Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SELEÇÃO DE VARIÁVEIS E CLASSIFICAÇÃO DE PADRÕES POR REDES NEURAIS COMO AUXÍLIO AO DIAGNÓSTICO DE DOENÇA CARDÍACA
Autor: THIAGO BAPTISTA RODRIGUES
Colaborador(es): CARLOS KUBRUSLY - Orientador
JOSE LEONARDO RIBEIRO MACRINI - Coorientador
Catalogação: 09/ABR/2007 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9758&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9758&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.9758
Resumo:
Esta dissertação propõe uma metodologia, baseada em procedimentos quantitativos, para auxiliar o diagnóstico de indivíduos portadores de doença cardíaca. A metodologia proposta foi implementada e analisada em um grupo de indivíduos do banco de dados público intitulado Heart Disease Database (Base de Dados pública de Doença Cardíaca) (Aha, atualizado em 2001), diagnosticados nas cidades de Cleveland e Long Beach, nos Estados Unidos. Os resultados obtidos neste estudo foram comparados aos resultados de outros autores encontrados na literatura, de forma a se ter uma medida da qualidade dos resultados aqui obtidos. Foram utilizadas também outras técnicas de classificação de padrões conhecidas na literatura, denominadas Análise Discriminante e Algoritmo C4.5, de forma a estabelecer comparações com os resultados obtidos nesta dissertação utilizando Redes Neurais, e aplicar a metodologia sugerida na divisão dos conjuntos de treinamento/generalização. Os resultados obtidos foram satisfatórios. Um percentual de acerto médio de 91,0 % foi atingido, enquanto que outros resultados de estudos usando a mesma base de dados alcançaram percentuais de acerto médio de 83,0 % (Ho & Chou, 2001) e 83,5 % (Hu, Li, Cai & Xu, 2004). O desempenho da Rede Neural também foi melhor quando comparado ao da Análise Discriminante e do Algoritmo C4.5. A metodologia de divisão dos conjuntos de treinamento/generalização sugerida nesta dissertação promoveu melhorias em todas as três técnicas de classificação de padrões utilizadas. Acredita-se que os resultados obtidos poderão auxiliar as condutas médicas em relação ao diagnóstico de doença cardíaca, podendo, portanto, vir a ser úteis na prevenção e/ou tratamento de doenças cardíacas.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS E ANEXOS PDF