Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SUPER-RESOLUTION IN TOMOGRAPHIC IMAGES OF IRON ORE BRIQUETTES EMPLOYING DEEP LEARNING
Autor: BERNARDO AMARAL PASCARELLI FERREIRA
Colaborador(es): SIDNEI PACIORNIK - Orientador
KAREN SOARES AUGUSTO - Coorientador
Catalogação: 11/OUT/2023 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64283&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64283&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.64283
Resumo:
The mining industry has been witnessing a reduction of extracted iron ore s quality and the advent of new environmental demands. This situation reinforces a search for iron ore products that meet the requirements of the steel industry, such as new iron ore agglomerates. X-ray microtomography (microCT) allows the characterization of a sample s three-dimensional structure, with micrometer resolution, in a non-destructive analysis. However, this technique presents several limitations. Better resolutions greatly increase analysis time and decrease the acquired sample’s volume. Super-Resolution (SR) models, based on Deep Learning, are a powerful tool to digitally enhance the resolution of tomographic images acquired at lower resolutions. This work proposes the development of a methodology to train three SR models, based on EDSR architecture, using tomographic images of direct reduction briquettes: A model for enhancing the resolution from 16 um to 6 um, another for enhancing from 6 um to 2 um, and the third for enhancing 4 um to 2 um. This proposal aims to mitigate the limitations of microCT, assisting the development and implementation of new Digital Image Processing methodologies for agglomerates. The methodology includes different proposals for SR s performance evaluation, such as PSNR comparison and pore segmentation. The results indicate that SR can improve the resolution of tomographic images and reduce common tomography noise.
Descrição: Arquivo:   
COMPLETE PDF