Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: EXPLORANDO A INFLUÊNCIA DE ALTAS TEMPERATURAS E PRESSÃO NAS PROPRIEDADES DE GEOPOLÍMEROS
Autor: UMBERTO CASSARA DE C S SICILIANO
Colaborador(es): FLAVIO DE ANDRADE SILVA - Orientador
ANA CAROLINA CONSTANCIO TRINDADE - Coorientador
Catalogação: 13/MAI/2024 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66643&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66643&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.66643
Resumo:
Geopolímeros (GPs), classificados como polissilicatos-aluminatos, representam polímeros inorgânicos ou cerâmicas quimicamente ligadas com diversas aplicações determinadas pela razão atômica Si:Al, incluindo: componentes resistentes ao fogo, selantes, argamassa para reforço de vigas e tamponamento de poços de petróleo. A exploração de GPs sob condições variadas de temperatura e/ou pressão ganhou impulso após 2001. A adição de chamotte à formulação GP ocorreu apenas em 2014, seguida de investigações subsequentes sobre o impacto da adição de nanotubos de carbono e nanoargila um ano depois. O objetivo principal desta tese foi avaliar a resistência à compressão do GP simples à base de potássio curado em temperaturas e pressões de até 200 graus C e 70 MPa, respectivamente. Esta avaliação incluiu análises comparativas com caracterizações microestruturais como porosimetria e termogravimetria. Inicialmente, o estudo avaliou os mecanismos de reação de diferentes formulações de GP e determinou os efeitos da lixiviação alcalina na evolução da resistência sob diversas condições de cura (seca e saturada). Os resultados identificaram a composição K-waterglass com SiO2/K2O=1,53 e H2O/K2O=8,69 como apresentando rápido ganho de resistência, baixa lixiviabilidade, e por isso foi selecionada. A temperatura de cura teve um impacto significativo nas propriedades finais, com demonstrando uma melhoria notável de 144 por cento na resistência à compressão a 50 graus C, e uma melhoria adicional de 37 por cento a 50 graus C sob 20 MPa, atribuída à maior densificação microestrutural. A tese também explorou o efeito da adição de partículas micrométricas (chamotte) e nanométricas (nanomemetacaulim, nanoargila e nanotubos de carbono) sob condições extremas de cura (150 graus C e 40 MPa). Resultados preliminares indicaram dispersão satisfatória de nanotubos de carbono usando uma técnica simples e de baixa energia. As adições individuais contribuíram para a melhoria do desempenho do GP, mas as adições híbridas superaram quaisquer resultados de adição separada, produzindo uma formulação com maior reatividade. Sob a cura a 150 graus C, o GP com adições híbridas exibiu uma melhoria notável de 350 por cento nas propriedades mecânicas em comparação com o GP simples. Sob pressão de 40 MPa, o desempenho mecânico foi minimamente afetado pelas adições híbridas, confirmando sua eficácia em alcançar as propriedades desejadas para aplicações de alta temperatura e pressão, incluindo refinamento de poros, aumento de resistência à flexão e redução de porosidade.
Descrição: Arquivo:   
NA ÍNTEGRA PDF