Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DESENVOLVIMENTO DE MODELOS UTILIZANDO INTELIGÊNCIA ARTIFICIAL PARA PROBLEMAS DE GARANTIA DE ESCOAMENTO NA INDÚSTRIA DE PETRÓLEO
Autor: BRUNO XAVIER FERREIRA
Colaborador(es): BRUNNO FERREIRA DOS SANTOS - Orientador
VINICIUS TADEU KARTNALLER MONTALVAO - Coorientador
Catalogação: 10/NOV/2022 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61188&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61188&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.61188
Resumo:
Uma preocupação significativa durante a produção de óleo e gás é a garantia de escoamento para evitar desperdício de tempo e dinheiro. Devido às mudanças nas condições durante a produção (como pressão e temperatura), principalmente na região do pré-sal brasileiro, a solubilidade dos componentes do petróleo bruto (óleo-gás-água) pode diminuir, resultando na formação de depósitos. A incrustação é geralmente causada por parafina, hidratos e sal inorgânico. Neste trabalho, foram desenvolvidos modelos utilizando estratégias de Aprendizado de Máquina para monitoramento da formação de incrustações inorgânicas e medição de parâmetros de processo associados com formas de remediação de obstruções de outras fontes. Primeiramente, foram criados modelos do processo de formação de incrustação de carbonato de cálcio na presença de monoetilenoglicol (inibidor de hidrato) usando a arquitetura de redes neurais feedfoward prever o pressão diferencial um e cinco instantes à frente, obtendo um R2 superior a 92,9 porcento para ambos os horizontes de predição. O segundo tópico explorado foi desenvolver modelos para determinação do pH em sistemas pressurizados (até 6,0 MPa) por meio de análise de imagens. Podendo ser aplicados no monitoramento de sistemas como Sistema Gerador de Nitrogênio, utilizado para remediar alguns problemas de incrustação, dado que sua cinética depende fortemente do pH do sistema. Foram criados modelos de classificação para o pH do sistema (2, 3, 4, 5, 6, 7, 8, 9, 10) usando Redes Neurais Convolucionais (CNN), Máquina de Vetor de Suporte e Árvores de Decisão. Além disso, modelos CNN foram construídos para predizer o pH na faixa de 2- 10.
Descrição: Arquivo:   
NA ÍNTEGRA PDF