Título: | COACERVATION IN ANIONIC SURFACTANTS/ CATIONIC POLYMERS SYSTEMS ELIGIBLE FOR HAIR CARE | ||||||||||||
Autor: |
STEPHANY CAROLINE DOS SANTOS CHAIBEN |
||||||||||||
Colaborador(es): |
ANA MARIA PERCEBOM SETTE DA SILVA - Orientador KARINA OLIVEIRA LIMA - Coorientador |
||||||||||||
Catalogação: | 22/NOV/2023 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65039&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65039&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.65039 | ||||||||||||
Resumo: | |||||||||||||
The interaction between oppositely charged polymers and surfactants often
leads to the formation of coacervates and can be employed to facilitate the
deposition of hair care products. Understanding the e ffects of molecular structure,
surfactant and polymer concentrations, and ionic strength is essential for controlling
this phenomenon. This study utilized polymers and surfactants with opposing
charges that are already employed in the cosmetic industry: So dium Laureth Sulfate
(SLES), Disodium Laureth Sulfosuccinate (SS), Sodium Lauroyl Sarcosinate (LS),
Poly(diallyldimethylammonium chloride) (PDADMAC), and Cationized
Hydroxyethylcellulose (cat HEC). To understand how molecular structure affects
colloidal st ructure in dilution induced coacervation, a typical concentration range
of products was used, which is rare to find in the literature. We employed zeta
potential analysis, low angle X ray scattering, and optical microscopy to
characterize the materials. De position on hair strands was assessed through optical
and atomic force microscopy . The concentrated SS and LS+PDADMAC systems
formed micellar solutions that phase separated into a Pm3n cubic mesophase upon
dilution. The SLES+PDADMAC system exhibited phase separation even at high
concentrations, with mixture design revealing that small variations in the
PDADMAC amount had a significant impact. The study with cat HEC
demonstrated that hair strand coating could occur even without coacervation, being
more depen dent on the nature of the polymer . As a result, this work established a
correlation between colloidal structures in different systems and macroscopic
properties, enabling strategic control of hair care formulations.
|
|||||||||||||
|