Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: AVILA-BOCHI-HERMAN S FORMULA AND OTHER RELATED RESULTS
Autor: THIAGO AUGUSTO LUCAS DA SILVA
Colaborador(es): SILVIUS KLEIN - Orientador
Catalogação: 17/DEZ/2020 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50907&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50907&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.50907
Resumo:
Lyapunov exponents are a widely used tool when trying to understand the behavior of dynamical systems in general, and in particular that of linear cocycles. We focus on the maximal exponent, as it determines the general behavior of the system, in that its positivity can be an indication that we are dealing with a chaotic system. In this sense, we study a theorem obtained by Michael Herman, providing a lower bound on the maximal Lyapunov exponent of a class of linear cocycles defined by circle rotations. The proof of this result employs the complexification of the cocycle and an argument based on subharmonicity. Surprisingly, this lower bound is in fact an identity, which was proven later by Avila and Bochi. As it will be shown in this dissertation, the argument for obtaining this identity depends crucially on the harmonicity, as opposed to the mere subharmonicity of certain functions associated with the iterates of the cocycle.
Descrição: Arquivo:   
COMPLETE PDF