investigation helped us comprehend how to plan our studies so that they could
enrich the existing literature.

This chapter contains four sections. Section 2.2 briefly explains what ML
is and how it differs from traditional non-ML systems. Section 2.3 discusses
several papers in the field of software engineering for ML-enabled systems.
Section 2.4 contains our concluding remarks.

2.2
Background

Within the domain of AI, ML stands out as a technology with profound
contemporary relevance. An ML model is characterized by its capacity to
learn through training and make predictions. ML applications are extremely
diverse, ranging from speech recognition to product recommendation. As this
field grows, it becomes extremely important to understand how to design,
develop, and monitor ML systems efficiently. This involves preventing bugs
and guaranteeing the desired performance in a production environment. The
process behind creating an ML model is not a consensus between all teams,
but they usually follow a similar workflow. This workflow, depicted in the work
of Amershi et al. (2019), is illustrated in Figure 2.1.

The first stage involves determining model requirements, such as the
system features that could be implemented with ML and the most appropriate
ML algorithms for the problem. In the Data Collection stage, the team looks for
datasets to train the model. It is important to remove any inaccurate data from
the dataset, which is done in the Data Cleaning step. Truth labels may also
be assigned to the data records depending on the chosen learning technique.
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Figure 2.1: Stages of an ML Workflow

In the Feature Engineering stage, the dataset features the model will use
are defined and extracted for model training. After that, the model’s output
is evaluated and adjusted until it is ready to be deployed. The model must be
constantly monitored so errors and performance decays are instantly detected
and resolved. ML development is an iterative process. Hence, model evaluation
and training may occur multiple times during the project. This can happen
when new training data is acquired, or when definitions made during the model
requirements stage need to be revisited.

2.2.1
Challenges in Building ML-enabled Systems

Villamizar et al. (2024) define ML-enabled systems as software systems
with an ML component. The development of ML-enabled systems presents
several challenges that can significantly impact the interaction between team
members. This is the case especially for software engineers and data scientists,
who often share responsibilities for handling data and deploying models. For
example, designing an appropriate architecture for these systems is not trivial,
as the team must evaluate factors such as model performance degradation,
uncertainty management, and proper integration between the model and other
system components (Nazir et al., 2023).

Furthermore, requirements engineering practices for non-ML software de-
velopment are not entirely applicable when developing systems with an ML
component (Ishikawa and Yoshioka, 2019). There is a typical lack of require-
ments specifications for ML-enabled systems that clearly define the input data,
expected model outputs, and how the ML component should integrate into
the larger system (Villamizar et al., 2024). Without these specifications, data
scientists may create models with assumptions that software engineers are un-
aware of, leading to integration issues when transitioning from development to
production.

The different backgrounds of data scientists and software engineers can
also impact their interactions. While data scientists may have strong mathe-
matical and statistical skills, software engineers have expertise in programming,
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software design, and system architecture (Kim et al., 2017). This diversity can
lead to variations in problem-solving approaches. In addition, their cultural
differences can also play an important role. While the tasks performed by data
scientists revolve around experimentation and dealing with the uncertainty of
unpredictable results, software engineers often adhere to structured develop-
ment methodologies (Aho et al., 2020). These cultural disparities can cause
barriers in a collaborative environment.

2.3
Related Work

During our research, we found several studies investigating ML-enabled
systems. We organized them into different categories according to their research
topic. This categorization allowed us to understand how the current literature
discusses challenges for building systems with ML components through differ-
ent perspectives.

2.3.1
Papers investigating Challenges for ML Development

The literature confirms how developing ML components defies current
software engineering practices. Wan et al. (2019) conducted a mixed study
comparing ML and non-ML systems to grasp their most important differ-
ences according to practitioners’ views. They noticed significant differences
in both software engineering activities and work characteristics. For example,
components’ coupling in ML systems is less emphasized than in non-ML sys-
tems. In addition, ML systems rely heavily on data availability, quality, and
experimentation. This dependency on data, in turn, introduces uncertainties
when establishing system requirements and estimating task effort. Given this
scenario, results showed that communication between team members is vi-
tal. Respondents stressed the importance of informing business owners about
what is possible or not with ML models, which may be dictated by data avail-
ability. They also mentioned challenges when discussing project progress with
customers due to difficulties interpreting the model’s results.

Rahman et al. (2022) described challenges and lessons learned from an
industry-academia collaborative ML-enabled system project for error correc-
tion in retail transactions. The authors reported challenges faced from a soft-
ware engineering and an ML perspective. The discussed challenges portray how
the development of ML components affects multiple phases of the software de-
velopment life cycle, such as eliciting requirements, integrating all ML and
non-ML system components, and evaluating infrastructure for deployment.
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Amershi et al. (2019) presented a case study with Microsoft software
development teams to gather best practices for ML systems. After grouping
the participants according to their experience with AI, the authors ranked
the most relevant challenges for each group. The results showed that “data
availability, collection, cleaning, and management” was ranked first for all
groups. This illustrates how the success of ML-enabled systems depends on
quality data, which mobilized the teams toward data reusability between
different projects and rigorous data versioning controls. Another challenge
ranked high regardless of participants’ experience with AI was “collaboration
and working culture.” The authors enforced that software engineers with
traditional systems development knowledge must be able to work alongside
ML specialists.

2.3.2
Papers investigating Actors inside the Team

Some studies explore the perspectives of specific actors inside teams
building ML-enabled systems, such as UX designers. Zdanowska and Taylor
(2022) interviewed interdisciplinary teams with designers to uncover how col-
laboration happened during the project and the main challenges they faced
when designing an ML system. Results showed that the teams made design
decisions collectively in multiple project stages. Involving technical team mem-
bers in design discussions from the beginning allowed designers to familiarize
themselves with technical details, which prevented issues later in the project.
Furthermore, designers helped technical team members better understand sys-
tem requirements and think more about the user when discussing the product.
The authors cited siloed organizational structures, in which actors struggle to
communicate with each other, as a challenge for collaboration. Another ob-
stacle reported was aligning product expectations with business owners and
requesting buy-in for project continuity.

In another study investigating UX practitioners, Yang et al. (2018) in-
terviewed thirteen designers to understand their activities and extract insights
for UX in an ML context. The findings illustrated the participants’ design pro-
cess, which started with identifying a goal for the ML system together with the
data scientists. As designers experimented with different ideas, data scientists
tested them and returned possible technical limitations. This iterative process
created a shared vision of the product and the company’s goals, considered
critical by all participants. Based on these results, the authors emphasized
how UX educators should provide opportunities for students to engage in in-
terdisciplinary collaborative experiences, as this would help qualify them for
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the industry.
Previous studies also depict the perspective of data scientists. Kim et al.

(2017) surveyed 793 data science employees and enthusiasts at Microsoft to
uncover their work activities and obstacles. While respondents pointed out
challenges related to data characteristics, such as availability and quality,
a separate category of challenges was dedicated to team interaction. For
instance, participants struggled with effectively sharing insights with leaders
and achieving agreement among all stakeholders. To address this, the authors
emphasized the importance of specifying and clarifying the goals of the project
together with the whole team. This recommendation can also help convince
business owners of the value of collecting quality data, which was another
challenge respondents mentioned.

Begel and Zimmermann (2014) asked 1500 Microsoft software engineers
what questions they would most like data scientists to answer, which were
subsequently prioritized by 2500 Microsoft engineers in another survey. While
grouping the first survey questions into categories, the authors saw the need
to create a category dedicated to collaboration, as participants were interested
in practices that could improve the interaction within and between teams. For
example, they inquired about methods for sharing knowledge inside the team
and defining code ownership. Collaboration also appeared in the results of the
second survey. The question “How can we improve collaboration and sharing
between teams?” was highly ranked by multiple respondents.

2.3.3
Papers investigating Team Interaction

Papers analyzing collaboration and communication investigate ML teams
and projects involving data science in general. Zhang et al. (2020) designed an
online survey to understand how data science workers collaborate. This survey
was answered by 183 IBM employees, including data scientists and software
engineers. The findings reported that data scientists strongly participate in all
stages of the projects, which suggests they may be responsible for guiding the
team’s activities. On the other hand, software engineers are more involved in
core technical activities, such as acquiring data for the model. The paper also
presented an overview of code and data documentation practices inside the
teams, which the authors highlighted as key for collaborative practices.

Lewis et al. (2021) studied the consequences of ML mismatches between
data scientists, software engineers, and operations staff developing ML-enabled
systems. The authors defined ML mismatches as problems caused by inaccurate
assumptions these actors had about the system that could have been prevented
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through knowledge sharing. This study revealed that most mismatches were
related to incorrect assumptions about the ML model. Participants reported a
lack of model specifications, APIs, and test cases for integration testing. They
also declared that data scientists trained the ML models and passed them to
the software engineers for integration with the other system components. These
findings confirm the existence of mismatches in the collaboration between data
scientists and software engineers during product-model integration.

In a more recent paper, Mailach and Siegmund (2023) examined so-
ciotechnical challenges for bringing ML-enabled software into production. After
analyzing 73 videos in which practitioners shared their experiences developing
ML-enabled systems, the authors identified 17 antipatterns for productionizing
ML. Most were not related to technical aspects, but instead caused by orga-
nizational characteristics. For example, a subset of antipatterns were induced
by organizational silos, especially between the data science and software engi-
neering teams. The findings reported that tension, communication issues, and
difficulties during model integration and deployment characterized the inter-
action between these two actors. Because of this, the process of bringing the
model to production became delayed, tedious, and error-prone.

Also focusing on these two roles, Nahar et al. (2022) interviewed 45
participants working on software projects with ML components to identify
challenges and recommendations for the interaction between these actors. The
authors identified three activities that required collaboration: identifying and
decomposing requirements, negotiating training data quality and quantity,
and integrating data science and software engineering work. During these
tasks, participants reported challenges such as data scientists working isolated
from software engineers, insufficient system documentation, and problems with
responsibility sharing.

2.4
Concluding Remarks

In this chapter, we reviewed several papers illustrating obstacles teams
developing ML-enabled systems must confront. While some refer to develop-
ment and system design, the literature also confirms the existence of consider-
able issues related to the interaction between team members, especially data
scientists and software engineers. When discussing the state of the art, Na-
har et al. (2022) mentioned they were unaware of other studies examining
challenges between these two actors. With our work, we intend to expand the
literature on this topic and provide additional insights and useful recommen-
dations for practitioners.



3
Case Study

3.1
Introduction

This chapter depicts the case study we conducted to comprehend the
interaction dynamics between software engineers and data scientists. Choosing
a case study strategy allowed us to examine this interaction thoroughly. It also
enabled us to qualitatively understand the responsibilities these actors had
during the execution of the selected case project. In this work, we followed
the guidelines proposed by Runeson et al. (2012) for case study research in
software engineering.

The selected case concerns an ML-enabled system for Online Dispute
Resolution (ODR) created to help parties settle legal disputes in Rio de
Janeiro. Beyond describing the team and system context, we conducted
semi-structured interviews with two experienced software engineers and data
scientists to understand their interactions and challenges in ML projects. To
this end, we asked them about activities covering the development process end-
to-end. Our questions ranged from defining requirements to analyzing data
and integrating the ML model with the rest of the system. We transcribed and
analyzed the interviews using Reflexive Thematic Analysis (RTA), one of the
Thematic Analysis (TA) family methods (Braun and Clarke, 2006, 2019). This
approach guided us while analyzing the data and finding patterns among the
interviewees’ points of view.

We detail the goal of this study in Table 3.1. We followed the Goal-
Question-Metric (GQM) template for goal definition, a structured approach
commonly used in software engineering and related fields (Basili and Rom-
bach, 1988). This approach helps to establish a clear connection between the
research’s goal, the specific questions that need to be answered, and the met-
rics used to measure progress. From this goal, we derived the following research
questions.
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Table 3.1: Case Study Goal
Analyze the interaction between software engineers

and data scientists
for the purpose of characterization
with respect to responsibility sharing and collaboration
from the point of view of experienced software engineers and data

scientists
in the context of a large ML-enabled system project for

ODR to help settle legal disputes.

RQ1: How do software engineers and data scientists share
responsibilities when developing an ML-enabled system?

This research question investigates what tasks are carried out by software
engineers and data scientists during the development of ML-enabled systems.
It focuses on how responsibilities are shared between these two pivotal roles,
providing insights into the task allocations and synergies that contribute to
the successful creation of ML-based solutions. To answer RQ1, we evaluated
the participation of software engineers and data scientists in multiple stages
of the ML-enabled system’s creation, such as during the system’s design and
model development. For each activity, we mapped the actors involved and if
any collaboration happened.

RQ2: How do software engineers and data scientists collaborate
when developing an ML-enabled system?

This question focuses on the collaborative practices between software en-
gineers and data scientists developing ML-enabled systems. It seeks to uncover
the nature of their interactions and communication methods, contributing to
a comprehensive understanding of the collaborative processes inherent in this
interdisciplinary context. To this end, we asked participants about their per-
ceptions of how this interaction unfolded inside the team. We encouraged them
to highlight challenges and improvement possibilities.

This chapter comprises five sections. Section 3.2 details the selected
case and how we designed our research methodology. Section 3.3 presents the
case study results and the participants’ statements. Section 3.4 discusses the
participants’ perceptions and the answers to our research questions. Section 3.5
depicts our concluding comments.
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3.2
Case Study Design

The selected case concerns +Acordo, an ODR system project. It was cre-
ated to help parties settle legal disputes in Rio de Janeiro. The system uses
ML to generate settlement agreements for cases with low legal complexity,
therefore avoiding litigation. Since the whole process happens inside the plat-
form, the system can solve its users’ problems in an agile and affordable way,
minimizing costs and bureaucracy. We chose to focus on this particular project
because it is centered around the development of an ML-enabled system, which
is aligned with the scope of our investigation. Furthermore, we had easy access
to project participants and the complete system documentation.

+Acordo started in 2021 inside PUC-Rio’s Tecgraf Institute through a
partnership with the Rio de Janeiro State Court. After applying the Lean
Inception methodology developed by Caroli (2017), the team defined the
product’s main functionalities. Given the system’s goal, building an ML
component to aid in dispute resolution was considered an interesting choice.
This led to the incorporation of data scientists into the team, which also
began participating in meetings to discuss model characteristics. For the
system’s first version, the team partnered with an electric power company and
established their focus on disputes involving consumer complaints directed to
this company. The company representatives then developed external APIs that
the system would consume to obtain part of the data required by the model.

The team responsible for developing +Acordo is multidisciplinary. It
comprises a product owner, domain experts, UX designers, data scientists, and
software engineers. They all attended meetings to understand business rules
and discuss product ideas. Customer representatives attended these meetings
as well to ensure decisions followed their expectations. Besides specifying
requirements, they were also responsible for evaluating the team’s deliveries.
They could interact with the system through release versions made available
by the software engineers every two months. Each release version contained a
new major functionality developed and tested by the team.

The team follows the Agile software development methodology, using the
Scrum framework to structure their tasks. Work is divided into sprints that
last two weeks. Before each sprint, the team meets to plan their activities.
Development tasks are thoroughly discussed during this planning stage to make
sure the steps needed to complete each task are clear to everyone. After that,
the members gather daily to discuss their activities. At the end of each sprint,
the team evaluates whether they accomplished their goals. Each team member
expresses positive and negative points about the sprint, extracting lessons
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learned to benefit future sprints. After that, a new development iteration starts
with the beginning of a new sprint.

The team building the ML-enabled system comprises six software engi-
neers and two data scientists, considered part of two separate squads. Each
squad has its tasks, as well as its own planning and daily meetings. How-
ever, the teams share the same product owner. The product owner gets to-
gether weekly with the teams’ leaders to discuss their activities, evaluate their
progress, and align future steps.

Figure 3.1 shows an overview of the system’s architecture. Users have
access to the system’s functionalities through a web application. It allows them
to create an account on the platform, register disputes, and view the settlement
agreements generated. The application communicates with back-end services
through a REST API.

Figure 3.1: Simplified System Architecture

The system’s back-end architecture is based on microservices. In this
architectural style, services are decoupled, providing more flexibility when de-
ploying and managing the system. Each service has a single responsibility, such
as processing disputes, creating agreements, or generating documents. The ser-
vices communicate both synchronously and asynchronously. Synchronous com-
munication happens through REST APIs, while asynchronous communication
occurs via message queues. The developers implemented an event-driven ar-
chitecture, where the system components can communicate asynchronously
through messages to perform their tasks.

A relational database was used to store registered users and disputes.
The systems’ APIs access the database to display information in the web
application and provide the software’s functionalities. As disputes may have
fields specific to a particular company, the team created different tables in the
database to support multiple data types. Besides communicating with its back-
end, the system also communicates with external services. This communication
occurs for various reasons, such as complementing dispute data through the
REST APIs provided by the partner company. The ML model uses the
obtained data to determine the creation of a settlement agreement.
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One of the system’s back-end services communicates with the ML com-
ponent through a REST API. The model’s input consists of data entered by
users on the web platform and complementary data obtained from external
APIs. As an output, the model returns whether it can generate a settlement
agreement. If the result is positive, the model returns all agreement param-
eters. If not, the model returns why it could not create an agreement. The
model consists of a decision tree, which contains a set of fixed rules defined by
customer representatives and the partner company that must be validated be-
fore the system can generate a settlement agreement. These rules were created
to restrain the model’s possible outputs and improve transparency.

After verifying all rules, the model then evaluates data from previously
resolved disputes. After selecting and analyzing those most similar to the
dispute in question, the model defines the ideal value for each settlement
agreement parameter, such as the value for compensating moral damages.
Other information about this subset of disputes is also extracted and displayed
to the user, such as the average time taken to resolve them through litigation.
The text classification method behind the model’s functionality is described
in the work of Coelho et al. (2022).

Figure 3.2 illustrates our steps during the execution of this case study.
The first step was to design the interview script, which we discuss in the next
section. After that, we conducted the interviews and transcribed all recordings.
In the last step, we used RTA to analyze the data. This process is detailed in
Section 3.2.2.

Figure 3.2: Research Steps

3.2.1
Data Collection

To elaborate our interview questions, we used the work of Villamizar et al.
(2022b) as a reference. The authors developed PerSpecML, a perspective-based
approach for specifying ML-enabled systems. Through this approach, it is pos-
sible to analyze several concerns that must be addressed when planning these
systems. PerSpecML’s goals include improving decision-making as the project
progresses and identifying trade-offs between conflicting requirements and de-
sign decisions. In addition, it aims to foster collaboration and communication
between the stakeholders involved in the system. To fulfill these goals, this ap-
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proach evaluates four major components: stakeholders, perspectives, concerns,
and tasks. Below, we discuss each one of these elements.

PerSpecML provides a holistic view of the development of ML-enabled
systems. For this reason, it involves multiple project stakeholders. In the first
version of PerSpecML, Villamizar et al. (2022b) defined four actors of interest:

– Business owners, who must align the system’s goals with business objec-
tives. They must know what ML can do to set impactful and realistic
goals.

– Designers, responsible for creating an engaging user experience for the
system. A well-designed interaction with the ML model provides value
to end users, whose feedback contributes to the quality of the model over
time.

– Data scientists, who analyze the data and develop the ML component.
To do this, they must understand the data’s context, business needs, and
model requirements.

– Software engineers, who implement ML model integration with the
rest of the system. Beyond assessing the interaction between system
components, they must also monitor performance and scalability.

After evaluating and refining their approach, Villamizar et al. (2024) also
included domain experts in the final version of PerSpecML. They play a
fundamental part in the team by supplying real-world knowledge to ensure
the ML-enabled system correctly addresses its challenges. Their collaboration
with other stakeholders, such as business owners and data scientists, is crucial
for model creation and interpretation.

Perspectives represent particular aspects of a system. The authors sepa-
rated the specification of an ML-enabled system into five different perspectives,
each with its own characteristics. They are presented in Table 3.2.

Table 3.2: Evaluated Perspectives
Perspective Description

ML/System Objectives Involves understanding the problem to be solved by the ML-
enabled system and defining the model’s goals.

User Experience Involves designing an appropriate interaction between the user
and the model.

Data Addresses how data is obtained and analyzed to build the
model.

Model Concerns defining the model’s inputs and outputs and evalu-
ating its performance.

Infrastructure Covers establishing a robust infrastructure for the ML-enabled
system to function properly.

A concern is a specific issue that needs to be considered when developing
the system. In total, the authors identified 59 concerns, which are covered by
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all perspectives. The concerns were allocated into 28 groups, each representing
a task the team should perform. Each task is associated with one of the
perspectives described above and has at least one suggested stakeholder
responsible for executing it. Tasks may have more than one stakeholder, which
implies that the involved actors will have to work together while analyzing
the task’s concerns. The authors also mapped relationships between tasks to
highlight how one may depend on another. These relationships illustrate the
importance of cross-functional collaboration inside the team.

All PerSpecML components are integrated into the perspective-based
ML task and concern diagram. The diagram presents an extensive view of the
activities required for developing successful ML-enabled systems. Moreover, it
models the tasks and related concerns faced by different stakeholders in ML
projects. We used the initial version of Villamizar et al. (2022b)’s perspective-
based ML task and concern diagram to design our interview script. We chose
this version since it was the most recent one at the time of the interviews. Using
this diagram, we initially mapped tasks associated with the infrastructure
perspective involving either a software engineer or a data scientist. After that,
we investigated tasks from other perspectives, which gave us a broader view of
the responsibilities both of these actors may have inside a project. Figure 3.3
displays the diagram with the tasks we examined highlighted.

Figure 3.3: The initial version of the perspective-based ML task and concern
diagram. The red rectangles indicate tasks performed by data scientists, while
the blue ones indicate those performed by software engineers. The dashed
arrows indicate relationships between the tasks

This analysis confirmed the participation of either data scientists or soft-
ware engineers in at least one task from every perspective. Furthermore, we
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noticed some tasks involve data scientists and software engineers simultane-
ously, indicating the need for collaboration between them. Hence, we designed
our interview script to investigate how participants handled all of these tasks
in the context of their project. For each highlighted task in Figure 3.3, we
questioned participants about:

– What they did during the task.

– Their interaction with a data scientist, software engineer, or other actors
on that task.

– Perceived difficulties or improvement opportunities during task execu-
tion.

– If the task originated any documentation.

We used this interview script to guide our discussions with the partici-
pants. The interviews were conducted on the Google Meet platform and lasted
between thirty and fifty minutes. We asked open-ended questions so partici-
pants could provide as much detail as possible. Depending on their answers,
we also asked questions outside our script to better comprehend their perspec-
tives. In cases where participants had difficulties understanding the question,
the author responsible for the interviews provided examples and context to help
clarify the subject. Participants could also address any unmentioned topics re-
lated to our research that they deemed relevant. We recorded all interviews
and, to transcribe them, we used Google Cloud’s Speech-to-Text API1. The
Google Cloud Platform provides a console where it is possible to upload a
WAV audio file and download the corresponding transcript in TXT format.

3.2.2
Analysis Procedure

For analyzing the data, we followed the guidelines for RTA defined by
Braun and Clarke (2006, 2019). Although RTA is widely used in psychology
research, studies have shown that it can be applied in other fields, such as
software engineering (Cruzes and Dyba, 2011) and human-computer interac-
tion (Brown and Stockman, 2013). We decided to use RTA in our research
since it allows us to engage analytically with the data. In other types of TA
methodologies, such as coding reliability approaches, the analysis summarizes
what was said about a particular topic (Braun and Clarke, 2021). In our case,
we were interested in finding and interpreting patterns inside the data to fully
understand the scenario illustrated by our participants and extract the main

1https://cloud.google.com/speech-to-text

https://cloud.google.com/speech-to-text
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challenges they reported. Following the recommendations of Braun and Clarke
(2021), we did not consider using grounded theory due to the small size of our
sample and the fact we do not have the goal of developing a theory.

The first phase of RTA is to become familiarized with the data, which
we did while reviewing the transcripts and listening to the recordings. After
that, we started the coding process. During this process, we aim to group
different data components so that all information covering a given topic is in
the same category. To do this, we first read each transcript thoroughly. Then,
for each relevant text fragment, we create a code. As we keep reading, we either
assign more sentences to one of the codes or create a new one. We followed an
inductive approach for coding, where codes are developed using the data itself
as a starting point.

With the codes defined, we then grouped them into themes. To develop
themes, we must look for similarities between the codes. Themes should be
objective and underpinned by a central concept. They must contain useful in-
formation about the dataset, directly addressing at least one research question.
Following RTA recommendations, we iteratively refined the themes until they
met these criteria.

3.2.3
Analysis Execution

The interview transcripts have between 855 and 1020 words. Our first
step during analysis was translating them from Portuguese to English and
correcting words while listening to the recordings. Some words had been
incorrectly transcribed, while others were not transcribed at all. It was also
necessary to add punctuation to the sentences and remove direct references
to participants’ names to guarantee anonymity. The revised transcriptions are
illustrated in Appendix B. After applying the coding process, we acquired
47 codes. By examining the codes and looking for patterns across them, we
extracted 18 candidate themes. Figure A.1 inside Appendix A illustrates the
codes and themes obtained during this analysis.

The next step of RTA is to review and name the themes. In this process,
we inspect our list of candidate themes, check if they reflect the coded data, and
if they effectively contribute towards answering our research questions. During
this step, our first action was to reduce the number of themes. Although Braun
and Clarke (2012) state there is no exact formula for defining an ideal number,
they warn that having too many themes can harm analysis coherence and
decrease the level of detail each one presents. Therefore, we decided to reduce
the number of themes to no more than six, an upper-bound value cited by the
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authors. To promote this reduction, we transformed the labels we had created
to categorize our findings (represented by the red rectangles in Figure A.1
inside Appendix A) into themes. With that, our previous list of candidate
themes became sub-themes. We also adjusted the names of the newly created
themes and sub-themes to make them clearer and more attractive to readers.

Another change we made concerns the themes related to system docu-
mentation. Initially, we had created different themes for project definitions’
documentation and team interaction while documenting the software. After
analysis, we concluded that these themes share the same central concept. For
this reason, we transformed these two themes into sub-themes of a new theme,
“Documentation Development.” Figure A.2 inside Appendix A portrays the
new themes and sub-themes.

After restructuring our themes, we developed a thematic map. A the-
matic map consists of a visual representation of the themes and sub-themes
developed throughout the analysis, allowing us to evaluate how representative
they are of the collected data. Moreover, by mapping relationships between the
themes, we can visualize them in relation to the others. Figure 3.4 illustrates
our thematic map for this case study.

Figure 3.4: Thematic Map for the Case Study

The thematic map contains eight relationships between themes, which are
explained in Table 3.3. As we describe each one of the themes and sub-themes
in the next section, it will become clear how these relationships unfolded inside
the team.
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Table 3.3: Thematic Map Relationships
Relationship Description

R1 Participants were unhappy with how the team shared respon-
sibilities during the planning stage.

R2 Data scientists and software engineers agreed to document
different system components.

R3 Participants struggled while updating documentation.
R4 Collaboration between our participants was important during

data analysis.
R5 Our participants did not communicate much while executing

their tasks.
R6 The team had to make some decisions regarding model require-

ments by themselves.
R7 Participants documented the ML-enabled system’s definitions.
R8 The lack of achievable requirements affected how model per-

formance was monitored.

3.3
Case Study Results

All four participants verbally agreed to participate voluntarily in the
study and have their interviews recorded. We assigned them an identification
number, which we will use in the following sections to ensure their anonymity.
All subjects identified as male and hold a master’s or a doctorate degree. Table
3.4 shows the roles, education level, and years of work experience for each one.

Table 3.4: Participants’ Demographic Data
Participant ID Role Education Level Years of

Experience

DS1 Data Scientist Doctorate 8
DS2 Data Scientist Doctorate 8
SE1 Software Engineer Master’s degree 11
SE2 Software Engineer Master’s degree 12

As depicted in Figure 3.4, we extracted six themes in total: Require-
ments Specification and Negotiation, Consequences of Imprecise
Planning, Collaboration while Working with Data, Responsibility
Sharing for System Management, Features of Team Interaction, and
Documentation Development. Below, we describe each one in detail. We
included paraphrased statements from the participants to support our analysis
and interpretations.

3.3.1
Requirements Specification and Negotiation

Two sub-themes related to requirements emerged from the qualitative
analysis: Lack of Achievable Requirements and Customer Represen-
tatives’ Impact. Managing the requirements for the ML-enabled system was
a challenge, as participants described a lack of achievable requirements. Data
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scientists mentioned that model requirements were unrealistic and unclear at
the beginning of the project. DS2 stated:

“The requirements were abstract, like ’the model needs to be fast’ or ’the
system needs to be easy to use.’ There was a misalignment between what was
desired and what was possible, which led to many meetings.”

Customer representatives helped to define the requirements for the
model. SE1 gave examples of their participation:

“I noticed that customer representatives could actively suggest model parame-
ter adjustments. Another topic they discussed was keeping information about
the model’s operation private from end users. This was done to prevent them
from learning how to manipulate the model in their favor.”

DS2 also recognized the importance of customer involvement, mentioning that
he felt like customer representatives could have participated more:

“We had difficulties because we did not include more customer representa-
tives when we defined the product’s concepts. They could have helped us by
making decisions. Instead, we made decisions internally. We had to revisit
some of these decisions later, while we were lucky not to in others.”

Participants also emphasized that requirements constantly changed after
discussions with customer representatives. DS1 provided an example:

“In the beginning, we had defined that the model would be as flexible as
possible. We realized during later meetings this would not be well accepted,
as it would make the model’s results less predictable.”

3.3.2
Consequences of Imprecise Planning

Two sub-themes related to planning emerged from the analysis: Prob-
lems with Responsibility Definition and Lack of Team Coordination.
Data scientists performed activities out of their field of expertise, such as elic-
iting requirements for the system. DS2 explained:

“Our team was responsible for understanding the entire business flow and
legal procedures so that we could build the model. Someone else could have
done this survey and delivered the requirements to us.”

The data science team also developed the model consumption API. In DS2’s
view, this should have been done by the software engineers:
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“We were a research team, not a development team. Still, we needed to
develop versions and generate specifications for the model. Our team was
responsible for developing and maintaining the model consumption API. This
responsibility could have been given to the software engineering team.”

Software engineers and data scientists struggled when planning their
tasks. They tried to plan their activities separately, only communicating when
necessary. SE2 explained this process:

“We created a REST API to allow the model’s integration with the system.
We defined a communication interface for the API, and then each team did
its part. It was outside the data science team’s interest to understand how
we stored the data as long as this service existed.”

Nevertheless, some participants were unhappy with this decision, especially
with the coordination between the two teams. Each team had its own goals
for each sprint, and dependencies between them were not always correctly
mapped. DS2 stated:

“There was a misalignment in planning regarding each team’s dependencies.
For example, software engineers sometimes depended on a change in the
model that was not in our backlog. The roles of each team ended up not
being clear, which led to problems in the API used to consume the model.
We lacked comprehensive planning that involved both teams more.”

3.3.3
Collaboration while Working with Data

The two sub-themes related to data that emerged from the analysis
were Teamwork for Data Collection and Teamwork for Data Analysis.
There was a collaboration effort between software engineers and data scientists
to collect data for the model. All participants confirmed the data science team
was responsible for analyzing and documenting the data, and no software
engineer participated in these activities. Even though software engineers did
not directly analyze data, they collaborated with data scientists on other tasks.
They were responsible for obtaining the data from customer representatives
and making it available to the data science team, as explained by DS1:
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“Since we worked with legal processes containing sensitive data, we needed a
secure way to obtain them. The development team defined how this would be
done together with customer representatives. They created a tool to download
the data and make it available on our server. This download is done manually
whenever new data are available.”

Participants also reported it took time to obtain the data needed for the model.
DS2 described how this situation led to undesired development tasks:

“We also had problems with data availability. It took us some months to get
all the valid data needed for testing. Therefore, we had to initially use mocked
data, which later became different from the real data, leading to rework.”

Data scientists continuously analyzed data during model creation, and
both DS1 and DS2 agreed that this analysis was not trivial. DS2 explained:

“Preprocessing the data was complex. We received raw data, so cleaning
procedures were necessary, and we also put a lot of effort into annotating
the data. It took a lot of effort to analyze and process the data received so
that we could work on the model. This situation also affected what algorithms
we could use for the model.”

As requirements for the model constantly changed, so did its input data fields.
Data analysis uncovered new fields that needed to be included, as explained
by DS1:

“Throughout the project, we discussed what data we would take into account
to generate the settlement agreement, and it took us a while to figure out
what data we needed to request from the customer. We defined some data
fields during development, while others were defined during meetings“.

Collaboration between team members enabled data analysis to be less
challenging. As raw data was received in files, the software engineers created
a tool to help with this process. DS1 explained:

“The development team helped us to create a text annotation system and
make it available to the domain experts. They [the domain experts] indi-
cated which document parameters were most interesting for extraction and
annotated the data we used for model training.”

Domain experts were considered vital for data understanding and analysis.
They helped the data scientists throughout the project, as highlighted by DS1:



Chapter 3. Case Study 36

“The domain experts were always by our side to answer questions, which was
essential for building the model.”

3.3.4
Responsibility Sharing for System Management

Two sub-themes related to system management emerged from our anal-
ysis: Handling Infrastructure and Challenges for Model Performance
Evaluation. While the data science team was responsible for data analysis
and building the model, the software engineers developed the web application
and the back-end services that consume the model. They also handled the
model’s API deployment and infrastructure. SE1 stated:

“We are responsible for deploying the model consumption API. The deploy-
ment of this service is automated through a CI/CD pipeline.”

SE2 explained why the software engineers had the responsibility of deploying
the model:

“We already had a standard procedure for deployment beforehand, and we
knew the data scientists did not specialize in DevOps, so we left this structure
ready for them.”

While software engineers monitored the model’s infrastructure, data
scientists had to monitor its performance. DS1 and DS2 said it was difficult to
define metrics for the model, such as a target accuracy. DS2 mentioned:

“The time taken to obtain valid data hindered the time to create a better
performance evaluation framework“.

To solve this, the team agreed to assess model results with customer represen-
tatives. DS2 explained:

“We presented model studies to the project’s stakeholders for them to evaluate
if the results were adequate or not.”

DS1 also mentioned that customer representatives validated the model:

“A supervisory committee, composed of customer representatives, was re-
sponsible for validating the results produced.”

When asked about implementing incremental learning for the model,
participants said this was a future goal. Although customer representatives
desired this feature, the team did not prioritize it. The process of retraining
the model is currently a manual task, as described by DS1:
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“We defined that, from time to time, the model would be retrained with new
data to update the parameters used.”

3.3.5
Features of Team Interaction

The sub-themes related to team interaction that emerged from our analy-
sis were Consequences of Unclear Communication and Constant Inter-
action between Stakeholders. There were communication issues between
software engineers and data scientists, which caused problems in the ML-
enabled system. SE1 explained the discovery of errors in the data received
by the model:

“I did not have the necessary knowledge to analyze if the data were correct
and what fields were required or optional. Problems only appeared when we
started testing and integrating the system with external APIs. Only then did
we notice data either missing or in the wrong format. If the teams had not
been so distant, we could have anticipated these problems.”

SE2, on the other hand, exemplified communication issues by explaining how
the team should have discussed how to store the model artifacts:

“We provided Git repositories for this storage, but the teams did not discuss
how the data scientists would store the artifacts. This eventually caused
issues because the model had a lot of artifacts, such as the training scripts,
which were not separated from the API code. For this reason, large files were
loaded unnecessarily every time a new model release was generated.”

We noted that software engineers did not know much about the model.
Since data scientists and software engineers had different responsibilities, they
became unaware of each other’s activities. SE1 explained his view of this
situation:

“We were very separated, and I did not like that. We did not know much
about the model. It was like a ’black box’ [...]. Even with a well-defined API,
things that were obvious to the data science team were unclear to us. [...]
We only developed the services that consumed the model, so we did not know
what was being done.”

This situation proved to be a problem when defining the model’s input, as SE1
highlighted:
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“When we met with customer representatives and data scientists to map the
data required by the model, I was unsure if the data we requested was correct
because I did not know what the data scientists expected for the model’s
input.”

Software engineers and data scientists struggled to communicate changes
in the model’s API. SE2 stated:

“Problems in the ML-enabled system were caused by changes in the interface
established for the API.”

DS2 also expressed dissatisfaction with errors in the model’s input:

“Problems with input data formats when calling the model’s API should not
have been our responsibility, as this data had to be in the expected form before
communication happened. However, we had to build workarounds to correct
input data formats, which made the system’s integration with the model take
time and generate rework.”

SE1 noticed a misunderstanding about the data between data scientists,
software engineers, and customer representatives. He explained:

“In meetings, I noticed a mismatch regarding the participants’ understanding
of the data. For example, I expected the model’s input to be in a particular
format. Yet, the data scientists expected them in another format, and what
the customer representatives understood differed from what the data scien-
tists were expecting. This situation provoked changes in the model consump-
tion API throughout the system’s development.”

SE2 also viewed the teams’ separation as a problem, but was wary of harming
productivity:

“If both teams were closer, we could have avoided these problems. However,
we would also have had a higher overhead, as everyone would need to be
together in all meetings.”

The interviews showed how software engineers and data scientists had
to communicate with other project stakeholders. For instance, both actors
interacted with customer representatives to define requirements. SE2 gave an
example:
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“We had several discussions with customer representatives to understand
their product vision and define what was possible. From there, the UX
designers started to prototype ideas that we later used to model the system’s
database“.

Software engineers and data scientists also communicated with each other
during development, and we noticed how they had a good relationship. DS1
emphasized this by stating:

“We do not have any problems in terms of communication between the teams,
as the software engineers are very attentive and available to us. When there
is a change, like new data that needs to be included in the API, or when
there is an issue, we communicate directly through messages.”

3.3.6
Documentation Development

Finally, the two sub-themes we extracted related to documentation
were Documenting Product Definitions and Documenting System
Components. The team documented the ML-enabled system’s definitions
and recognized the importance of doing so. DS2 explained:

“Each model definition was documented through presentations we did [...]
to showcase our team’s progress. The architecture of the model was also
described in a document.”

DS1 highlighted the importance of documenting each meeting:

“We created a flowchart with all the rules the model considered and docu-
mented the meetings through minutes. We even had an episode where it was
necessary to resort to these minutes to prove that the team had made certain
decisions in a previous encounter.”

DS1 also mentioned how these documents helped him learn about the project
when joining the team:

“Several research reports were developed at the beginning of the project. I
consulted one about the system, which contained some use cases explaining
the problem we had to solve. I also consulted another report on decision trees
and other AI techniques that were researched. These documents helped me
understand the business faster.”

On the other hand, SE1 joined the team in the middle of the project and
explained that he did not know about documentation that could have helped
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him during his onboarding:

“I became aware of the model’s objective and the system’s architecture during
the project. I used to ask the data science team questions when I had doubts.
There was no formal passage of knowledge, but instead explanations on
demand.”

Software engineers and data scientists did not cooperate much when
producing documentation, as each team was responsible for documenting
different system components. DS1 explained:

“The software engineers documented the input data, while we documented
the output data.”

However, changes in the system harmed this process, as explained by SE2:

“Our biggest challenge was with changes. The system’s initial state was well-
documented, but then changes started happening. These changes were not
documented properly, which harmed the alignment between the teams. We
did not correctly update the documentation throughout the project, and we
also did not communicate these changes efficiently. We discovered them as
system components stopped working.”

Likewise, SE1 was not fully satisfied with the system’s documentation:

“Our system is not documented well enough, even though we currently have
the model’s output and input data documented. For example, in the middle of
this integration, a mapper converts data to the format expected by the model.
We could have documented this conversion better.”

3.4
Discussion

3.4.1
How do software engineers and data scientists share responsibilities when
developing an ML-enabled system?

Data scientists and software engineers had specific responsibilities in the
project. Data scientists focused on analyzing data and developing the ML
model and its consumption API. On the other hand, software engineers were
responsible for the model’s infrastructure and the back-end services that access
it.

Both teams shared responsibilities with other project stakeholders. For
example, they participated in meetings with customer representatives to define
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the ML-enabled system’s goals and functionalities. Data scientists worked
closely with domain experts to understand data fields and discover new
ones subsequently included in the model’s input. Software engineers discussed
interface layouts with UX designers before implementing them on the system’s
web application. These findings align with Zhang et al. (2020)’s results, which
indicate that software engineers and data scientists are present in different
project stages, from developing the system to communicating with business
stakeholders.

Participants illustrated multiple interaction points between the software
engineering and data science teams. They had several meetings to define model
inputs and outputs and to enable model integration with the rest of the system.
The same happened during data collection, when software engineers helped
data scientists obtain the data for model training. Both teams also interacted
during data annotation, as the software engineers created a system to help
with this process. The developed tool allowed domain experts to select text
areas inside files and associate them with a data field, structuring the data for
the model.

The interviews revealed that DS2 was not pleased with all the respon-
sibilities data scientists received. They had to map the business flow behind
processing legal disputes, elicit requirements for the model, and present ideas
to customer representatives. Besides that, not all decisions regarding model
features they had to make could be validated with the customer. DS2 also
explained the data science team’s participation in developing the model con-
sumption API. Even though they were a research team, they implemented all
the API’s code, which was a skill they did not have much experience with.
For this reason, software engineers helped them during this process. Software
engineers also handled the model’s infrastructure and deployment pipelines,
since this was another skill the data scientists did not possess. Data scientists
struggling with ML infrastructure was one of the concerns mentioned by Nahar
et al. (2022).

Team members performing activities outside their field of expertise
highlights an opportunity to improve planning, which was another topic
mentioned during the interviews. Participants revealed that features developed
by software engineers could not be deployed because data scientists had
to prioritize other functionalities. Although both teams tried to work as
independently as possible, having such dependencies effectively mapped and
planned could have enhanced the team’s delivery speed and avoided problems
during the model’s integration.
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3.4.2
How do software engineers and data scientists collaborate when develop-
ing an ML-enabled system?

Participants viewed communication between the software engineering
and data science teams positively. Both teams had a good relationship and were
always helpful when a member had doubts. They had a group chat where they
could interact at any given time. However, their communication could have
been more efficient. Both teams worked almost independently, which reduced
the frequency of interactions between them and led to software engineers not
having much knowledge about the model. Even though the model had a well-
defined API, which was discussed by both teams, SE1 and SE2 used the term
“black box” to describe the system’s ML component. This lack of knowledge
became evident during meetings with customer representatives, as there was a
mismatch across the participants’ understanding of the data. For example, one
of the software engineers could not evaluate if the requested data was sufficient
for the model, nor if they were in the expected format. This situation caused
errors in the ML-enabled system that were discovered only during testing,
resulting in avoidable rework.

Constant changes in requirements, also observed in Wan et al. (2019)’s
work, worsened the ineffective communication between data scientists and
software engineers. As new requirements appeared, both the model and the
system had to be updated. The data science team had to implement new data
fields for the model’s input and business rules for the model’s output. At the
same time, software engineers needed to change the system to capture such
data fields, either by user input or through accessing an external API. These
changes provoked errors in the system because they were not communicated
properly among the teams. For this reason, data scientists had to develop
adaptations in the model consumption API to accommodate different input
data formats.

The team strived to document product definitions and the ML-enabled
system architecture. Meeting decisions were registered in minutes, and data
scientists and software engineers were responsible for documenting different
system components. Software engineers documented the model’s input data
and the back-end services that consumed the model. On the other hand, data
scientists documented the business rules behind the model’s behavior and its
output responses. This separation of responsibilities made maintaining the
documentation harder. New features were constantly being developed, and
the team struggled to update the documents. The aforementioned inefficient
communication of changes in the system was another obstacle when updating
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documentation. For example, problems with changes in the model’s input were
fixed by creating mappers that corrected the format of input data fields, and
one participant mentioned that these mappers could be better documented.

Communication between the data science and software engineering teams
was essential for one participant who joined the team after product develop-
ment had already started. SE1’s understanding of the ML-enabled system’s
objectives and architecture was acquired through conversations and questions
to the team, as no formal documentation was presented to him. The data fields
used by the model are very specific to its domain, which makes understanding
them difficult for someone unfamiliar with all the business rules related to legal
procedures.

3.4.3
Threats to Validity

This section discusses threats to validity, focusing on four types of threats:
construct validity, internal validity, external validity, and reliability.

Threats to construct validity relate to our applied research methodol-
ogy not being suited to answer our research questions, as participants’ reports
may differ from reality. To mitigate this threat, we consulted the project’s docu-
mentation, such as use case diagrams and system architecture documents. This
documentation was used to cross-check the participants’ statements. Moreover,
two other researchers who collaborated with this study revised the transcrip-
tions, codes, and themes generated during the analysis. At the same time,
the coding process in RTA is inherently subjective (Braun and Clarke, 2019),
where researchers use their own experiences while interpreting the data.

In terms of internal validity, threats include methodological errors that
may harm the truthfulness of the results for our population, such as asking
incoherent questions to the participants. To mitigate them, we formulated the
interview questions based on the findings of Villamizar et al. (2022b), which
were acquired through a literature review (Villamizar et al., 2021) and reports
of industrial experiences with ML systems (Villamizar et al., 2022a). We also
explained the questions in detail when the participants expressed doubts to
leave as little room for misunderstandings as possible. We recognize the number
of participants, which was limited because of the team’s size, may affect the
credibility of our results. To mitigate this, we interviewed the team’s most
experienced software engineers and data scientists.

External validity concerns how our findings can be generalized. We
understand that our case study only discussed challenges from a single team
working in a specific ML-enabled system. It is possible to have scenarios
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where, for example, the same team is responsible for all tasks carried out by
software engineers and data scientists. In other cases, a project manager might
define responsibilities more formally, which can alter the team’s collaboration
procedures. However, given that some of our results are also present in the
current literature, we believe our case study provides additional insights that
can be considered when analyzing these two actors’ interactions.

Reliability assesses to what extent the study depends on the researchers.
To improve reliability, besides the peer-reviewed qualitative procedures, we up-
loaded the transcription of each interview to an online repository2. Making this
material available enables auditing our analysis and facilitates the replication
of our study.

3.5
Concluding Remarks

In this chapter, we investigated the interaction between data scientists
and software engineers through a case study with a team developing a large
ML-enabled system project. We interviewed two experienced members of
each role about their activities and collaboration practices. We used RTA
to inspect the interview transcripts and extract relevant data to answer our
research questions. This case study was also illustrated in a paper written
by Busquim et al. (2024), presented at the 2024 Software Quality Days
(SWQD) conference3.

The results gave us an overview of how the team organized tasks
inside the project and the challenges data scientists and software engineers
faced. These include actors being unaware of each other’s activities, frequent
requirement changes, unsynchronized planning, and outdated documentation
of the ML-enabled system.

2https://doi.org/10.5281/zenodo.10035304
3https://www.software-quality-days.com/en/

https://doi.org/10.5281/zenodo.10035304
https://www.software-quality-days.com/en/


4
Complementary Interviews

4.1
Introduction

In addition to the case study, we conducted semi-structured interviews
with two other teams working with ML-enabled systems. We did this to obtain
new perspectives on the topic of collaboration and investigate similarities with
our case study results. As we had previously examined only a single team
working on a specific solution, we could not guarantee our findings could be
useful for other teams working with ML-enabled systems. Even though our case
study’s outcomes are also mentioned in the existing literature, it is important to
understand them in the context of other projects for the industry. Interviewing
more practitioners allows us to amplify our vision of the challenges behind the
interaction between software engineers and data scientists. It also helps us to
evaluate the external validity of our case study’s findings.

Both teams we interviewed work on projects from ExACTa, an agile
experimentation initiative from PUC-Rio. ExACTa’s mission is to enable
digital transformation through research and industry-academia partnerships,
fostering innovation and improving operational efficiency. The projects we
analyzed were developed for a customer in the Oil and Gas industry. Even
though they are for the same customer, each project has an individual goal,
architecture, and team responsible for it.

Since this study aims to enrich the findings of our case study, we defined
a similar goal for it, shown in Table 4.1. We also decided to use the same
research questions, namely “How do software engineers and data scientists
share responsibilities when developing an ML-enabled system” and “How do
software engineers and data scientists collaborate when developing an ML-
enabled system”. Maintaining the same research questions is vital to our
objective, as it allows us to compare this study’s findings with our previous
results.
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Table 4.1: Complementary Interviews Goal
Analyze the interaction between software engineers

and data scientists
for the purpose of characterization
with respect to responsibility sharing and collaboration
from the point of view of software engineers and data scientists
in the context of two ML-enabled system projects for the

Oil and Gas industry.

This chapter contains six sections. Section 4.2 illustrates how we designed
our interview script and collected the data for our research. Section 4.3 presents
the first project we analyzed, together with participants’ perceptions. In
Section 4.4, we do the same for the second project we investigated. Section 4.5
contains our discussion of the interviews’ results. Section 4.6 comprises our
final remarks.

4.2
Data Collection

We followed the same methodology applied in the case study to design
our interview script. However, in this study, we used a more recent version
of the perspective-based ML task and concern diagram. The process behind
developing this new version comprised several validations of the previous
version together with academic students and industry representatives, as
reported by Villamizar et al. (2024). Once again, we mapped all tasks with
a software engineer or data scientist as responsible. Figure 4.1 presents the
diagram with both roles highlighted.

Some differences can be perceived between the initial diagram and the im-
proved version. First, the authors removed relationships between tasks, which
are now established between concerns. Besides that, the actors responsible for
some tasks changed, and new tasks were added. For instance, the User Experi-
ence perspective now has a task “Ensure the credibility of predictions,” which
involves a data scientist. Moreover, by analyzing the Infrastructure perspec-
tive, we can see a new task involving data scientists and software engineers,
“Automate End-to-End ML workflow.”

For each task highlighted in the diagram, we asked the same questions
as in the case study, namely:

– What was the subjects’ participation in that task, if any.
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Figure 4.1: The most recent perspective-based ML task and concern diagram
version. Once again, the red rectangles indicate tasks performed by data
scientists, while the blue ones indicate those performed by software engineers.
Relationships between concerns are indicated inside the brackets next to each
concern’s name

– If there was any interaction with a data scientist, software engineer, or
other actors during task execution.

– Any challenges or improvement opportunities they perceived.

– If the task led to the creation of documentation.

Although the interview questions remained the same, using a different diagram
allowed us to discuss new tasks. Since the improvements made on the diagram
are based on feedback from ML practitioners who work on real-world projects,
we believe these adjustments can also better capture the collaborative processes
behind developing ML-enabled systems.

Once again, we recorded all interviews on the Google Meet platform and
transcribed them using Google Cloud’s Speech-to-Text API1. We presented
examples when participants could not precisely understand our questions, and
they also had the opportunity to address any unmentioned topics related to
our research that they deemed relevant. After acquiring all the transcripts,
we listened to the recordings to correct words and revise the sentences’
punctuation. After that, we used open coding (Strauss and Corbin, 1998) to
extract the most relevant statements based on our research questions. During
this process, we coded citations illustrating either a responsibility participants
had inside the team or a feature of their collaboration with other stakeholders.

1https://cloud.google.com/speech-to-text

https://cloud.google.com/speech-to-text
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The following sections describe each project we investigated and present the
selected quotes.

4.3
SmartTocha

Our first group of participants are working on a project called Smart-
Tocha. The project started in 2019 and is a few months away from being fully
delivered to the customer. It was created to control burning gas quality in the
flare systems of the customer’s oil refineries. This is vital for minimizing envi-
ronmental damage and saving resources inside the industrial unit. To do this,
the system classifies the flame into one of three states: optimized flame, flame
with too much vapor, or flame with soot. The water vapor flow is automatically
decreased or increased based on this state. A more detailed description of the
system is depicted in the patent application publication written by Kuramoto
et al. (2023).

A camera is used to monitor the flames. Through the ML model, the
system can quantify the flare flame height and classify it in one of the three
states mentioned earlier. Beyond creating and training the model, the team
also had to develop components for data processing and for integration with
the software responsible for acting on the position of the water vapor valves.
Furthermore, the team migrated system components to a cloud provider and
created automated pipelines for continuous integration and deployment.

The team behind SmartTocha comprises ten members: a project man-
ager, a scrum master, a UX designer, and seven data scientists. The data
scientists are responsible for various tasks, such as image analysis and process-
ing, model development, database administration, and building dashboards for
product monitoring. They work with a team of software engineers appointed
by the customer, with whom they share the responsibility for the system’s in-
frastructure and component integration. Both teams frequently meet to discuss
their activities, showcase results, and align future steps.

4.3.1
Participant Characterization

We interviewed two members working on SmartTocha, who both identi-
fied as male. One is a senior data scientist who now acts as project manager.
He is responsible for supervising the work and researching academic papers
that can help with development. The second participant is also a data scien-
tist, mainly working with the ML model. The participants verbally agreed to
participate voluntarily in the study and have their interviews recorded. We as-
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signed each one an identification number, which is used in the following section
while reporting the results. Table 4.2 shows their demographic data.

Table 4.2: Participants’ Demographic Data
Participant ID Role Education Level Years of

Experience

PM1 Project Manager Doctorate 14
DS1 Data Scientist Master’s degree 5

4.3.2
Results

To determine system definitions, the team used the Lean Inception
methodology (Caroli, 2017). All members, including the technical team, par-
ticipated in meetings to discuss the problem and the system’s goals. DS1 said:

“The whole team, including the data scientists, took part in the meetings.
After that, we went on to develop features and start experimenting. I took
part in this process to understand the problem we would solve. At first, I
found it a bit difficult because it was the first time I had ever taken part in
planning meetings in my career, but I overcame that.”

PM1 explained that the team did not produce any formal requirements docu-
mentation after the Lean Inception. In his view, this was not a major problem
due to the strong alignment between the team and customer representatives.
However, he explained such documentation could have helped later in the
project:

“Towards the end of the project, the customers started to have a vision of
the final product that differed from ours. Some project definitions became a
little confusing, which led to much discussion about what would be delivered
after the end of our contract. I think that having the requirements documented
could have helped in this discussion by reminding us of what we had promised
to do. It would at least be a starting point with what everyone converged
initially.”

According to PM1, domain experts from the customer company were
responsible for data annotation. They also participated in discussions with the
data scientists during data analysis and model results validation. One concern
PM1 had was regarding the experts’ availability:
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“We depended on professionals who had daily activities inside the refineries,
and it was often difficult for them to have time to help us. Furthermore,
the annotation task requires time. We worked with different refineries and
domain experts, some easier to access than others.”

DS1, who worked with model training, explained how obtaining images with
different characteristics was fundamental for the project’s success:

“When we only monitored one refinery, our model performed very well.
However, it did not work well when we started monitoring multiple refineries,
since each one had different characteristics and camera angle positions. To
solve this, we changed our initial training set and started using images from
different refineries to assemble a generic model. We were careful to have
a greater diversity in the set of images to make the model as generic as
possible.”

Team members from ExACTa and the customer’s side worked together
to develop the system. PM1 highlighted this interaction worked well and
that he did not perceive any problems. DS1 explained how his team shared
responsibilities:

“While some data scientists were responsible for developing the model algo-
rithm, others researched academic papers to investigate new techniques we
could use or details we were missing. The team regularly met [...] to present
results and verify if they matched the papers’ findings.”

DS1 also illustrated how the model’s performance degradation is handled:

“We are not responsible for constantly monitoring the model. When there is
a problem with the model’s response, someone from the refinery reports it to
us. We also created dynamic dashboards to visualize the camera frames that
were used to make a certain prediction. They are very helpful when analyzing
these issues.”

The architecture behind the model’s integration with the refineries’ ser-
vices represented a collaboration point between DS1’s team and the team re-
sponsible for the customer’s cloud infrastructure. He exemplified how commu-
nication between the teams happened:
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“We passed internal team definitions to customer representatives who met
with us, and then these representatives would take what was defined to the
infrastructure team. This indirect communication took time, and we had to
plan our work with this in mind to prevent delays. The infrastructure team
served all teams working with the cloud, so it was complicated for us to access
them directly. In my opinion, this communication could have been better.”

Establishing the model’s infrastructure in the cloud fostered the creation of an
ML workflow. DS1 illustrated how this took place:

“In the beginning, customer representatives had to collect videos from the
cameras and manually send them to us so we could train the model. After
migrating to the cloud, we could access the camera’s IP address and fetch
the videos in real time. I did not participate much in this activity, as I was
mostly dedicated to data analysis and the ML model.”

When talking about how the team managed the system’s documentation,
PM1 described why it was difficult to keep it updated:

“The system’s initial documentation has evolved a lot. When there was
a drastic change, we immediately updated the documentation accordingly.
However, this was not the case when small changes happened over time.
This can also happen while [...] experimenting with different algorithms and
techniques, as during this process we are still unsure if the changes made
will be definitive. To solve this, we had to plan some time to ensure our
documentation was adequate.”

4.4
Modeck

The second project we analyzed is called Modeck, which started in 2023.
Its goal is to measure the extent of unused areas on decks of cargo ships. The
team developed an ML model capable of analyzing images from cameras placed
on different spots of the ship to calculate the unused area. This information
is extremely important for companies who own cargo ships, as they can use
it to optimize the amount of transported cargo and avoid the financial costs
of underloading. In addition to the ML model, the team also developed a web
application with both a front-end and a back-end. The front-end comprises
an interface where users can register new cameras and delimit the area of the
objects inside each captured image, which the model uses in its calculations.
The system’s back-end is responsible for storing all data related to the cameras
and communicating with the ML model.
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Modeck’s team comprises a product owner, a UX designer, one data
scientist, and two software engineers: one responsible for the front-end and
the other for the back-end. The team follows the Agile software development
methodology and gathers daily to understand what each member is doing and
provide help when needed.

4.4.1
Participant Characterization

We interviewed the three team members who are developing the ML-
enabled system: the data scientist responsible for the ML model and the
two software engineers working on the back-end (SE1) and the front-end
(SE2). They all participated voluntarily in our study and agreed to have their
interviews recorded. Table 4.3 shows their demographic data. SE1 and DS1
identified as male, while SE2 identified as female.

Table 4.3: Participants’ Demographic Data
Participant ID Role Education Level Years of

Experience

DS1 Data Scientist Bachelor’s degree 1
SE1 Software Engineer Bachelor’s degree 1
SE2 Software Engineer Bachelor’s degree 4

4.4.2
Results

All subjects joined the team after the start of the project and did not
participate in the product’s conception. For this reason, they all received a
briefing from other members of ExACTa to comprehend their responsibilities
and the project’s scope. SE2 described how this process happened:

“There was no formal documentation. Instead, there was a meeting to show-
case a presentation about the project. From there, I was able to understand
its context.”

She also explained how the lack of requirements documentation affected the
team’s tasks:

“Having a formal requirements documentation would have been beneficial.
This is because sometimes requirements were not clear, which affected our
planning. For instance, some tasks had to be paused because we were waiting
for external data. If we had had precise requirements, we would have asked
for the data earlier to prevent this delay.”
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DS1 is responsible for selecting and analyzing the data used to train the
model. He mentioned several challenges encountered during this activity:

“It is very hard to obtain all the data we need. First, the operations on the
deck never cease, and we do not have control over them. This prevents us,
for example, from working with images of empty decks. Furthermore, we can
not ask the deck operators to change the order of the objects on the deck
to test different hypotheses for the algorithms. [...] We also had problems
with cameras being moved to different places and images covered by pieces
of cloth. We had to remove these images from the dataset manually.”

The model already has an API that allows its consumption. DS1 is cur-
rently trying to deploy it on the customer’s cloud environment. He mentioned
other actors who are involved in this process:

“An infrastructure engineer from ExACTa and a software engineer from the
customer’s side are helping me with deployment. I also interact with software
engineers who represent the customer when a problem needs to be solved. For
example, when a field in the model’s API is poorly documented.”

When talking about deployment, DS1 also illustrated how the deployment
documentation could be improved:

“Our deployment documentation could be better, especially to help the cus-
tomer with this process. In my view, we need to improve how we describe
the infrastructure around each component. For example, each API has error
log queues used to register errors during processing, which are not clearly
documented.”

The team has yet to define how model integration with the back-end will
take place, as mentioned by SE1:

“I am currently only developing the back-end, which was the first task I
received after joining the team. I will plan this integration after the model is
ready.”

In the same way, the integration between the system’s front-end and
back-end has also not started. SE2 illustrated her activities while the back-end
is being developed:

“We have not started integrating because I am currently waiting for the back-
end APIs. In the meantime, I am using mocks to verify the web interface
functionalities. As soon as we have a stable environment and the APIs ready,
we can start the integration tests.”
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She also detailed her interaction with the team’s UX designer so far:

“The designer works for multiple teams inside ExACTa. He occasionally
participates in our project when we need to develop prototypes for the web
interface or adjust them based on customer feedback. Besides that, we do not
interact much.”

On the other hand, SE1 explained how he initially worked together with
DS1 to design the back-end:

“After analyzing our prototype for the web interface, I sat down with DS1 to
define what information we would need to store and what would be displayed
to the user. We did this for each web application page, and it became a part
of the system’s documentation.”

DS1 acknowledged the team did not interact much outside the daily meetings
and presented a reason for that:

“Each member is responsible for a different system component. We are not
communicating as much at the moment, but I imagine it is because we are
still at the beginning of the project and have not come close to any major
deadlines.”

4.5
Discussion

4.5.1
How do software engineers and data scientists share responsibilities when
developing an ML-enabled system?

Investigating SmartTocha and Modeck revealed how the teams organized
tasks throughout development. In both projects, all team members were
introduced to the system’s goals, as in the +Acordo project. In the case of
Modeck, even though our participants were not part of the team when these
definitions occurred, they still received instructions about the project’s context
and their roles inside the team as soon as they joined it. As we expected, using
the most recent version of the perspective-based ML task and concern diagram
to design our interview script allowed us to discuss tasks we had not explored
during our case study. For example, one participant from SmartTocha talked
about the process behind automating the ML workflow using tools from a
cloud provider, which no participant from +Acordo had brought up.

In both projects, only the data scientists were responsible for analyzing
data and building the model. Some also researched academic papers and
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created dashboards to help monitor the model’s performance. Although the
projects have different characteristics and objectives, the two teams faced
difficulties obtaining sufficient data for all scenarios the ML model had to
consider. SmartTocha’s participants also mentioned domain experts aided
them with data annotation and model evaluation. Unlike in the +Acordo
project, domain experts’ availability was another challenge reported during
this phase.

On the other hand, software engineers handled the model’s infrastructure
and developed the components responsible for consuming it. Participants from
both teams cited model deployment on the customer’s cloud infrastructure as
a collaboration point between data scientists and software engineers. In both
projects, at least one software engineer was from a separate team responsible
for managing the customer’s internal systems.

Participants agreed that all team members are responsible for maintain-
ing project documentation. They pointed out that developing clear require-
ments documentation could have helped better align expectations between the
team and the customer. In addition, having requirements precisely defined
would have enhanced the team’s planning. While discussing system documen-
tation, both teams stated they struggled with updating it during development,
which is another difficulty debated in our case study. Participants also ex-
plained how some components were not fully documented, which resulted in
the team dedicating a separate time to guarantee adequate documentation.
This lack of updated documentation harmed collaboration during model de-
ployment.

4.5.2
How do software engineers and data scientists collaborate when develop-
ing an ML-enabled system?

Our interviews portrayed how collaboration between these two roles
occurred in each project. The team working on SmartTocha does not comprise
any software engineers, so they had to collaborate with a team of software
engineers who worked for the customer and were responsible for their system’s
infrastructure. The teams had a lot of interactions, especially during model
deployment. However, they could not always communicate directly due to the
unavailability of the customer’s team. For this reason, communication issues
had to be planned to prevent delays in the project’s progress. This evidences a
challenge related to collaboration between actors from different organizations,
a topic we had not analyzed in our previous study.

Modeck’s team, on the other hand, comprised a data scientist and two
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software engineers. The data scientist interacted with the software engineer
responsible for the back-end to diagram how data would be stored. After
that, they communicated only during daily meetings or when one of the
team members needed help. This reduced frequency of interactions can be
explained by the fact that the team has not yet started integrating system
components. Since the project is still in its early stages, each team member is
currently developing the component for which they are responsible separately.
However, we could notice interactions between the team’s data scientist and
the software engineers responsible for managing the customer’s infrastructure.
This collaboration was once again important for model deployment and when
problems in the system appeared. To avoid these problems, both actors worked
together to improve the model’s API documentation.

4.5.3
Implications for Practitioners

Based on the findings of our case study and complementary interviews,
we proposed recommendations to improve collaboration between software
engineers and data scientists. We seek to aid teams developing ML-enabled
systems to avoid the pitfalls we have depicted.

One of the key challenges that software engineers and data scientists
face when interacting and collaborating on ML-enabled systems is the lack of
clear requirements specifications. Without well-defined requirements, it can be
difficult for these actors to understand each other’s needs and expectations,
leading to miscommunication and inefficiencies in the development process.
This highlights the importance of establishing and maintaining clear require-
ments specifications that can serve as a shared understanding between software
engineers and data scientists, enabling them to work together more efficiently.

Fostering a collaborative culture from the start of the project is fun-
damental. We believe this can be achieved by establishing a comprehensive
planning of the system that involves all project members. While planning, the
responsibilities of each actor must be clear to everyone on the team. Moreover,
actors should be comfortable with the tasks they will perform or at least be
willing to learn how to execute them. If any dependencies between the actors
require their interaction, these should be mapped in advance to prevent delays
during development.

Despite their background and cultural differences, software engineers and
data scientists should avoid working isolated from one another. Even though
some tasks can be executed independently, they must communicate frequently.
Teams should also encourage knowledge exchange between them, which can be
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done by pairing a member from each role to work on a task together. Another
possibility is to have members of a role present their work to the rest of the
team so that other actors can become familiar with their activities.

ML-enabled system architecture and definitions documentation can also
enhance the interaction between these two actors. These documents should
provide a concise and unambiguous description of what the ML-enabled system
and each of its components should do. This facilitates discussion between
team members, who can use this documentation as a reference, preventing
misconceptions. Our results illustrate that such documentation can also be
useful while onboarding new team members.

4.5.4
Threats to Validity

This section discusses threats to the validity of this study. We decided
to focus on the same threats portrayed in the case study: construct validity,
internal validity, external validity, and reliability.

A threat to construct validity consists of participants providing an
inaccurate description of their activities inside the team, which would represent
a flaw in our research methodology. To mitigate this threat, we made an effort
to validate what the participants expressed during the interviews. We obtained
a patent application for the SmartTocha project (Kuramoto et al., 2023), which
documents how the developed system is supposed to operate. The document is
in accordance with the description provided by the participants. Furthermore,
the advisor of this work is associated with ExACTa and verified the integrity
of the team dynamics reported by the subjects.

Threats to internal validity comprise methodological errors such as
asking unclear questions to participants. For this reason, we used the work
of Villamizar et al. (2024) during the design of our interview script to
accurately investigate the tasks carried out during the development of ML-
enabled systems. When participants mentioned doubts about a question or
activity we referred to, we presented examples for clarification. We recognize
the number of subjects we interviewed from each team is not high, as not
all team members were available to participate in our research. Nevertheless,
we could still obtain perspectives on their activities and how team members
collaborated.

To mitigate threats to external validity, such as our results not being
representative of other ML projects, we investigated two separate teams.
Even though both teams worked on ML-enabled systems, they had their own
goals, composition, and collaboration procedures. We could identify several
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similarities between the teams within their challenges and the actors with
whom they collaborated. We also noted resemblances with the team examined
in our case study, which evidences the generalizability of results.

Finally, to improve reliability, we have detailed our research methodol-
ogy and the questions asked during the interviews. This enables the replication
of our study, which we encourage other researchers to perform.

4.6
Concluding Remarks

This chapter discussed two complementary interviews we conducted with
data scientists and software engineers of two distinct teams building ML-
enabled systems for the industry. We designed our interview script based
on the most recent version of PerSpecML (Villamizar et al., 2024). After
interviewing participants, we reviewed the transcripts and extracted the most
relevant statements for answering our research questions.

The results greatly complemented our case study’s findings. We perceived
similarities in how data scientists and software engineers share responsibilities
inside the project and in the tasks that require collaboration between them
and other team members. Furthermore, we noticed resemblances in the chal-
lenges faced, such as the difficulty of updating the system’s documentation
during development. The findings also allowed us to uncover new challenges,
such as domain experts and software engineers lacking the availability to in-
teract with data scientists. Based on these and other obstacles, we proposed
recommendations for teams developing ML-enabled systems. They aim to re-
duce the gap between software engineers and data scientists and clarify team
definitions for all actors involved. We believe collaboration between the actors
can be enhanced by following these recommendations.



5
Focus Group

5.1
Introduction

The results depicted in the previous chapters allowed us to visualize how
the interaction between software engineers and data scientists develops in real-
world projects. We mapped each actor’s responsibilities and several activities
that require their collaboration. Investigating how these actors work together
also uncovered improvement opportunities for their interaction.

As a final research step, we discussed the findings of our case study
and complementary interviews with experienced practitioners during focus
group sessions. Adopting this research method enabled practitioners to assess
the interaction points between software engineers and data scientists we
discussed in the previous chapters. Furthermore, it allowed us to evaluate
recommendations that may enhance this collaboration.

Focus groups are a qualitative research method where data is collected
through group discussions on a given topic. For this reason, focus groups
must be carefully planned so that the discussion stays focused and does
not exceed the specified time slot. As explained by Kontio et al. (2008),
this method can provide truthful and insightful information, as it depicts
the perception of participants who possess knowledge of the discussed topic.
It has also been previously used in other software engineering studies for
acquiring developers’ perspectives (Almeida et al., 2021). For these reasons,
we considered conducting focus groups a suitable choice.

Once again, we used the GQM template for goal definition by Basili and
Rombach (1988) to define our study’s goal, presented in Table 5.1. Based on
this research goal, we established two research questions.



Chapter 5. Focus Group 60

Table 5.1: Focus Group Goal
Analyze the interaction between software engineers

and data scientists
for the purpose of characterization
with respect to tasks in which they collaborate and rec-

ommendations for improving their inter-
action

from the point of view of experienced software engineers and data
scientists

in the context of ML-enabled system projects for different
industrial customers.

RQ1: What is the perception of software engineers and data
scientists on which tasks they most collaborate?

This research question focuses on how software engineers and data
scientists evaluate their collaboration while developing ML-enabled systems. It
aims to understand how vital they recognize this interaction for several tasks
they must perform to build the system. To answer this question, we analyzed
our previous findings and selected tasks in which collaboration could be useful
for participants to discuss.

RQ2: What is the perception of software engineers and data
scientists on how to improve collaboration between them?

This question explores how to enhance the collaboration between software
engineers and data scientists working on ML-enabled systems. It aims to
uncover valuable recommendations they can use inside their respective projects
to improve productivity and team communication. To answer RQ2, we elected
recommendations based on the literature and our previous studies and asked
participants to evaluate their relevance for this collaboration.

This chapter comprises five sections. Section 5.2 covers how we designed
the focus group. Section 5.3 reports the participants’ demographic data and
their statements during the focus groups. Section 5.4 presents the findings
we obtained for each research question. Section 5.5 contains our concluding
observations.

5.2
Focus Group Design

We designed our study following the guidelines proposed by Kontio et al.
(2008) for software engineering empirical research using focus groups. We or-
ganized the conception of our focus group into three steps, portrayed in Fig-
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ure 5.1: Focus Group Planning, Participant Recruitment and Characterization,
and Data Collection. The following sections detail each of these steps.

Figure 5.1: Focus Group Design Steps

5.2.1
Focus Group Planning

Our first step towards designing the focus group was to define how it
would be conducted. We had to specify what topics the participants would
discuss and what would be the best way to foster this discussion. To do
this, we used our research questions as a guide. We divided our focus group
session into two stages: one to debate tasks related to collaboration between
software engineers and data scientists, and one to examine recommendations
for improving this collaboration.

To design the first stage, we defined the tasks that would be discussed
based on the results of our case study and complementary interviews. We
extracted several collaboration points between software engineers and data
scientists mentioned in our previous studies and categorized them based on
the tasks defined by Villamizar et al. (2024) in the PerSpecML approach. This
resulted in a total of seven tasks, detailed below:

– Data Access Definition: This task concerns defining how the data re-
quired for developing and evaluating the ML model will be acquired.
This process may represent a collaboration point if the actors interact to
collect the data, which we noticed during the case study.

– Data Selection: This task involves selecting the data used to build the
model and describing what each data component represents. In our
previous studies, software engineers reported they did not know the
meaning of the data fields used by their respective ML models, which
led to problems during system development. For this reason, we decided
to investigate if collaboration could be helpful in this context.

– ML Model Evaluation: This task addresses evaluating the ML model.
Besides measuring its performance through metrics such as accuracy and
precision, this task also considers factors like the model’s interpretability.
Since we had reports of team members lacking knowledge about the



Chapter 5. Focus Group 62

model, treating it as a “black box,” we agreed to analyze if collaboration
would be considered relevant during this task.

– ML Artifact Storage: This task concerns systematically storing and
managing all ML artifacts, such as scripts and the model itself. Since our
previous studies showed that ML artifacts might be incorrectly stored if
data scientists and software engineers do not communicate effectively,
we decided to investigate how collaboration between these actors can
improve ML artifact storage.

– ML Model Availability: This task involves exposing the ML model so
other system components can consume it. Our previous works revealed
this is an interesting task for exploring the effects of collaboration. For
example, one of the case study’s participants expressed dissatisfaction
with the data scientists being solely responsible for this task. They did
not possess the skills required to perform it, so they had to ask the
software engineers for help.

– ML Model Integration: This task relates to incorporating the ML compo-
nent into the larger software system. We analyzed several collaboration-
related challenges during this task, such as data being in the wrong
format during integration tests, communication issues, and component
integration not being properly documented.

– ML Model Deployment: Finally, this task concerns making the ML
model available in a production environment. Multiple data scientists
we interviewed depicted difficulties handling model infrastructure issues,
which led to software engineers helping them with this task.

The second stage of our focus group aimed to promote the debate
of recommendations for collaboration between data scientists and software
engineers. To determine the recommendations that would be presented to
the participants, we analyzed improvement opportunities portrayed in our
previous studies and the current literature on collaboration for ML-enabled
systems. Even though there are similarities between these studies’ findings,
combining them allowed us to obtain a comprehensive set of recommendations.
Furthermore, assessing recommendations depicted in past works together with
practitioners is currently a gap in the literature.

To contemplate the results of our case study and complementary inter-
views, we revisited the implications for practitioners discussed in Section 4.5.3
of Chapter 4. We believe they can be useful for teams developing ML-enabled
systems, and their debate within the focus groups would allow us to evaluate
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their relevance. While analyzing the existing literature, we selected two papers
to focus on: Nahar et al. (2022) and Mailach and Siegmund (2023).

These two papers provide explicit proposals for improving collaboration
in the context of ML-enabled systems and are consistent with the outcomes
of our previous studies. Many of the challenges discussed by Nahar et al.
(2022) were reported in our works, such as data scientists working isolated
from software engineers, insufficient system documentation, and problems with
responsibility sharing. Furthermore, our studies portray the three collaboration
points the authors presented in their paper. Our findings even reported a new
collaboration point, where software engineers developed a system to be used by
domain experts to help in data annotation for model training. We perceived
several similarities with Mailach and Siegmund (2023)’s paper as well. For
instance, they also reported how software engineers may lack knowledge about
the model and view it as a black box. Another challenge they discussed was a
disconnection between the development team and other project stakeholders.
This was evident in our analyses, especially during requirement definitions for
the model.

After examining all studies, we extracted the recommendations we judged
most relevant for discussion and assembled our final list, described below. We
assigned each recommendation a number, which we will use to reference them
in the next sections.

1. Involve data scientists and business owners when eliciting and analyzing
requirements: This recommendation concerns having both data scientists
and business owners together with software engineers during require-
ments definition. Fostering their interaction during this project stage
may help clarify requirements and discard unrealistic ones.

2. Provide ML literacy for all project stakeholders: This recommendation
aims to establish a shared understanding of basic ML concepts and
terminologies, such as accuracy and model training, across all team
members. This can be done through lectures or workshops and may
facilitate communication inside the team.

3. Develop documentation for product requirements, system architecture,
and APIs at collaboration points: The importance of documentation was
mentioned in all studies we reviewed. We grouped three different project
documents within this recommendation to evaluate how they can affect
collaboration.

4. Define clear responsibilities and internal processes with clear boundaries
for data scientists and software engineers: This recommendation empha-
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sizes that both data scientists and software engineers must know exactly
what tasks they are expected to perform inside the team. They should
also be able to execute the tasks, or at least be willing to learn how to
do so.

5. Support interdisciplinarity between data scientists and software engi-
neers: This recommendation encourages knowledge exchange between
data scientists and software engineers, where one actor learns how the
other performs their activities. This can be done, for example, by pairing
both actors to work together on the same task or through workshops.

6. Organize regular meetings for showcasing team activities: Finally, this
recommendation seeks to improve collaboration through meetings with
the whole team. During these meetings, members can present their work
and what they have learned from their activities. Meetings can also be
useful to synchronize tasks and broadcast messages to all team members.

Our focus group participants discussed each of the tasks and recommen-
dations above. The strategy used to collect their perspectives is described in
Section 5.2.3.

5.2.2
Participant Recruitment and Characterization

After defining what topics would be discussed during the focus group,
we started recruiting participants for our research. We established two re-
quirements for selecting the participants. First, they needed to be profession-
als with experience either in data science or software engineering. Moreover,
they needed to have worked on at least one ML-enabled system project. With
these requirements, we could ensure participants would have enough experi-
ence to contribute to the focus group discussions. At the same time, recruiting
experienced participants enhances the credibility of our results.

We contacted fourteen Tecgraf and ExACTa professionals working on
distinct industry-academia collaboration projects developing ML-enabled sys-
tems. We had easy access to them since they are affiliated with PUC-Rio and
because some of them had also participated in our previous studies. From the
fourteen emails sent, we received seven positive responses. We used the Doo-
dle1 platform to allow participants to choose the best dates for the focus group
sessions.

Each confirmed participant also received a consent and characterization
form. In the consent form, we formally stated the goal of the focus group and

1https://doodle.com/en/

https://doodle.com/en/
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its estimated duration time. We also clarified that all collected data would
be anonymized, treated as confidential, and used only for research purposes.
The goal of the characterization form was to gather demographic data about
the participants. This allowed us to check if our requirements for participant
selection had been met. In the form, we asked short and direct questions to
prevent harming the respondents’ engagement, which led to the estimated time
for filling out the form being less than two minutes.

We asked participants about their education levels, years of work experi-
ence, and the number of projects they worked on with ML components. We also
asked which role they identified with, either as a data scientist or a software
engineer, and their proficiency in both areas. To measure proficiency, we used
the NIH Proficiency Scale2, a widely used instrument to evaluate competency
in a particular field. Individuals can use this instrument to compare their level
of proficiency to other workers. The scale comprises six levels of competency,
depicted in Table 5.2. We included each level and its description in the form
so that participants could choose the most appropriate one.

Table 5.2: Levels of the NIH Proficiency Scale
Proficiency Level Description

Not Applicable The respondent is not required to demonstrate this compe-
tency on the job and does not have any knowledge.

Fundamental Awareness The respondent understands basic concepts and techniques.
Novice The respondent can perform tasks with the help of others.
Intermediate The respondent can usually perform tasks independently, only

needing help from time to time.
Advanced The respondent can perform tasks without assistance and is

capable of coaching others.
Expert The respondent is recognized as an authority in this compe-

tency and is capable of assuming a leadership role.

5.2.3
Data Collection

The focus group sessions were conducted online using Google Meet. We
decided to organize two sessions based on the number of confirmed participants.
Scheduling two distinct sessions with participants who work on different
projects diversified the shared experiences. To present the topics for discussion
and enable exchange between participants, we created interactive boards inside
Miro3.

2https://hr.nih.gov/working-nih/competencies/competencies-proficiency-
scale

3https://miro.com/pt/

https://hr.nih.gov/working-nih/competencies/competencies-proficiency-scale
https://hr.nih.gov/working-nih/competencies/competencies-proficiency-scale
https://miro.com/pt/
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Figure 5.2 illustrates the upper part of the board created for the first stage
of the focus group. The board contains all tasks depicted in Section 5.2.1. For
each one, participants were asked to evaluate how relevant they considered the
interaction between data scientists and software engineers for that task. They
could either agree, partially agree, partially disagree, disagree, or not express
an opinion toward the statement. Post-its with the participants’ names were
placed next to each task on the board. To vote, participants had to drag their
corresponding post-its to the desired answer.

Figure 5.2: Upper Part of the Board for the First Stage of the Focus Group

Two authors participated as moderators in both sessions. In the first stage
of the focus group, they described the research goal and read out loud each of
the tasks that would be examined. Participants were allowed to ask questions
about the tasks if they had doubts, which were answered through examples.
After that, they had one minute to cast votes for all tasks. When voting was
finished, participants had seven minutes to discuss the thought process behind
their answers. During this discussion, they could also change their votes in
case they felt persuaded by other participants. Relevant comments made by
the participants were registered on the board by one of the moderators. The
moderators also asked clarifying questions to the participants when there was
a need to better understand the statements made or the context behind the
answers.

After the end of the discussion, the moderators explained the second
stage of the focus group. In this stage, participants had to examine recommen-
dations for the collaboration between data scientists and software engineers.
We created six Miro boards for this stage, one for each recommendation. Fig-
ure 5.3 depicts the upper part of the board for the first recommendation. The
recommendation is presented at the top, and participants had to assess how
relevant they considered it to be for the interaction between data scientists and
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software engineers. They were asked to do this for each task evaluated in the
first stage, which allowed us to grasp the relevance of the recommendations for
each task. We used the same voting options employed in the previous stage.

Figure 5.3: Upper Part of the Board for the First Recommendation

One of the moderators explained each recommendation and answered
questions in case participants had any. Then, participants had one minute
to cast their votes for all tasks. After the last participant’s vote, the group
had seven minutes to justify their decisions and discuss the relevance of that
recommendation for collaboration. Once again, the moderators intervened
whenever a comment needed more context to be properly understood. When
the discussion was over, the moderators advanced to the next recommendation
until all recommendations had been examined.

Both focus group sessions lasted one hour and fifteen minutes. All of them
were recorded and subsequently transcribed with Google Cloud’s Speech-to-
Text API4. During data analysis, we first translated the transcripts from Por-
tuguese to English and corrected them while listening to the recordings. The
revised transcripts are depicted in Appendix C. We then analyzed the content
of the interviews using open coding (Strauss and Corbin, 1998). For each focus
group, we looked for statements depicting previous experiences with collabo-
ration shared by the participants, as well as positive and negative features of
the recommendations. We also compared the generated codes with the notes
registered by the moderators during the sessions to verify if all important top-
ics had been covered. Assigning codes to these statements allowed us to group

4https://cloud.google.com/speech-to-text

https://cloud.google.com/speech-to-text
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similar perspectives regarding our discussed topics. Moreover, it enabled us to
contrast perceptions from participants of different focus group sessions.

5.3
Focus Group Results

We assigned identification numbers to the participants to preserve their
anonymity. Table 5.3 displays their demographic data. Participants DS1, DS2,
DS3, DS5, SE1, and SE2 identified as male, while DS4 identified as female.
Since only two participants identified as software engineers, we allocated them
to different focus group sessions, as depicted in Table 5.4. The first session
comprised DS1, DS2, and SE1, while the second comprised DS3, DS4, DS5,
and SE2.

Table 5.3: Participants’ Demographic Data
Participant ID Role Education

Level
Years of

Experience
Number of

Projects with ML

DS1 Data Scientist Doctorate 10 10
DS2 Data Scientist Doctorate 5 6
DS3 Data Scientist Doctorate 21 11
DS4 Data Scientist Master’s degree 6 2
DS5 Data Scientist Doctorate 7 5
SE1 Software Engineer Master’s degree 20 2
SE2 Software Engineer Master’s degree 15 1

Table 5.4: Allocation per Focus Group Session

Participant ID
Focus Group

Session

DS1 1
DS2 1
DS3 2
DS4 2
DS5 2
SE1 1
SE2 2

Table 5.5 portrays the participants’ responses for their data science and
software engineering proficiency levels. As we expected, all participants de-
clared having at least an intermediate level of proficiency in their respective
fields, and some participants even reported proficiency in both areas. Further-
more, Table 5.3 shows that all participants have five or more years of work
experience and have worked on at least one project with an ML component.
These characteristics make them suitable for participating in our study.

In the following subsections, we display the participants’ votes and
summarize their comments during the sessions. Since the “No Opinion” option
was never chosen, we decided to omit it from the tables showcasing the results.



Chapter 5. Focus Group 69

Table 5.5: Participants’ Proficiency Data
Participant ID Data Science

Proficiency
Software Engineering

Proficiency

DS1 Advanced Advanced
DS2 Advanced Novice
DS3 Expert Advanced
DS4 Intermediate Not Applicable
DS5 Intermediate Novice
SE1 Not Applicable Expert
SE2 Not Applicable Expert

5.3.1
Relevance of Collaboration for each Task

Table 5.6 depicts how our participants evaluated the relevance of collab-
oration between software engineers and data scientists for each task.

Table 5.6: Results for the Relevance of Collaboration for each Task

Task
Participants
who Agreed

Participants
who Partially

Agreed

Participants
who Partially

Disagreed

Participants
who Disagreed

Data Access Definition
DS1, DS2, DS3,

DS4, DS5
SE1, SE2 - -

Data Selection - -
DS1, DS2, DS3,

DS4, DS5
SE1, SE2

ML Model Evaluation - - DS3, DS4, SE2
DS1, SE1, DS2,

DS5

ML Artifact Storage
DS1, SE1, DS4,

DS5
DS2, DS3 SE2 -

ML Model Availability DS1, SE1, DS2
DS3, DS4, SE2,

DS5
- -

ML Model Integration
DS1, SE1, DS2,
DS3, DS4, SE2,

DS5
- - -

ML Model Deployment
DS1, SE1, DS2,
DS3, DS4, DS5

SE2 - -

All participants either agreed or partially agreed that collaboration
during the definition of data access is important. DS1 explained his point
of view:

“Software engineers usually have a greater knowledge of the company’s APIs
for capturing data, so they should be able to help the data scientists navigate
the available infrastructure better. However, this also depends on the role of
the data scientist. For example, there are teams where the data scientist is
almost a database administrator as well. In this case, a software engineer
may not be needed.”

DS2 reinforced the importance of a software engineer during this task:
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“Considering that data may not be in the hands of the data scientist, a
software engineer can help understand the best way to access it, when to
access it, etc.”

On the other hand, SE2 explained that an interaction with a software engineer
may not always happen:

“In the project I am currently working on, we use a collection of documents
to train the ML model. These documents were sent to us by customer
representatives who are not software engineers, so there was no interaction
between these roles. This is why I only partially agreed with the statement
for this task.”

Some participants tended to disagree with the statement when discussing
data selection and model evaluation. One of them was SE1, who explained his
perception:

“In my previous work experiences, the data scientists were responsible for
evaluating the model and selecting data. In my current project, I have no
idea how our ML model was evaluated or how data was selected.[...] Still,
since we have a good relationship with the data scientists, we are always
willing to help them if they need it.”

DS2 agreed with SE1’s opinion, explaining how software engineers may not be
interested in participating in these tasks:

“I noticed software engineers are usually not very interested in the research
process of a data science application. I have made presentations showcasing
the algorithms examined to build a model, or the metrics used for its
evaluation, and their attention goes away very quickly.”

DS3 explained that selecting data is more suited to the data scientist’s role:

“The role of a data scientist consists of analyzing the data and performing
feature engineering to train the model. For these activities, I would not
involve a software engineer. On the other hand, during data selection, it
is possible to deal with incomplete data that you might have to discard or
adjust. You may even discover the existence of more data that you still need
to acquire. This can lead to a change in how data is being accessed, which
may provoke an interaction with a software engineer.“

DS1 exemplified how an interaction with a software engineer would not
necessarily be useful during model evaluation:
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“[...] The data scientists know what metrics are relevant. They will know, for
example, if the model is overfitted. If you ask software engineers to deploy
an overfitted model, they will probably do it, but only a data scientist will
realize that the model has a problem and is not ready for production. Hence,
I do not know how a software engineer could help in this process.”

Most participants agreed that collaboration would be important for
storing ML model artifacts. DS5 justified his vote:

“It is important that both actors define where and how this storage will occur.
This interaction with the software engineers allows the data scientists to
understand what infrastructure is currently used for storage, as they are
usually not involved in this process.”

SE1 highlighted this interaction is important due to the complexity of the ML
component:

“Planning model storage is a task which software engineers should partici-
pate. The model can have multiple artifacts, some of which may be enormous,
so they must be stored accordingly.”

Finally, DS3 pointed out another advantage brought by collaboration when
team members change:

“Throughout development, it is possible that team members change, which
may harm the improvement of existing models. This can be mitigated by hav-
ing an infrastructure where artifacts can be properly managed with adequate
versioning, which should be created through the actors’ collaboration.”

Making the ML model available and integrating it with the rest of
the system did not receive any disagreement votes. DS2 summarized the
participants’ opinions:

“These tasks will define the ML model’s output for other system compo-
nents. This should be discussed between the software engineers and the data
scientists, who must evaluate this according to the system’s goals.”

Model deployment was another activity where collaboration was viewed
as important. DS1 illustrated how that interaction should work:
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“The actors in charge of CI/CD operations are usually software engineers.
However, this does not mean they know how to execute the model. For this
reason, it is vital that a data scientist gets together with them to explain the
model and how to run it. [...] I believe both actors need to be in sync to avoid
any problems.”

5.3.2
Involve data scientists and business owners when eliciting and analyzing
requirements

The first recommendation we discussed was involving data scientists
and business owners when eliciting and analyzing requirements. Ta-
ble 5.7 depicts how our participants evaluated the relevance of this recommen-
dation for the collaboration between software engineers and data scientists for
each task.

Table 5.7: Agreement on the First Recommendation

Task
Participants
who Agreed

Participants
who Partially

Agreed

Participants
who Partially

Disagreed

Participants
who Disagreed

Data Access Definition
DS1, SE1, DS2,
DS3, DS4, DS5

SE2 - -

Data Selection DS1, SE1, DS2 - DS3, DS4, DS5 SE2

ML Model Evaluation DS1, DS2
SE1, DS3, DS4,

DS5
- SE2

ML Artifact Storage - DS1, DS3, DS5 SE2 SE1, DS2, DS4

ML Model Availability - DS1
DS3, DS4, SE2,

DS5
SE1, DS2

ML Model Integration - DS1, DS3, DS5 DS4, SE2 SE1, DS2
ML Model Deployment - DS1, DS3, DS5 SE2 SE1, DS2, DS4

Participants agreed that this recommendation is important during data
access definition. DS2 explained why based on his previous experiences:

“Involving the business owners can help the actors understand what the data
represents. Sometimes, you know the name of a given variable and whether
it is numeric or categorical, but you may not understand what it represents.
[...] I have worked on projects where the data came from another company.
In these cases, the business owners had to explain what each data field
represented, and this improved the interaction between us and the software
engineers.”

SE1 agreed with DS2 due to the knowledge that business owners possess
regarding the data:
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“The business owner knows the data very well. A business owner usually
knows how to access the data, whether it is from other systems or from a
spreadsheet. I think this interaction is important, especially when defining
how data will be acquired and selected.”

DS3, on the other hand, did not consider this recommendation relevant during
data selection:

“I do not think the interaction between data scientists and software engineers
is important during this task. The presence of other actors, such as business
owners, is more important than this interaction.”

DS3 also defended this recommendation for ML model evaluation:

“Everyone must comprehend what exactly will be evaluated. Performance
can be evaluated not only in terms of accuracy and other metrics but also
in terms of computational performance. There is no point in having a super
complex model if it will require a machine with tons of computational power
that will not be available. These definitions can sometimes be made together
with business owners and software engineers.”

DS1 also agreed with the importance of business owners during model evalu-
ation:

“Business owners understand a lot about the data and can help with model
evaluation. For instance, sometimes you may think the model has to avoid
false positives, but they might say, ’No, my problem is with false negatives,’
so then you will have to choose another metric.”

DS1 mentioned this recommendation would be useful when dealing with
latency requirements:

“Having the business owners close to the software engineers and data scien-
tists during requirements analysis can help enhance their collaboration. For
instance, imagine a scenario where the business owner asks for a given ac-
curacy and latency. The data scientist knows how to achieve that accuracy,
but may not know if that latency is possible given the available machines.
This is something a software engineer can help with.”

The participants had different opinions regarding ML model integration
and deployment. They either partially agreed, partially disagreed, or disagreed
entirely. DS4 did not consider this recommendation relevant for these tasks:
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“I do not think this recommendation would be that interesting for these tasks.
[...] I consider model integration more of an implementation task, just like
with deployment, so perhaps the business owners might not be needed.”

DS3, on the other hand, partially agreed with this recommendation’s relevance
for these tasks:

“In my view, any prioritization or decision-making often involves business
owners. In some cases, the integration task may involve different teams, and
the business owner will be able to facilitate this coordination.”

5.3.3
Provide ML literacy for all project stakeholders

The second recommendation we discussed was providing ML literacy
for all project stakeholders. Table 5.8 shows how our participants evaluated
the relevance of this recommendation.

Table 5.8: Agreement on the Second Recommendation

Task
Participants
who Agreed

Participants
who Partially

Agreed

Participants
who Partially

Disagreed

Participants
who Disagreed

Data Access Definition DS5 DS3, DS4, SE2 - DS1, SE1, DS2

Data Selection - -
DS1, DS3, DS4,

SE2, DS5
SE1, DS2

ML Model Evaluation -
DS3, DS4, SE2,

DS5
- DS1, SE1, DS2

ML Artifact Storage DS2 DS1, DS3 SE1, SE2, DS5 DS4

ML Model Availability DS2
DS1, DS3, SE2,

DS5
SE1, DS4 -

ML Model Integration DS4, SE2, DS5 DS1, DS2, DS3 SE1 -

ML Model Deployment -
DS1, DS3, DS4,

SE2, DS5
SE1, DS2 -

DS1 did not see this recommendation relevant while defining data access:

“During data access definition, I do not think knowing the difference between
classification and regression would be helpful for acquiring the data. [...]
However, if software engineers happen to know a bit more about data science,
they may be able to help with data selection. For example, they may discover
noise in the data capable of hindering model training, or notice that a data
column has many null values.”

SE1 explained how his work experience influenced his view on the effect of this
recommendation during data access definition:



Chapter 5. Focus Group 75

“I have been working in an academic environment for a long time. Even
though I am not in the AI field, I constantly see lectures and learn about this
topic, so I did not require this literacy. Having said that, I do not think this
theoretical knowledge is important for data access definition. I think practical
instructions, such as how to access a spreadsheet or another system, are more
efficient.”

DS3 assessed this recommendation positively:

“I consider literacy relevant, as knowing at least the basics is important for
communication. The only exception I can see is during data selection because
I think the participation of the software engineer is reduced. I partially agreed
on the other tasks because, in the worst case, everyone has to know that a
model will be executed, that an output of a certain type will be generated,
etc.”

SE2 also highlighted how this recommendation enhances communication:

“This recommendation is important to improve communication between the
software engineer and the data scientist. It is vital to establish a common
terminology so that communication flows more easily.”

DS3 mentioned this recommendation could be valuable during the ML
artifact storage task:

“As I mentioned in the discussion about the tasks, it is a good idea to define
the best way to store the model together with the software engineers to make
it more easily accessible in the future. [...] They must understand what model
training is and what is actually being stored.”

DS1 exemplified the advantage depicted by DS3:

“Comprehending how the models are generated allows you to think about
how to persist them more intelligently. For example, suppose there is a high
chance of data drifts in the project you are working on. In that case, the
software engineer helping with ML artifact storage would know that the model
needs to be trained and updated often. This would determine the development
of an effective versioning system.”

When debating ML model deployment and integration, DS1 also consid-
ered this recommendation relevant:
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“ML literacy for software engineers greatly helps in these tasks. They will
know, for example, what type of approach to adopt when deploying the model.
Depending on the type of model the data scientist has created, the software
engineer will have an idea of the computational power required to run it. [...]
The software engineer will be able to notice this even if the data scientist
forgets to warn the team. This avoids problems in the future, such as having
a deployed model with very high latency.”

DS2 emphasized the benefits of this recommendation during model integration:

“ML literacy can help with the definition of the model’s output and how it
will be consumed. It makes communication between the actors easier when
specifying the best way to interact with the model.”

5.3.4
Develop documentation for product requirements, system architecture,
and APIs at collaboration points

The third recommendation we discussed was developing documen-
tation for product requirements, system architecture, and APIs at
collaboration points. Table 5.9 presents how our participants evaluated the
relevance of this recommendation.

Table 5.9: Agreement on the Third Recommendation

Task
Participants
who Agreed

Participants
who Partially

Agreed

Participants
who Partially

Disagreed

Participants
who Disagreed

Data Access Definition
DS3, DS4, SE2,

DS5
- DS1, SE1, DS2 -

Data Selection - DS1, SE1, DS2 DS3, DS4, DS5 SE2
ML Model Evaluation DS4 DS3, SE2, DS5 - DS1, SE1, DS2

ML Artifact Storage DS4
DS1, DS3, SE2,

DS5
- SE1, DS2

ML Model Availability
SE1, DS2, DS4,

DS5
DS1, DS3, SE2 - -

ML Model Integration
SE1, DS2, DS3,
DS4, SE2, DS5

DS1 - -

ML Model Deployment
SE1, DS2, DS3,

DS5
DS1, DS4, SE2 - -

Some participants did not consider this recommendation relevant for data
selection, such as DS3:
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“I do not think this recommendation is relevant for data selection because I
do not see the need for much interaction between software engineers and data
scientists during this task. For ML model evaluation, I think this interaction
exists, but it is not strong, so I partially agreed with the statement.”

DS4 shared a different opinion regarding model evaluation:

“The model will be evaluated based on the documented requirements, so I
think this recommendation has a lot of influence on this process. Even if
you do not need a lot of interaction between the software engineer and the
data scientist in this activity, I believe documentation will be relevant for
any interaction that happens.”

All participants either agreed or partially agreed with the statement for
model availability, model integration, and model deployment. DS1 illustrated
his point of view:

“Having well-produced documentation greatly impacts development. For ex-
ample, if I have a requirement for extremely low latency, it may affect how
the model will be developed and made available. The fact that this is docu-
mented explicitly assists in the collaboration between the software engineer
and the data scientist. [...] If the data scientist comes up with an extremely
slow approach, it will be clear to everyone that the model is not ready for
production.”

DS5, a data scientist, emphasized the importance of this recommendation
during the interaction with software engineers:

“Especially when defining APIs, this documentation is important for vali-
dating what will be done with the software engineers.”

5.3.5
Define clear responsibilities and internal processes with clear boundaries
for data scientists and software engineers

The fourth recommendation we discussed was defining clear respon-
sibilities and internal processes with clear boundaries for data sci-
entists and software engineers. Table 5.10 illustrates how our participants
evaluated the relevance of this recommendation.
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Table 5.10: Agreement on the Fourth Recommendation

Task
Participants
who Agreed

Participants
who Partially

Agreed

Participants
who Partially

Disagreed

Participants
who Disagreed

Data Access Definition
DS1, SE1, DS2,
DS3, DS4, SE2,

DS5
- - -

Data Selection
DS1, DS2, DS3,
DS4, SE2, DS5

SE1 - -

ML Model Evaluation
DS1, DS2, DS3,
DS4, SE2, DS5

- SE1 -

ML Artifact Storage
DS1, SE1, DS2,
DS3, DS4, SE2,

DS5
- - -

ML Model Availability
DS1, SE1, DS2,
DS3, DS4, SE2,

DS5
- - -

ML Model Integration
DS1, SE1, DS2,
DS3, DS4, SE2,

DS5
- - -

ML Model Deployment
DS1, SE1, DS2,
DS3, DS4, SE2,

DS5
- - -

Analyzing the table, we can see that almost all participants agreed with
the importance of this recommendation for all tasks. DS3 explained a reason
for this:

“This recommendation is important regardless of how much interaction
occurs during each task. Even if there is an activity where there is not
supposed to be any collaboration between a software engineer and a data
scientist, this must be clear for everyone to avoid someone doing something
that is not their responsibility. This recommendation will help define what
interactions will happen during the project.”

DS5 also highlighted the importance of this recommendation:

“Even for tasks with reduced interaction, following this recommendation
guarantees everyone knows their role and what they must do.”

While discussing the votes, DS1 exemplified how this recommendation is
important when defining the data scientists’ responsibilities:

“The data scientist’s role can often get confused with other roles. As I men-
tioned before, they are sometimes also considered database administrators.
In addition, they may be confused with software engineers and expected to
handle model deployment solely. When you clearly define each role’s respon-
sibility, communication becomes easier.”
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SE1 partially disagreed with the relevance of this recommendation during
ML model evaluation:

“In the teams I have worked in, explicitly defining responsibilities and
boundaries was never necessary during this task. Both data scientists and
software engineers already knew what was expected from them without a
previous formal explanation. I believe this task should be mostly carried out
by data scientists, as there is no need for software engineers to be involved.”

Finally, DS2 mentioned another advantage promoted by this recommen-
dation:

“Clarifying boundaries helps a lot in communication, especially when evalu-
ating the work we need to do. From the point of view of system architecture,
these definitions help us visualize who will be responsible for each system
component.”

5.3.6
Support interdisciplinarity between data scientists and software engineers

The fifth recommendation we discussed was supporting interdisci-
plinarity between data scientists and software engineers. Table 5.11
displays how our participants evaluated the relevance of this recommendation.

Table 5.11: Agreement on the Fifth Recommendation

Task
Participants
who Agreed

Participants
who Partially

Agreed

Participants
who Partially

Disagreed

Participants
who Disagreed

Data Access Definition SE1, DS2 DS1, DS5 DS3, DS4, SE2 -

Data Selection SE1 DS1, DS2
DS3, DS4, SE2,

DS5
-

ML Model Evaluation SE1 DS1, DS2
DS3, DS4, SE2,

DS5
-

ML Artifact Storage DS1, SE1, DS2 -
DS3, DS4, SE2,

DS5
-

ML Model Availability DS1, SE1, DS2 - DS4, SE2 DS3, DS5
ML Model Integration DS1, SE1, DS2 SE2, DS5 DS3, DS4 -
Deploy the ML model SE1, DS2 DS1, DS3 DS4, SE2, DS5 -

DS3, DS4, SE2, and DS5 partially disagreed with this recommendation’s
relevance for most tasks. They shared a similar view, explained by DS4:

“Knowing about other fields is always beneficial, but I do not consider this
essential for any activity.”

DS5 considered this recommendation relevant for specific tasks:



Chapter 5. Focus Group 80

“During data access definition, having both actors working closely may speed
up the process. This recommendation can also help during model integration,
as this task requires a lot of collaboration between data scientists and software
engineers.”

DS1 did not consider this recommendation vital for most tasks. How-
ever, he described how it could help during artifact storage and ML model
integration:

“For data access definition, data selection, model evaluation, and model
deployment, I think interdisciplinarity is interesting but not vital. I believe
a lack of knowledge exchange between the actors during these tasks would
not threaten the project. On the other hand, I consider this recommendation
important for the other tasks. For artifact storage [...], both actors need to
know how the model was developed and what should be versioned. The same
goes for model availability and integration: how to consume the model and
its inputs and outputs must be clear to everyone.”

According to SE1, this recommendation is valuable for all tasks. He
explained:

“Having another person beside you while working is always useful, especially
for catching something you missed. For instance, during data selection, the
software engineer might look at the data selected by the data scientist and
notice a field that could be included.”

DS2 described how acquiring software engineering skills could be inter-
esting for a data scientist:

“Data scientists are usually more interested in research and generating
insights through data analysis, so they may not know how a solution can
actually be operationalized and sustained over time. Before deploying to
production, it is important to understand what infrastructure is available,
how the model will be updated, and how data will be continuously obtained. I
think this kind of knowledge is more related to software engineering. As data
scientists become familiarized with these concepts, their communication with
software engineers will improve.”

SE1 emphasized another advantage for data scientists:

“If the data scientists know how model deployment works, they can design
the ML model with this process in mind. This would make the deployment
task less arduous, especially if the project is still in its initial phase.”
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DS2 highlighted this knowledge exchange could also be beneficial for software
engineers:

“After the system is deployed and operational, the actor responsible for
maintaining it is usually a software engineer, not a data scientist. This
recommendation motivates the software engineer to know more about model
characteristics, such as if it is a separate service or how it is consumed. This
knowledge would be very helpful, for example, if the software engineer notices
an opportunity to implement incremental learning.”

5.3.7
Organize regular meetings for showcasing team activities

Finally, the sixth recommendation we discussed was organizing regular
meetings for showcasing team activities. Table 5.12 illustrates how our
participants evaluated the relevance of this recommendation.

Table 5.12: Agreement on the Sixth Recommendation

Task
Participants
who Agreed

Participants
who Partially

Agreed

Participants
who Partially

Disagreed

Participants
who Disagreed

Data Access Definition
SE1, DS2, DS3,

DS4, DS5
DS1, SE2 - -

Data Selection SE1
DS1, DS2, DS3,

DS4, DS5
SE2 -

ML Model Evaluation DS3, DS4, DS5
DS1, SE1, DS2,

SE2
- -

ML Artifact Storage DS1, DS2
SE1, DS3, DS4,

DS5
SE2 -

ML Model Availability DS1, DS2
SE1, DS3, DS4,

DS5
SE2 -

ML Model Integration
DS1, DS2, DS3,
DS4, SE2, DS5

SE1 - -

ML Model Deployment DS3, DS4, DS5
DS1, SE1, DS2,

SE2
- -

Once again, almost all participants either agreed or partially agreed with
the relevance of this recommendation for all tasks. One of them was DS3:

“The interaction between software engineers and data scientists will be
greatly facilitated if you know exactly what each person is doing and what is
happening in the project. This recommendation is valid for monitoring the
team and exchanging knowledge, as you can even schedule technical meetings
if needed. At the very least, these regular meetings to find out how things are
going and what is being done already help a lot.”



Chapter 5. Focus Group 82

SE1 stressed this recommendation makes more sense for some tasks than
others:

“When defining data access and selecting data, I think the meetings would
help. For the other tasks, I consider regular meetings useful, but not critical.
After the team has agreed on all definitions, an occasional conversation
between members should be enough. Even if they are not that frequent, they
would be enough to ask questions and answer doubts.”

DS1 highlighted the relevance of this recommendation will depend on the level
of collaboration that data scientists and software engineers have during each
task:

“I love daily meetings because they bring team members from different areas
together to witness the whole project’s evolution. For tasks that require a
greater synergy between software engineers and data scientists, I agree that
there should be regular meetings to keep everyone up to date. However, for
tasks where I do not see such a strong synergy, I believe these meetings are
nice to have so that everyone knows what is happening, but they are not
crucial. In the case of data selection [...], a meeting to discuss this task
would be good for the software engineers to be more informed about what is
happening, but it is not essential for their work. The same is true for data
access definition: showcasing how data is obtained might be interesting for
data scientists, but they do not have to know where the data comes from as
long as they have access to it.”

5.4
Discussion

5.4.1
What is the perception of software engineers and data scientists on which
tasks they most collaborate?

All participants expressed opinions on each of the tasks we had defined,
and we could identify similar arguments in both sessions. Based on their
responses, we discuss our study’s findings for each task in the next paragraphs.

Collaboration plays an important part in data access definition. Software
engineers can help data scientists acquire the data needed to develop and
validate the ML model, as they usually know how to access the available APIs
and databases. However, there may also be cases where the data scientists
obtain the data independently. This is the case when data is received manually
by another actor, such as a customer representative, or when data scientists are
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also database administrators. In these scenarios, an interaction with a software
engineer may not be required.

Data selection is usually a data scientist’s job, given this is their field
of expertise (Kim et al., 2017). This makes collaboration with software engi-
neers less frequent during this task. Moreover, participating in this process may
sometimes seem uninteresting for the software engineers, which contributes to
less interaction. Yet, during this task, a data scientist may come across in-
complete data for training the model. If this leads to any modifications in
data access definitions, then a software engineer may be involved. Collabora-
tion between software engineers and data scientists may also not be needed
for ML model evaluation, as data scientists should be able to perform this
task independently. Once again, software engineers might lack interest in un-
derstanding the metrics used for evaluation. Since they usually do not possess
this knowledge, it might not be valuable to interact with them during this
task.

Interaction between the actors can benefit the team when specifying ML
artifact storage. Creating and maintaining an adequate storage infrastructure
for the model is a challenge, given the large size of some ML artifacts and
the need to manage their different versions. This difficulty can be mitigated
by guaranteeing that software engineers and data scientists are involved when
defining how and where each artifact will be stored. This helps familiarize
the data scientists with the available storage infrastructure, and they can use
this information and their knowledge of the ML model to point out the most
suitable storage possibilities.

Collaboration is fundamental for assessing ML model availability and
integration. These two tasks relate to the interaction of the ML model
with other system components. They include defining how the model will
be consumed and what output it will provide (Villamizar et al., 2024). For
this reason, performing these tasks implies several discussions between data
scientists and software engineers. These discussions are also relevant during
model deployment. Even though software engineers usually handle deployment
tasks, data scientists should also be present to explain how the model works
and how it should be executed. Having them next to the software engineers
can also help resolve latency issues caused by the model.

Our results illustrated how collaboration between software engineers and
data scientists is fundamental for several tasks, as their interaction can greatly
help face the challenges involved in developing ML-enabled systems. Tasks
that can benefit from this interaction include, for example, specifying data
access and integrating the ML model. For tasks such as data selection and ML
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model evaluation, however, the team must examine if assigning a single actor
as responsible would be more advantageous than fostering collaboration.

5.4.2
What is the perception of software engineers and data scientists on how
to improve collaboration between them?

Participants raised important features of each recommendation we pro-
posed. The fact they were analyzed in the context of specific tasks allowed
participants to give practical examples to support their points of view. In the
following paragraphs, we will detail the findings from each recommendation’s
assessment.

Involving data scientists and business owners when eliciting and analyz-
ing requirements can be very useful when defining how data will be accessed.
Business owners are usually familiar with the data and can explain what they
represent and how to access them correctly. This, in turn, will improve the com-
munication between software engineers and data scientists when discussing this
topic. Model evaluation can also benefit from this recommendation. Business
owners can use their understanding of the data to define the most suitable
performance metrics, and evaluating metrics such as the system’s latency may
stimulate the actors’ collaboration. For the other tasks, the influence of this
recommendation will depend on the project’s context. For example, when dif-
ferent teams are involved in ML model integration, having a business owner
coordinating them during requirements analysis may be helpful.

Providing ML literacy for all project stakeholders is important for
collaboration because it aids in establishing a common terminology inside
the team, making communication more efficient. It also helps team members
become familiar with the model being developed, as it is vital that they clearly
understand the model’s goal and the type of output it generates (Piorkowski
et al., 2021). Participants argued that this recommendation is valuable for
collaboration during model deployment, model integration, and ML artifact
storage. However, it might not be as relevant for other tasks. For example,
ML literacy may be less useful for data access definition than simply providing
practical data acquisition instructions, such as what commands should be used
to obtain data or what database should be accessed.

Documentation constitutes an important tool for enhancing collabora-
tion (Nahar et al., 2022). Having all requirements and definitions explicitly
stated on a document enables team members to understand what is expected
from the system. This allows data scientists and software engineers to evaluate
each other’s work despite their different fields of expertise. Documentation can
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also be beneficial when the actors have to plan their tasks. For model inte-
gration and availability, for example, documenting API contracts and model
inputs and outputs can help clearly define what each actor must do, making
the development process more efficient. These advantages reinforce the impor-
tance of developing well-written documents and making them available for all
team members to consult.

Clearly defining responsibilities and boundaries between data scientists
and software engineers is critical, even for tasks that may not require much
collaboration. This recommendation raises awareness about the tasks each
actor is supposed to perform, enhancing team alignment. For example, it must
be clear from the beginning to everyone in the team whether data scientists
should be responsible for handling ML model deployment. Doing this will avoid
problems later in the project and improve their communication with software
engineers during this task if needed. This recommendation can also be useful
when specifying the system’s architecture, as each actor’s responsibilities might
be directly related to the system components they will have to develop.

Supporting interdisciplinarity between data scientists and software engi-
neers may not be as vital as some of the other recommendations we assessed.
If responsibilities are correctly assigned, a lack of knowledge exchange between
the actors during the tasks should not compromise the team’s performance.
Nevertheless, following this recommendation can still be useful since it enables
team members to work more closely, facilitating communication. For tasks such
as model deployment and integration, where collaboration may be required, in-
terdisciplinarity allows actors to learn more about each other’s work. Besides
improving communication, this can also benefit the team in the long term.
For instance, data scientists may use this knowledge to develop ML models in
such a way that makes their deployment easier in the future. Similarly, soft-
ware engineers can use what they have learned about the model to assess the
implementation of incremental learning.

Organizing regular meetings provides several advantages for team align-
ment and collaboration overall. They allow team members to know what is
being done and discuss the project’s current state. Moreover, these meetings
can foster knowledge exchange and help resolve issues during development.
However, to improve collaboration, the team must organize these meetings
properly. For example, it may not be interesting to schedule meetings with
both software engineers and data scientists to discuss tasks that do not re-
quire their interaction. For this reason, it is important that teams thoroughly
evaluate the importance of each meeting based on the project’s current state
and the team’s characteristics. Defining a clear goal for each meeting can help
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with this evaluation.
Our findings demonstrate how the impact of the recommendations for

each task depends on project characteristics and the level of interaction
between software engineers and data scientists during task execution. Most
recommendations are relevant for tasks that require strong collaboration,
such as ML model integration. Still, recommendations like defining clear
responsibilities and organizing regular meetings can be valuable regardless
of the level of collaboration. Teams working on ML-enabled systems need
to analyze the recommendations we have discussed to identify the most
appropriate ones for enhancing their performance.

5.4.3
Threats to Validity

This section describes how we handled threats to our study’s validity.
Once again, we discuss threats to construct validity, internal validity, external
validity, and reliability.

A potential threat to construct validity is related to our focus group
design not being appropriate to investigate collaboration and recommendations
in the context of ML-enabled systems. To avoid this threat, we carefully
established the tasks and recommendations discussed during the focus groups
based on our previous studies and the current literature on collaboration
for these systems. To improve the credibility and representativeness of our
results, we selected papers published in prestigious venues with findings that
were acquired through perceptions from professionals working on industry ML
projects.

Threats to internal validity include participants not understanding the
tasks and recommendations we defined for discussion, as well as applying
a different methodology in each focus group. To mitigate these threats, we
followed a standardized procedure during the two sessions we conducted. Tasks
and recommendations were discussed in the same order, and we timed the
discussions to ensure all topics were debated equally. Before each voting phase,
we allowed participants to ask questions to better understand the task or
recommendation they had to assess. On the other hand, participants could see
each other’s votes while voting, which may have induced groupthink. We tried
to mitigate this by reinforcing that there were no right or wrong answers, as
the votes reflected each participant’s previous experiences. We also encouraged
participants to explain the motivation behind their votes.

A threat to external validity concerns our results not being valuable
for other teams working on ML-enabled systems. We recognize the limited
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number of participants in our focus groups, especially software engineers, may
be considered a threat to our findings’ validity. To mitigate this threat and
increase generalizability, we invited experienced professionals who work on
different ML-enabled systems to participate in our research. However, the
experiences they shared were exclusively based on the context of the projects
they participated in. Practitioners should examine our results to project how
they can be applied in their respective teams. For this reason, we consider
our findings useful for any team developing an ML-enabled system looking to
enhance collaboration between software engineers and data scientists.

Finally, to strengthen the reliability of our results, we created an online
repository5 with all artifacts developed during this study. This allows other
practitioners to validate our results and replicate our research design in future
studies.

5.5
Concluding Remarks

In this chapter, we reported two focus group sessions with seven expe-
rienced data scientists and software engineers. Our study aimed to compre-
hend how participants viewed collaboration between these roles during multi-
ple tasks important for building ML-enabled systems. Furthermore, we insti-
gated them about the relevance of several recommendations for improving this
collaboration. To do this, we defined seven tasks and six recommendations we
considered interesting for evaluation. They were selected based on our previous
results and findings from the literature researching this collaboration in-depth.

Our findings illustrated how collaboration between software engineers
and data scientists is crucial for most tasks, as knowledge exchange between
the actors can improve the team’s performance while developing ML-enabled
systems. For some tasks, such as data selection and ML model evaluation,
the team must analyze if establishing collaboration is more beneficial than
assigning only one role as responsible. Regarding the recommendations we
proposed, they were considered valuable for different tasks of ML projects.
Teams must examine their advantages and prioritize implementing the ones
considered most beneficial.

5https://doi.org/10.5281/zenodo.10884480

https://doi.org/10.5281/zenodo.10884480


6
Conclusion

6.1
Contributions

This dissertation described three studies investigating the interaction be-
tween software engineers and data scientists when building ML-enabled sys-
tems. They provide factual examples of challenges based on real ML-enabled
system projects for different customers. The challenges we described are also
mentioned in the current literature, reinforcing their relevance. In addition to
explaining each work’s results, the chapters also detail the research method-
ology employed and how the study was planned. This information can be
valuable for other researchers who want to conduct new investigations on our
research topic. Furthermore, our findings can be helpful for organizations seek-
ing to leverage the collaboration and performance of their teams responsible
for developing ML-enabled systems.

In our first study, we defined our research goal as characterizing the in-
teraction between software engineers and data scientists to comprehend how
they share responsibilities and collaborate. To do this, we performed a case
study following the guidelines by Runeson et al. (2012) for using this research
methodology in software engineering. We interviewed four professionals work-
ing on a large ML-enabled system and examined the collected data using RTA
to identify response patterns. The study’s findings revealed how our selected
case handled tasks during system development and how data scientists and
software engineers interacted. We believe this knowledge can be useful for
other practitioners creating ML-enabled systems. By understanding the chal-
lenges participants faced in multiple stages of the project, which are thoroughly
discussed in this chapter, other teams can improve their planning and task
management to avoid them.

Our second study detailed two complementary interviews we performed
with professionals working on two different ML-enabled systems. Our intent
with this work was to enrich the outcomes of our case study. Furthermore, in-
vestigating collaboration in two additional projects allowed us to evaluate our
previous findings’ generalizability. For this reason, we established the same
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research questions as before. After conducting the interviews, we reviewed
the transcripts and extracted the participants’ most relevant comments. The
results showcased how the teams had different collaboration practices and re-
sponsibility division approaches, which were influenced by each team’s config-
uration and the current stage of their respective projects. This investigation of
different scenarios allowed us to compare them with the discoveries of our prior
study. In addition, the obstacles discussed in this study and the previous one
enabled us to propose recommendations for improving the interaction between
data scientists and software engineers. We believe they can guide team leaders
and managers who are interested in fostering this interaction.

Our third and final study involved two focus group sessions with seven
experienced software engineers and data scientists working on ML-enabled
systems. The sessions were planned following the guidelines by Kontio et al.
(2008) for employing this method in a software engineering context. Our
study aimed to acquire the participants’ perceptions regarding the relevance
of collaboration for their tasks, and how this interaction could be improved.
To do this, we first reviewed our previous results and the literature on
collaboration for ML-enabled systems. After that, we selected a group of
tasks and recommendations that we considered interesting for discussion. We
transcribed all focus group sessions and analyzed each participant’s comments
to answer our research questions. Our discoveries can effectively contribute
to practitioners interested in how collaboration between these actors unfolds
during tasks crucial for developing ML-enabled systems, such as ML model
integration and deployment. Moreover, the study enabled the identification of
practical examples of the effects of each assessed recommendation. We believe
this can help other teams working on ML-enabled systems identify the most
appropriate recommendations for enhancing their performance.

6.2
Limitations

This section details some limitations of the studies we conducted. First,
we acknowledge that the number of subjects in each study is relatively small.
We interacted with four participants in our first study, five in our second,
and seven in our third. Due to the qualitative research methods we employed,
we had to analyze several transcripts for each participant, which limited our
ability to increase the number of subjects. To mitigate that, we strived to
recruit the most experienced members of each team. In some situations, this
was not possible due to the unavailability of these members. We recognize that
having a larger number of participants would have increased the reliability of
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our results.
In our three studies, we selected professionals who work on industry-

academia research projects inside PUC-Rio as participants. We did this because
we had easier access to them, and because they voluntarily agreed to partic-
ipate in our research. Even though industrial partners sponsor the projects
they work on, we recognize that teams within an academic context tend to
have characteristics specific to this environment. For example, it is common
to have software engineers or data scientists who are also researchers with a
master’s degree or a doctorate, which may not be true for teams working inside
companies. This, among other differences, may affect collaboration between the
actors on the team. Even though we believe our findings can be useful for any
team working with ML-enabled systems, we admit that collaboration within
teams inside an industrial context may have features that were not addressed
in our results.

Some limitations of our third study are also worth discussing. We chose
the topics debated in the focus group sessions based on our assessment of the
current literature and our prior studies. During the sessions, we did not ad-
dress other tasks and recommendations beyond the ones we had previously
selected. We decided to do this so that sessions would have a predetermined
duration. Still, allowing participants to propose additional tasks and recom-
mendations they judged worth discussing would have probably enhanced our
findings. Furthermore, given the time we allocated to discussing each task and
recommendation, we could not address every single vote cast by each partic-
ipant. Although the debates captured most of the participants’ opinions, we
recognize that we could not instigate everyone’s participation in all discussions.

6.3
Future Work

By assessing the literature and our research results, we could identify
multiple opportunities for future work in the field of collaboration for ML-
enabled systems. One possibility includes conducting additional studies with
industry practitioners, which would address one of the limitations of our
work. Understanding how collaboration between software engineers and data
scientists unfolds inside teams with other compositions and companies with
different organizational structures can enhance our findings and verify the
occurrence of the challenges we reported. The supplementary material available
in our online repositories can be used to replicate our studies or serve as a
reference for new investigations.

Our research focused on the interaction between software engineers and
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data scientists. However, future work can also consider expanding this focus
to collaboration with other roles, such as business owners and domain experts.
Our participants cited these actors multiple times throughout our three
studies, which evidences their importance during several tasks of ML-enabled
system development. Business owners, for example, are essential for defining
requirements, while domain experts play an important part in explaining
the data. Hence, investigating collaboration with these actors in-depth may
uncover new challenges worth addressing.

Finally, another opportunity for future work relies on exploring the rec-
ommendations we evaluated in our focus group sessions. Even though we dis-
cussed their relevance for collaboration during multiple tasks, how to apply
them and monitor their effects on the team is a subject that was not thor-
oughly debated. Given how positively our participants evaluated most of the
recommendations, we believe this additional investigation can be very ben-
eficial. Besides investigating our proposed recommendations, researchers can
also look into new recommendations and artifacts to improve communication
and knowledge sharing between data scientists and software engineers building
ML-enabled systems.
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A
Thematic Analysis

This appendix presents all codes, themes, and sub-themes generated
during the case study’s data analysis with RTA. Figure A.1 illustrates the first
version, while Figure A.2 portrays the final version after refinement iterations.
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Figure A.1: Codes (in green) and the corresponding themes (in blue). To better
organize our findings, we labeled the themes according to the aspects they
relate to (in red)
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Figure A.2: Codes (in green) and the corresponding themes and sub-themes
(in blue)



B
Interview Transcripts - Case Study

This appendix comprises the revised interview transcripts we analyzed
during the case study. All interviews were translated from Portuguese to
English.

B.1
Transcription of DS1’s interview

Q: Did you participate in discussions about the model’s objectives?
A: We had meetings to understand the problem the model would solve

and define a strategy to achieve its objective. In my first month of work, I read
documents to understand more about the business and legal terms.

Q: What documents did you consult?
A: Several research reports were developed at the beginning of the

project. I consulted one about the system, which contained some use cases
explaining the problem we had to solve. I also consulted another report on
decision trees and other AI techniques researched. These documents helped
me to understand the business faster.

Q: And do you remember who attended these definition meetings?
A: All the team participated, including data scientists, domain experts,

UX designers, and software engineers. Client representatives also participated
in some meetings. Even with the help of the reports, many project definitions
constantly changed, so I was always learning during the project. The domain
experts were always by our side to answer questions, which was essential
for building the model. We created a flowchart with all the rules the model
considered and documented the meetings through minutes. We even had an
episode where it was necessary to resort to these minutes to prove that the
team had made certain decisions in a previous encounter.

Q: Were the ML-enabled system’s objectives clear to you?
A: These definitions changed throughout the project. In the beginning,

for example, we had defined that the model would be as flexible as possible. We
realized during later meetings this would not be well accepted, as it would make
the model’s results less predictable. In our case, estimating a target accuracy
for the model was also difficult. We then defined that a supervisory committee,
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composed of client representatives, would be responsible for validating the
results produced.

Q: How was the functionality of the model within the system defined?
A: This was a long process. We had to generate results and explain the

business rules behind them and how the model worked to the client. There
was an expectation that the model would learn automatically without these
fixed rules. However, the clients voted in favor of them to prevent the model
from creating deals that involved a lot of money and to prevent them from
becoming biased towards some consumer or company. Establishing these well-
defined rules contributed to the transparency of the model.

Q: How were the data used to train the model obtained?
A: Since we worked with legal processes containing sensitive data, we

needed a secure way to obtain them. The development team defined how this
would be done together with client representatives. They created a tool to
download the data and make it available on our server. This download is
done manually whenever new data is available. The data consisted of PDFs
of different processes. During data analysis, we also requested more data from
the client.

Q: Were there any difficulties during data analysis?
A: Yes, we needed to annotate the text in the PDFs, which is a

complicated task. We devised several methods to extract the data. We had to
discuss the amount of annotated data needed to train and test the model, how
long this annotation would take, and the best way to perform this annotation.
The development team helped us to create a text annotation system and make
it available to the domain experts. They indicated which document parameters
were most interesting for extraction and annotated the data for us, which we
used for model training.

Q: Did any other actors participate in data activities besides data
scientists?

A: No, it was only our team with the domain experts. The results,
however, were presented to everyone.

Q: Has an effort been made to document the data?
A: We created a dictionary for the extracted data, which we stored in

spreadsheets. The first action we took after obtaining the data was to analyze
it and understand its meaning, which we did with the help of the domain
experts. We also documented the models’ accuracy during the tests and our
client presentations.

Q: What difficulties appeared during the construction of the model?
A: Throughout the project, we discussed what data we would take into
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account to generate the settlement agreement, and it took us a while to figure
out what data we needed to request from the client. We defined some data
fields during development, while others were defined during meetings.

Q: How was the consumption mode of the model defined?
A: Among the data scientists, I had the most experience outside the

research field, so I was responsible for the API that the rest of the system
would use to consume the model. Other developers helped me, showing me if
I was developing the API correctly.

Q: Was there any discussion about model updates and implementing
incremental learning?

A: The model’s behavior is dictated by a decision tree, whose configura-
tion we defined in a JSON file. Therefore, to update the model or add a new
rule, it is only necessary to modify this file. However, it is important to know
about the structure of the tree nodes to change the tree correctly.

We defined that, from time to time, the model would be retrained with
new data to update the parameters used. The client wanted the training to be
done automatically, but this process is still ongoing.

Q: How was the relationship with the software engineers during the
integration of the model with the rest of the system?

A: After the development of the API, what changed the most was the
model’s input and output data. The software engineers documented the input
data, while we documented the output data in our repository. When there is
a change, like new data that needs to be included in the API, or when there
is an issue, we communicate directly through a channel in Slack. We then
update the documentation afterward, if needed. We do not have any problems
in terms of communication between the teams, as the software engineers are
very attentive and available to us.

B.2
Transcription of DS2’s interview

Q: Did you participate in discussions about the model’s objectives?
A: No, the project’s scope and our team’s objectives were already pre-

defined when I joined. However, they changed during the project.
Q: How did you come into contact with these objectives?
A: Initially, the objectives were abstract. We did not have all the project

requirements elicited. We had several meetings to define what the product
would look like, using tools like Lean Inception. Other team members, like the
software engineers, also participated in these meetings. On the other hand,
client representatives did not participate in these meetings, and it would have
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been interesting to have them together with us at that moment to make the
companies feel comfortable with the product.

Q: After that, did the ML-enabled system objectives become clear?
A: From the model’s point of view, what we would do could have been

more specific. There was a misalignment between what was desired and what
was possible, which led to many meetings. No one came to us with a model
requirement. In fact, we were the ones proposing ideas. Initially, we did not
anticipate the model being a key system part.

Each model definition was documented through presentations we did in
meetings to showcase what our team was proposing. The architecture of the
model was also described in a formal document.

Q: You mentioned the absence of client representatives in meetings. Did
they prioritize any features for the model?

A: The requirements were abstract, like "the model needs to be fast" or
"the system needs to be easy to use". We had difficulties because we did not
include more client representatives when we defined the product’s concepts.
They could have helped us by making decisions. Instead, we made decisions
internally. We had to revisit some of these decisions later, while we were lucky
not to in others.

Q: How were the data used to train the model obtained?
A: The data access method was not defined from the beginning, and no

database was provided for the model. Instead, data provided by the client was
downloaded with the help of the software engineering team. The retraining of
the model is done manually.

Q: Were there any difficulties during data analysis?
A: Pre-processing the data was complex. We received raw data, so

cleaning procedures were necessary, and we also put a lot of effort into
annotating the data. It took a lot of effort to analyze and process the data
received so that we could work on the model. This situation also affected what
algorithms we could use for the model.

We also had problems with data availability. It took us some months
to get all the valid data needed for testing. Therefore, we had to initially
use mocked data, which later became different from the real data, leading to
rework.

Q: Did any other actors participate in data activities besides data
scientists?

A: The software engineers made it possible to download the data, but
our team did all the analysis. They were also present in the definition of the
model consumption API and the format of each data. We presented our model
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studies to the project’s stakeholders for them to evaluate if the results were
adequate or not.

Q: Has an effort been made to document the data?
A: We have some documentation, but the data could be better explained.
Q: What difficulties appeared during the construction of the model?
A: The time taken to obtain valid data hindered the time to create

a better performance evaluation framework. In addition, the client did not
define any model metrics, like a minimum accuracy, as they probably could not
determine such value. We also struggled with new requirements that emerged
throughout the project, and also with model requirements related to legislation
and transparency. These requirements generated doubts and impacted the
model construction. For example, the model was supposed to be "auditable",
and we did not know what that implied.

Q: How was the consumption mode of the model defined?
A: An API was created to be consumed by the rest of the system. There

was a discussion with the whole technical team to define where the model
would be hosted, in which the software engineers also participated.

Q: Was there any discussion about model updates and implementing
incremental learning?

A: The model update is currently done manually, as incremental learning
was not prioritized.

Q: How was the relationship with the software engineers during the
integration of the model with the rest of the system?

A: In the beginning, it was difficult. We were a research team, not a
development team. Still, we needed to develop versions and generate specifi-
cations for the model. Our team was responsible for understanding the entire
business flow and legal procedures so that we could build the model. Someone
else could have done this survey and delivered the requirements to us.

Our team was responsible for developing and maintaining the model
consumption API. This responsibility could have been given to the software
engineering team. Problems with input data formats when calling the model’s
API should not have been our responsibility either, as this data had to be in
the expected form before communication happened. However, we had to build
workarounds to correct some input data formats, which made the system’s
integration with the model take time and generate rework.

Each unanticipated requirement that arose implied an adaptation in the
system, causing errors and undermining the project’s planning. There was also
a misalignment in planning regarding each team’s dependencies. For example,
software engineers sometimes depended on a change in the model that was not
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in our backlog. The roles of each team ended up not being clear, which led to
problems in the API. We lacked comprehensive planning that involved both
teams more.

B.3
Transcription of SE1’s interview

Q: Did you participate in any discussions about user interactions with
the model?

A: I joined the team in the middle of the project, so I did not participate
much in the initial discussions. I noticed that client representatives could
actively suggest model parameter adjustments. Another topic they discussed
was keeping information about the model’s operation private from end users.
This was done to prevent them from learning how to manipulate the model in
their favor.

Q: When you joined the project, were the definitions related to the
model’s objectives and the system architecture passed on to you?

A: No, I became aware of them during the project. I would ask questions
to the data science team when I had doubts. There was no formal passage of
knowledge but instead explanations on demand.

Q: Do you perceive that as a difficulty?
A: Yes. When we met with client representatives and data scientists to

map the data required by the model, I was unsure if the data we requested was
correct, since I did not know what the data scientists expected for the model
input.

In these meetings, I noticed a mismatch regarding the participants’
understanding of the data. For example, I was expecting them to be in a
particular format. Yet, the data scientists were expecting them in another
form, and what the client representatives understood differed from what the
data scientists were expecting. This situation provoked changes in the model
consumption API throughout the system’s development.

Q: Did you participate in discussions about obtaining the data for the
model?

A: I was not involved in this discussion. As far as I know, data were not
obtained through the cloud or online access. The data scientists received files
from the client representatives for training and validating the model. Still, the
data were placed in a secure area since it was sensitive.

Q: Did you participate in any data-related activity?
A: No, everything was in the hands of the data science team.
Q: Did you participate in the definition of how the system would consume
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the model?
A: I developed the services that use the model consumption API. I do

not know if it is easy to change the model.
Q: How was the discussion about the storage of the model artifacts?
A: I did not participate in that conversation. I think all artifacts are in

a Git repository.
Q: Was any data scientist involved in the publication of the model?
A: No, we are responsible for deploying the model consumption API. The

deployment of this service, as well as the other system services, is automated
through a CI/CD pipeline.

Q: Was there any discussion about model updates and implementing
incremental learning?

A: We discussed this, it was a feature raised by client representatives, but
the discussion did not go very far. For now, we initially defined that retraining
the model with new data would be a manual task. The data scientists also
participated in these discussions.

Q: How was the discussion regarding model monitoring?
A: I know the data science team will send model results to client

representatives to assess if they are as expected, which is also done manually.
We are not in charge of that. However, if there is a problem with the
infrastructure of any service, the responsibility falls to our team.

Q: Were security and privacy issues considered when building the sys-
tem?

A: We tried to protect communication with external APIs and services as
much as possible, using JWT tokens that expire after some time. Private data
consumed by internal services are persisted in databases and are not exposed
to other users.

Q: How was the relationship with the data scientists during the integra-
tion of the model with the rest of the system?

A: We were very separated, and I did not like that. We did not know
much about the model. It was like a "black box" that we did not get involved
much. That’s how it happened, and I do not know if it was supposed to be
like that. Even with a well-defined API, things that were obvious to the data
science team were unclear to us. We did not participate in creating the model.
We only developed the services that consumed it, so we did not know what
was being done. This proved to be a problem when we met with the client to
define the data we needed from their external APIs.

This separation got in the way of integrating the model with the rest
of the system. I did not have the necessary knowledge to analyze if the data
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was correct and what fields were required or optional. Problems only appeared
when we started testing and integrating the system with the client’s external
APIs. Only then did we notice data either missing or in the wrong format. If
the teams were not so distant, we could have anticipated these problems.

Q: Is the integration of the model with the rest of the system well-
documented?

A: No, it is not documented well enough. We currently have the model’s
output and input data documented. But, for example, in the middle of this
integration, there is a mapper that converts data to the format expected by
the model. We could have documented this conversion better.

B.4
Transcription of SE2’s interview

Q: Did you participate in any discussion about user interactions with the
model?

A: Initially, we discussed what data we would capture from the user
before discussing the model. There was no discussion with the whole team
but partial discussions with business stakeholders, data scientists, among
other members. At that stage, we were still defining product concepts, whose
meanings differed for each actor.

We had several discussions with client representatives to understand their
product vision and define what was and was not possible. From there, the UX
designers started to prototype ideas we used to model the system database.
Not all software engineers participated in these meetings, as having all of them
participating could have affected our productivity.

Q: Did you notice any difficulties during the discussions with the data
science team?

A: I did not experience any difficulties. Since the data scientists were
part of a separate team, their activities were like a "black box" that we did not
need to care about. We only asked them what data they needed, and then we
included a new field in the UI so the user could fill it in. I know that internally
they did a more detailed analysis of the data. But I was not a part of those
discussions, as I was from another team.

Q: Did you participate in discussions about obtaining the data for the
model?

A: We only had a few discussions about this because we mainly depended
on how the client representatives could provide us with the data. So we just
obtained the data following the methodology they defined and adapted it to
how the data scientists desired. I do not know if this was the ideal way to get
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the data, but it was how we handled it in our scenario. Our documentation of
this process consists of emails we could retrieve in case of an audit.

The data scientists defined what data was needed, but our team took full
responsibility for obtaining the data. We discussed this subject with them to a
certain extent, but since this process required skills they did not have, it was
easier for us to assume this responsibility.

Q: Did you participate in any data-related activity?
A: We only captured the data needed to train the model.
Q: Did you participate in the definition of how the system would consume

the model?
A: At the beginning of the project, we discussed this with the data science

team. We created a REST API to allow the model integration with the system.
We defined a communication interface for the API, and then each team did
its part. It was outside the data science team’s interest to understand how we
stored the data as long as this service existed. So this responsibility was left
to us, and we discussed it only among ourselves.

Q: How was the discussion about the storage of the model artifacts?
A: We did not have that discussion, which led to problems. We provided

Git repositories for this storage, but the teams did not discuss how the data
scientists would store the artifacts. This eventually caused issues because
the model had a lot of artifacts, such as the training scripts, which were
not separated from the API code. For this reason, large files were loaded
unnecessarily every time a new model release was generated.

Q: Was any data scientist involved in the publication of the model?
A: No. We already had a pattern for deployment beforehand, and

we knew the data scientists did not specialize in DevOps, so we left this
structure ready for them. All the infrastructure concerning the model is our
responsibility.

I also participated in the selection of machines for model training.
The training infrastructure is heavy and demands good machines. I did not
participate in the definitions of how the training would work.

Q: Was there any discussion about model updates and implementing
incremental learning?

A: I did not participate in any discussion on this subject. I do not know
what was decided.

Q: How was the discussion regarding model monitoring?
A: The responsibility for model performance lies with the data science

team. The services created to consume the model are our responsibility.
Q: Were security and privacy issues considered when building the sys-
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tem?
A: Yes. The system’s backend is the one that communicates with the

model, which improves security. We had several discussions about this topic
when designing the product, as it is available online.

Q: How was the relationship with the data scientists during the integra-
tion of the model with the rest of the system?

A: It was natural. We defined the data needed in the discussions between
the teams. We then defined an API from there, and each team followed its side.

Still, we had some problems with changes in the communication interface
established for the API, and also with the timing of these changes. But I
think these issues are more related to managing changes in requirements and
tasks than the teams’ separation. If both teams were closer, we could have
avoided these problems. However, we would also have had a higher overhead,
as everyone would need to be together in all meetings.

Q: Do you think actors linked to requirements management could have
participated more?

A: Yes, this participation is very important, especially when you are
delivering a product to a client. System definitions are expected to change
throughout the project, so it is important to manage these changes effectively.
The client representatives’ expectations and what was passed on to the team
must be clear.

Q: Is the integration of the model with the rest of the system well-
documented?

A: Yes, I think so. Our biggest challenge was regarding the changes.
The system’s initial state was well-documented, but then changes started
happening. These changes were not documented properly, which harmed the
alignment between the teams. We did not correctly update the documentation
throughout the project, and we also did not communicate these changes
efficiently. We discovered them as system components stopped working.



C
Interview Transcripts - Focus Group

This appendix comprises the revised transcripts we analyzed during
the focus group sessions. All transcripts were translated from Portuguese to
English.

C.1
Transcription of the First Focus Group Session

C.1.1
First Stage: Task Assessment

SE1: I will briefly describe my experience with AI systems and models.
As a software engineer, I am interested, for example, in how I will store the
model. Planning model storage is a task in which software engineers should
participate. The model can have multiple artifacts, some of which may be
enormous, so they must be stored accordingly. Evaluating and selecting data
is not much the software engineer’s job, it is much more the data scientist’s job.
We start to participate more when storing the model and making it available.
At least, that was my experience. In some of the activities, we can help the
data scientist. For example, I imagine we could provide a spreadsheet with the
data. So we are not necessarily working on the system, we are simply helping
the data scientists organize themselves. Sometimes we end up helping them
because we are friends.

DS1: I think that data access definition should involve the software en-
gineers. Software engineers usually have a greater knowledge of the company’s
APIs for capturing data, so they should be able to help the data scientists
navigate the available infrastructure better. However, this also depends on the
role of the data scientist. For example, there are teams where the data scientist
is almost a database administrator as well. In this case, a software engineer
may not be needed.

DS2: Considering that data may not be in the hands of the data scientist,
a software engineer can help understand the best way to access it, when to
access it, etc.

DS1: When it comes to ML model evaluation, the data scientists know



Appendix C. Interview Transcripts - Focus Group 110

what metrics are relevant. They will know, for example, if the model is
overfitted. If you ask software engineers to deploy an overfitted model, they
will probably do it, but only a data scientist will realize that the model has a
problem and is not ready for production. Hence, I do not know how a software
engineer could help in this process.

SE1: I agree. In my previous work experiences, the data scientists were
responsible for evaluating the model and selecting data. In my current project,
I have no idea how our ML model was evaluated or how data was selected. In
fact, I was never even curious to know. Still, since we have a good relationship
with the data scientists, we are always willing to help them if they need it.

DS2: I noticed software engineers are usually not very interested in
the research process of a data science application. I have made presentations
showcasing the algorithms examined to build a model, or the metrics used for
its evaluation, and their attention goes away very quickly. This may be because
they do not know how to collaborate much at this stage of research.

DS1: For infrastructure-related tasks, the data scientist will probably
not know how to deploy the model, but the software engineer will. The actors
in charge of CI/CD operations are usually software engineers. However, this
does not mean they know how to execute the model. For this reason, it is vital
that a data scientist gets together with them to explain the model and how
to run it. Regarding deployment, I believe both actors need to be in sync to
avoid any problems.

DS2: The same goes for ML model integration tasks. These tasks will
define the ML model’s output for other system components. This should be
discussed between the software engineers and the data scientists, who must
evaluate this according to the system’s goals.

C.1.2
Second Stage: Recommendation Assessment

Involve data scientists and business owners when eliciting and ana-
lyzing requirements

SE1: The business owner knows the data very well. A business owner
usually knows how to access the data, whether it is from other systems or from
a spreadsheet. I think this interaction is important, especially when defining
how data will be acquired and selected. I think the business owner has a lot of
knowledge. Sometimes they will know who possesses that hidden spreadsheet
that you will need.

DS1: Business owners understand a lot about the data and can help
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with model evaluation. For instance, sometimes you may think the model has
to avoid false positives, but they might say, ’No, my problem is with false
negatives,’ so then you will have to choose another metric.

DS2: Involving the business owners can help the actors understand what
the data represents. Sometimes, you know the name of a given variable and
whether it is numeric or categorical, but you may not understand what it
represents. For example, I have worked on projects where the data came from
another company. In these cases, the business owners had to explain what each
data field represented, and this improved the interaction between us and the
software engineers.

DS1: Having the business owners close to the software engineers and
data scientists during requirements analysis can help enhance their collabo-
ration. For instance, imagine a scenario where the business owner asks for
a given accuracy and latency. The data scientist knows how to achieve that
accuracy, but may not know if that latency is possible given the available
machines. This is something a software engineer can help with.

Provide ML literacy for all project stakeholders

DS1: During data access definition, I do not think knowing the difference
between classification and regression would be helpful for acquiring the data.

SE1: This is what I thought. I have been working in an academic
environment for a long time. Even though I am not in the AI field, I constantly
see lectures and learn about this topic, so I did not require this literacy. Having
said that, I do not think this theoretical knowledge is important for data access
definition. I think practical instructions, such as how to access a spreadsheet
or another system, are more efficient.

DS1: I thought about disagreeing with the following task as well.
However, if software engineers happen to know a bit more about data science,
they may be able to help with data selection. For example, they may discover
noise in the data capable of hindering model training, or notice that a data
column has many null values. Nevertheless, I disagree with the statement for
defining data access or evaluating the model. These tasks should not induce
collaboration. Moreover, I think this recommendation could be interesting for
model storage. Comprehending how the models are generated allows you to
think about how to persist them more intelligently. For example, suppose there
is a high chance of data drifts in the project you are working on. In that
case, the software engineer helping with ML artifact storage would know that
the model needs to be trained and updated often. This would determine the
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development of an effective versioning system.
DS2: Yes, depending on the model’s characteristics, a software engineer’s

knowledge could be interesting. Especially when updating the model, I think
it would help.

DS1: I feel the same way for the subsequent tasks. ML literacy for
software engineers greatly helps in these tasks. They will know, for example,
what type of approach to adopt when deploying the model. Depending on the
type of model the data scientist has created, the software engineer will have
an idea of the computational power required to run it.

SE1: When I voted, I thought this could be the data scientist’s responsi-
bility. For example, the data scientist would come and say what the infrastruc-
ture requirements are. Then, the software engineer would not need to know
anything about AI.

DS1: That is true, their interaction is also important. However, with
ML literacy, the software engineer will be able to notice this even if the data
scientist forgets to warn the team. This avoids problems in the future, such as
having a deployed model with very high latency.

DS2: ML literacy can help with the definition of the model’s output and
how it will be consumed. It makes communication between the actors easier
when specifying the best way to interact with the model.

Develop documentation for product requirements, system architec-
ture, and APIs at collaboration points

SE1: I think documentation always helps, especially for ML model
availability. When it comes to data selection, I almost completely disagreed,
but I think a requirements documentation may be helpful. However, I have the
vision of a software engineer, not a data scientist.

DS2: This recommendation is very relevant for ML model integration
and deployment. It is also very useful when defining the model’s API.

DS1: I agreed with the statement for most of the tasks. Well-defined
product requirements documentation can greatly help with model availability
and integration. It can even help with model storage.

SE1: The system architecture documentation mentioned in the recom-
mendation is essential for these tasks. Having that there influenced my votes.

DS1: Yes, exactly. Having well-produced documentation greatly impacts
development. For example, if I have a requirement for extremely low latency,
it may affect how the model will be developed and made available. The fact
that this is documented explicitly assists in the collaboration between the
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software engineer and the data scientist. For instance, if the data scientist
comes up with an extremely slow approach, it will be clear to everyone that
the model is not ready for production.

Define clear responsibilities and internal processes with clear bound-
aries for data scientists and software engineers

SE1: I partially disagreed with the statement for ML model evaluation
because it is very clear to me that this is a data scientist’s responsibility.

DS1: I agreed because, in my opinion, this recommendation facilitates
task division. The data scientist’s role can often get confused with other
roles. As I mentioned before, they are sometimes also considered database
administrators. In addition, they may be confused with software engineers and
expected to handle model deployment solely. When you clearly define each
role’s responsibility, communication becomes easier. This is why I agreed with
the statement for all tasks.

DS2: Even if a data scientist will need to perform tasks usually carried
out by a software engineer, this needs to be clear for everyone. Clarifying
boundaries helps a lot in communication, especially when evaluating the work
we need to do. From the point of view of system architecture, these definitions
help us visualize who will be responsible for each system component.

SE1: I understand. Still, I maintain my opinion regarding model eval-
uation. In the teams I have worked in, explicitly defining responsibilities and
boundaries was never necessary during this task. Both data scientists and soft-
ware engineers already knew what was expected from them without the need
for a formal explanation. I believe this task should be mostly carried out by
data scientists, as there is no need for software engineers to be involved This
may be because I have worked majorly in academic environments.

Moderator: What are the differences related to working in an academic
environment?

DS1: In a research environment, roles can be mixed up. For example, I
might be in a team where I am the data scientist, and there is someone else
who is the software engineer. Because we are in a research environment, the
software engineer may also be conducting data science research. This allows
them to contribute to the work that I am doing as a data scientist. This
is uncommon in industry teams, where roles are more strictly defined. In a
research environment, there is a greater knowledge exchange.

Support interdisciplinarity between data scientists and software
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engineers

SE1: Having another person beside you while working is always useful,
especially for catching something you missed. For instance, during data selec-
tion, the software engineer might look at the data selected by the data scientist
and notice a field that could be included.

DS1: For data access definition, data selection, model evaluation, and
model deployment, I think interdisciplinarity is interesting but not vital. I be-
lieve a lack of knowledge exchange between the actors during these tasks would
not threaten the project. On the other hand, I consider this recommendation
important for the other tasks. For artifact storage, for example, both actors
need to know how the model was developed and what should be versioned. The
same goes for model availability and integration: how to consume the model
and its inputs and outputs must be clear to everyone.

DS2: Data scientists are usually more interested in research and gener-
ating insights through data analysis, so they may not know how a solution can
actually be operationalized and sustained over time. Before deploying to pro-
duction, it is important to understand what infrastructure is available, how
the model will be updated, and how data will be continuously obtained. I
think this kind of knowledge is more related to software engineering. As data
scientists become familiarized with these concepts, their communication with
software engineers will improve.

SE1: I agree. If the data scientists know how model deployment works,
they can design the ML model with this process in mind. This would make
the deployment task less arduous, especially if the project is still in its initial
phase.

DS2: After the system is deployed and operational, the actor responsible
for maintaining it is usually a software engineer, not a data scientist. This
recommendation motivates the software engineer to know more about model
characteristics, such as if it is a separate service or how it is consumed. This
knowledge would be very helpful, for example, if the software engineer notices
an opportunity to implement incremental learning.

Organize regular meetings for showcasing team activities

SE1: When defining data access and selecting data, I think the meetings
would help. For the other tasks, I consider regular meetings useful, but not
critical. After the team has agreed on all definitions, an occasional conversation
between members should be enough. Even if they are not that frequent, they
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would be enough to ask questions and answer doubts.
DS1: I love daily meetings because they bring team members from

different areas together to witness the whole project’s evolution. For tasks
that require a greater synergy between software engineers and data scientists,
I agree that there should be regular meetings to keep everyone up to date.
However, for tasks where I do not see such a strong synergy, I believe these
meetings are nice to have so that everyone knows what is happening, but they
are not crucial. In the case of data selection, for example, having a meeting to
discuss this task would be good for the software engineers to be more informed
about what is happening, but it is not essential for their work. The same is true
for data access definition: showcasing how data is obtained might be interesting
for data scientists, but they do not have to know where the data comes from
as long as they have access to it. In these scenarios, I feel the team’s progress
would not be compromised if these meetings did not happen.

DS2: I agreed with the statement because of the team alignment gener-
ated by this recommendation. The team must know what is being done and
how this impacts the tasks.

C.2
Transcription of the Second Focus Group Session

C.2.1
First Stage: Task Assessment

DS3: In the case of defining data access, I think this connection with the
software engineer is going to be essential. After the data scientist has the data,
it will be possible to work on it, train the model, perform feature engineering,
etc.

DS5: I agree, I think the scientist should have this conversation with the
software engineer to find out how to access the data.

DS3: I partially disagreed with the statement for data selection. The
role of a data scientist consists of analyzing the data and performing feature
engineering to train the model. For these activities, I would not involve a
software engineer. On the other hand, during data selection, it is possible
to deal with incomplete data that you might have to discard or adjust. You
may even discover the existence of more data that you still need to acquire.
This can lead to a change in how data is being accessed, which may provoke
an interaction with a software engineer. However, I believe the data selection
process itself falls directly to the data scientist.

DS4: That is exactly why I partially disagreed. Sometimes you have to
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go back to the data access definition to get data not initially considered.
DS5: I think this is a very exceptional case.
SE2: In the project I am currently working on, we use a collection

of documents to train the ML model. These documents were sent to us by
customer representatives who are not software engineers, so there was no
interaction between these roles. This is why I only partially agreed with the
statement for this task.

DS3: This makes total sense. In some cases, data scientists may receive
data through spreadsheets. At some point, someone had to export or make
them available. It may not have been specifically a software engineer, but
someone who knows the subject. I have seen several projects where the data
scientist is also the software engineer.

SE2: I do not consider the interaction between software engineers and
data scientists very relevant for ML model storage.

DS5: I have a different opinion. It is important that both actors define
where and how this storage will occur. This interaction with the software
engineers allows the data scientists to understand what infrastructure is
currently used for storage, as they are usually not involved in this process.

DS3: I partially agreed in this case. Throughout development, it is
possible that team members change, which may harm the improvement of
existing models. This can be mitigated by having an infrastructure where
artifacts can be properly managed with adequate versioning, which should
be created through the actors’ collaboration.

C.2.2
Second Stage: Recommendation Assessment

Involve data scientists and business owners when eliciting and ana-
lyzing requirements

DS5: It is important to have the business owners during data access
definition so that they can explain the data.

DS3: I do not consider this recommendation relevant for collaboration
during data selection. I do not think the interaction between data scientists
and software engineers is important during this task. The presence of other
actors, such as business owners, is more important than this interaction.

DS4: I did not agree with the tasks related to deployment and integration
I do not think this recommendation would be that interesting for these tasks.
For example, I consider model integration more of an implementation task, just
like with deployment, so perhaps the business owners might not be needed. It
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depends on whether there will be a testing phase for their acceptance of what
was developed.

DS3: In my view, any prioritization or decision-making often involves
business owners. In some cases, the integration task may involve different
teams, and the business owner will be able to facilitate this coordination. I
had doubts concerning this recommendation for ML model evaluation, but
I decided to partially agree. Everyone must comprehend what exactly will
be evaluated. Performance can be evaluated not only in terms of accuracy
and other metrics but also in terms of computational performance. There is
no point in having a super complex model if it will require a machine with
tons of computational power that will not be available. These definitions can
sometimes be made together with business owners and software engineers.

Provide ML literacy for all project stakeholders

DS3: I consider literacy relevant, as knowing at least the basics is
important for communication. The only exception I can see is during data
selection because I think the participation of the software engineer is reduced.
I partially agreed on the other tasks because, in the worst case, everyone has
to know that a model will be executed, that an output of a certain type will
be generated, etc.

SE2: This recommendation is important to improve communication
between the software engineer and the data scientist. It is vital to establish a
common terminology so that communication flows more easily.

DS3: As I mentioned in the discussion about the tasks, it is a good idea
to define the best way to store the model together with the software engineers
to make it more easily accessible in the future. For this to be possible, they
must understand what model training is and what is actually being stored.

DS4: What you said made me think, but I personally do not see much
relevance in ML literacy for improving collaboration during ML artifact stor-
age.

Develop documentation for product requirements, system architec-
ture, and APIs at collaboration points

DS3: I do not think this recommendation is relevant for data selection
because I do not see the need for much interaction between software engineers
and data scientists during this task. For ML model evaluation, I think this
interaction exists, but it is not strong, so I partially agreed with the statement.
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DS4: The model will be evaluated based on the documented require-
ments, so I think this recommendation has a lot of influence on this process.
Even if you do not need a lot of interaction between the software engineer and
the data scientist in this activity, I believe documentation will be relevant for
any interaction that happens.

SE2: Particularly for ML model integration, I find this recommendation
very beneficial for collaboration.

DS5: I agree. Especially when defining APIs, this documentation is
important for validating what will be done with the software engineers.

Define clear responsibilities and internal processes with clear bound-
aries for data scientists and software engineers

DS3: This recommendation is important regardless of how much inter-
action occurs during each task. Even if there is an activity where there is
not supposed to be any collaboration between a software engineer and a data
scientist, this must be clear for everyone to avoid someone doing something
that is not their responsibility. This recommendation will help define what
interactions will happen during the project.

DS5: Even for tasks with reduced interaction, following this recommen-
dation guarantees everyone knows their role and what they must do.

Support interdisciplinarity between data scientists and software
engineers

DS4: Knowing about other fields is always beneficial, but I do not
consider this essential for any activity.

DS5: During data access definition, having both actors working closely
may speed up the process. This recommendation can also help during model
integration, as this task requires a lot of collaboration between data scientists
and software engineers.

DS4: I think sharing knowledge is always valuable, but I do not consider
this recommendation relevant for collaboration during the tasks.

Organize regular meetings for showcasing team activities

DS3: The interaction between software engineers and data scientists will
be greatly facilitated if you know exactly what each person is doing and what
is happening in the project.
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Moderator: Do you see any other advantages brought by this recommen-
dation?

DS3: This recommendation is valid for monitoring the team and ex-
changing knowledge, as you can even schedule technical meetings if needed.
At the very least, these regular meetings to find out how things are going and
what is being done already help a lot.
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