Título: | STOCHASTIC REPRESENTATION FOR SOLUTIONS OF THE DIRICHLET PROBLEM FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS | ||||||||||||
Autor: |
CLAUSON CARVALHO DA SILVA |
||||||||||||
Colaborador(es): |
CARLOS TOMEI - Orientador DIOGO MANUEL FERNANDES BESSAM - Coorientador |
||||||||||||
Catalogação: | 01/SET/2016 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27261&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=27261&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.27261 | ||||||||||||
Resumo: | |||||||||||||
Firstly, for motivation purposes, we briefly present a few problems mixing
notions of probability theory and of partial differential equations (PDE). In
discussing the solution to such problems it will become apparent that some
stochastic process and differential equations walk together. Next, we introduce
a class of stochastic processes called the Ito diffusions, and some of its features
such as the Markov property. Each such process has an associated linear
operator the, so called, infinitesimal generator. This operator acts as a second-order
differential operator on smooth functions, and controls the LOCAL
behavior of these diffusions. We discuss these features together with Dynkin s
formula a convenient relation derived from the infinitesimal generator, which
informs us about the AVERAGE behavior of the diffusion. Finally, we apply
these probabilistic tools to find a formula for the solution of the Dirichlet
problem for a somewhat general linear elliptic second order PDE. This formula
connects the solution of the PDE to the aggregated/average behavior and
associated (Ito) diffusion. This type of stochastic representation generalizes
the solution method of the problems firstly discussed.
|
|||||||||||||
|