Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CONTROLE PREDITIVO HIERÁRQUICO DE VEÍCULOS ROBÓTICOS
Autor: ANNA RAFAELA SILVA FERREIRA
Colaborador(es): MARCO ANTONIO MEGGIOLARO - Orientador
VIVIAN SUZANO MEDEIROS - Coorientador
Catalogação: 04/FEV/2025 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69247&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69247&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.69247
Resumo:
Robôs móveis autônomos são um grande foco de pesquisa devido à sua aplicabilidade e interdisciplinaridade. Robôs móveis com roda de direção diferencial, além de possuírem alta não-linearidade, detêm uma característica inerente à sua geometria: suas rodas só podem girar em torno de eixos fixos, sem esterçamento. Com isso, o deslizamento longitudinal e lateral é inevitável, principalmente quando o sistema está em movimento sob efeitos dinâmicos significativos. Controle Preditivo baseado em Modelo Não-Linear, Nonlinear Model Predictive Control (NMPC), é amplamente utilizado nesses casos, já que consegue lidar com sistemas com múltiplas restrições. O presente trabalho apresenta modelos matemáticos de um robô móvel com roda do tipo skidsteer, procedente da direção diferencial, incluindo o deslizamento longitudinal, aos quais o NMPC é empregado para seguimento de trajetória, obtendo trajetórias similares à de referência. Verificando que o custo de processamento de tais controladores pode ser muito alto para uso em tempo real, um controle hierárquico é desenvolvido otimizando as forças longitudinais entre as rodas e o solo para encontrar deslizamentos de referência para uma determinada trajetória a ser seguida. Como em um ambiente real nem todos os estados podem ser medidos, o controle necessita também estimar os estados não medidos. A Estimação de Estados por Horizonte Móvel, (Moving Horizon State Estimation (MHSE)), derivada dos fundamentos do NMPC, foi utilizada para realizar a estimativa, já que possui recursos para manter o sistema sob as restrições. Com o MHSE, o deslizamento do sistema pode ser calculado a partir dos estados estimados para as trajetórias obtidas com o Controle Preditivo baseado em Modelo, (Model Predictive Control (MPC)). Por fim, uma rede neural foi treinada com os estados preditos e estimados com o MHSE para que pudesse substituí-lo para que todo o controle fosse utilizado em tempo real. Com isso, o tempo computacional foi reduzido devido a substituição do MHSE.
Descrição: Arquivo:   
NA ÍNTEGRA PDF